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Abstract: Landslide impact is potentially hazardous to an urban environment. Landslides occur at
certain slope levels over time and require practical slope analysis to assess the nature of the slope
where a landslide is likely to occur. Thus, acquiring very high-resolution remote sensing data plays a
significant role in determining the slope surface. For this study, 12 landslide conditioning parameters
with 10 × 10 cell sizes that have never been previously collectively applied were created. These
factors were created directly from the LiDAR (Light Detection and Ranging) DEM (digital elevation
model)using their layer toolboxes, which include slope, aspect, elevation, curvature, and hill shade.
Stream power index (SPI), topographic wetness index (TWI), and terrain roughness index (TRI)
were created from spatial layers such as slope, flow direction, and flow accumulation. Shapefiles of
distances to roads, lakes, trees, and build-up were digitized as land use/cover from the LiDAR image
and produced using the Euclidean distance method in ArcGIS. The parameters were selected based
on expert knowledge, previous landslide literature, and the study area characteristics. Moreover,
multicriteria decision-making analysis, which includes the analytic hierarchy process (AHP) and
fuzzy logic approaches not previously utilized with a LiDAR DEM, was used in this study to predict
the possibility of a landslide. The receiver operating characteristics (ROC) were used for the validation
of results. The area under the curve (AUC) values obtained from the ROC method for the AHP and
fuzzy were 0.859 and 0.802, respectively. The final susceptibility results will be helpful to urban
developers in Malaysia and for sustainable landslide hazard mitigation.

Keywords: LiDAR; DEM; landslide susceptibility; slope stability; AHP; fuzzy logic

1. Introduction

Like many developing, equatorial and tropical countries with tectonic and humid
hydroclimatic conditions, landslides in Malaysia are a common hazard that occurs almost
every year, either on a small or large scale [1,2]. Landslides result in substantial damages,
which may lead to the loss of lives and properties worldwide all year round [3,4]. The
landslide-triggering factors are entirely interdependent and comprise severe rainfalls,
earthquakes, erosion, geomorphological processes, and anthropogenic activities, such as
deforestation, road construction, quarries, mines, etc. [5]. According to Raya [6], a previous
report stated that 88% of the previous landslide cases in Malaysia are human-induced.
Landslide susceptibility is the proneness of a geographical slope to failures [7]. Landslide
susceptibility is a quantitative and qualitative assessment of the classification [8,9], extent
(volume and size), and spatial distribution of existing or potential landslides in a given
location [10]. Therefore, this study aimed to provide adequate information for assessing the
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stability of the slopes in Universiti Putra Malaysia (UPM), Serdang, Malaysia characteristic
of different morphological units, such as slopes and rugged topography.

A landslide susceptibility map shows the areas with a potential landslide due to the
correlation of varying conditioning factors that contribute to landslides [11,12]. Landslide
mapping provides information on variations in the arrangement, form, location, and ap-
pearance of the topography [13], which can be analyzed traditionally or with the help of
aerial photographs, satellite imagery, and geographic information systems (GIS) technolo-
gies [14]. These maps are an essential tool for landscapers, urban planners, developers, and
government agencies [15,16]. Again, regarding previous landslide information and histori-
cal results, Guzzetti et al. [17] highlighted the usefulness and setbacks of the individual
techniques and compared the traditional and advanced methods of landslide mapping.
The study reveals that emerging technologies like surface morphological analysis using a
very-high-resolution digital elevation model (DEM) can enhance the precision of landslide
maps. Field surveys and optical remote sensing show that landslide hazard monitoring
faces severe challenges due to dense vegetation cover, area accessibility, and mountain
shadow [18].

Today, GIS plays a remarkable role in landslide susceptibility mapping (LSM), through
which spatial datasets can be visualized, processed, and analyzed [19,20]. GIS is considered
the most accurate and exciting technology [21]. DEM is one of the most widely used and
available spatial data. Most of the spatially distributed models use the DEM of the location
to derive the elevation, which is a critical input for model predictions. The sources of DEM
are the Advanced Spaceborne Thermal Emission and Reflection (ASTER) [22], National
Elevation Dataset (NED) [23], and Light Detection and Ranging (LiDAR) [24]. The accuracy
of the grid cell elevation is an essential factor since a small error in the height may result
in incorrect model output. The modeled area DEM with grid cell resolution and vertical
accuracy are significant for most prediction processes. Several studies [25,26] noted in
the literature that compares spatial indices derived from different DEM resolutions. The
LiDAR-derived DEM is more readily influential.

Airborne LiDAR has now become one of the industry standard tools for collecting
accurate and dense topographic data at very high speed [27]. Burns and Madin [28]
provided a standard procedure for LiDAR data interpretation for landslide mapping.
Haneberg et al. [29] suggested a system for landslide mapping using high-resolution
airborne LiDAR data for the Paranuss Campus University of California, San Francisco,
with dense vegetation. LiDAR offers a tremendous way to deal with these constraints by
providing high-resolution topographic data. LiDAR, a relatively advanced technology, is
advantageous over traditional techniques for terrain surface representation. The advantages
refer to accuracy, resolution, and cost [30,31]. The most significant characteristic of LiDAR
is its very high vertical accuracy which makes it possible to represent the Earth’s surface
with high precision [32]. LiDAR is among the few technologies that collect data from all
points and produce DEMs with 1–2 m horizontal resolution [33]. Since the study area is
characterized by varying terrain, research was conducted utilizing different remote sensing
and GIS techniques.

Several models for landslide susceptibility with an acceptable accuracy level have
been developed and classified into data-driven [34] and expert opinions [35], and have
their respective advantages and disadvantages. These models’ results may be accurate in
some instances, but there is also a certain level of uncertainty, which may sometimes lead to
inaccurate results [36]. These uncertainties can negatively affect the landslide susceptibility
results accuracy when neglected [37]. Since these models are valuable means of solving a
broad range of spatial irregularities. Several efforts have been put in place to improve the
models’ accuracy [38]. Thus, the validity of spatial models and expert opinion approaches
depends highly on the relative importance of each landslide factor [39]. In addition, the
reliability, robustness, degree of fitting, and prediction skill of the validation process of the
models [40]. Machine learning methods are sometimes considered more robust data-driven
models and are often believed to have higher accuracy than multi-criteria methods [41].
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However, this is not the case, and the multicriteria decision-making approach is applied
in this study. Many studies directly utilize machine learning models without applying
any heuristic or statistical methods, concluding that this is a robust approach. However,
this would not be a universally accepted result because heuristic methods can sometimes
outweigh statistical and machine-learning models [42].

This study will explore LiDAR-derived DEM for landslide susceptibility mapping,
selected models based on multicriteria decision-making analysis which includes AHP and
fuzzy logic as well as the 12 landslide conditioning factors as a result of the structure of
the terrain. The LiDAR data when combined with these advanced numerical methods
can increase the accuracy of LSM by improving data precision, resolution, accuracy, and
completeness [43]. AHP and fuzzy logic involve producing LSM based on the expert’s as-
sessment and are also termed “expert evaluation techniques” [44]. Applying this technique,
the expert’s opinions are vital to estimating landslide potential from the data involving
intrinsic variables [45]. Consequently, assigning weightage values and ratings to the vari-
ables is subjective, and the results are not reproducible [46]. On the other hand, quantitative
methods are based on numerical expressions of the relationship between landslides and
controlling parameters [47]. The technique requires less human knowledge and experience
to produce and utilize susceptibility models [48]. This study will be very crucial in landslide
study, to locate landslide-prone areas to assist university management in timely mitigation
planning.

2. Study Area and Data Used
2.1. Study Area

UPM is a government tertiary institution located in Serdang, Selangor (Figure 1),
Malaysia. Its landmass is approximately 1108 hectares and comprises natural and artificial
features, such as farmlands, trees, and water bodies. It is located along Latitude: 2◦59′34.19′′

N and Longitude: 101◦42′16.79” E. The climate of this area is characterized by a warm
and sunny tropical rainforest climate with abundant rainfall, especially in the northeast
monsoon season, between October to March. The area has an annual maximum temperature
between 31 ◦C and 33 ◦C, and a minimum temperature of 22 ◦C and 23.5 ◦C. The minimum
yearly rainfall is about 2600 mm, with relative dryness between June and July. Rainfall
typically exceeds 133 mm (5.2 in) monthly. Figure 1 shows the location of the study area.

This study is relevant in the area due to its characteristic morphological units, including
slopes, valleys, and rugged topography. In the study area, the maximum elevation is
105.560 m and the minimum elevation is 34.668 m. The area is also characterized by road
cuts, geosyncline folds, water bodies, weathering, and erosion. Moreover, the vegetation
coverage in the study area is relatively thick and vastly distributed residual soil comprising
a mixture of clay, silt, and fine sand as a result of anthropogenic activities.

According to research conducted by Santurika Hassan Aliyu (2017) in the study area,
the soil data reveals a disturbed residual soil which comprises of Serdang and Malacca
Series. The soil of the Serdang series is made up of sandstone and quartzite, yellowish-
brown in color, while the Malacca series is made up of Sandy clay with low to moderate
sub-angular structures, and friable over a few meters. The sand of the Malacca series
decreases with depth while clay increases slightly with depth with low base saturation.
For the past two decades, the state of Selangor has rapidly developed, with many housing
schemes developed to counter high market demand [49]. The state has also been hit
with the largest of landslide hazards compared to other states. Research revealed that
urban soil series similar to this area are highly susceptible to landslides compared to
other series. Furthermore, landslides are likely to occur in areas with similar geological,
geomorphological, hydrogeological, and climatic conditions as in the past [50]. At present,
traces of landslides have been detected in the study area, as shown in Figure 2.
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According to the field investigation and aerial inspection, the landslides in the study
area are mainly distributed along the western part which harbors several anthropogenic
features, such as construction and agricultural activities, which affect the terrain stability.
Like tropical and developing countries worldwide, Landslides in Malaysia are a common
hazard that occurs almost every year, either on a small or large scale [51].

2.2. Data

The LiDAR data used in this research were captured on the 24th of August, 2015 by
Ground Data Solution Bhd using a Riegl Q780–400 kHz waveform laser scanner aboard an
EC-120 Helicopter flown over UPM at an altitude of about 600 m above the terrain. A Canon
EOS5D MARK III camera with a 35 mm focal length, which was mounted on the aircraft,
was used to capture an RGB image of the entire terrain. The camera has a horizontal and
vertical resolution of 72 Dpi, respectively, and an exposure time of 1/25 00 s. This study
was carried out to cover a wide range of the study area. This area is easily accessible and
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represents a typical urbanized area with low and high-rise-story build-up areas, sparsely
populated agricultural lands, a host of anthropogenic activities, and a randomly distributed
body of water (lake). The LiDAR laser scanner, in addition to recording the xyz data, also
recorded the intensity of all light pulses that bounced back from the targets and stored
them as a greyscale image. However, intensity images are made of pixels representative of
the energy of laser pulses returning to the system [52]. The acquired point cloud has a 1-m
resolution, 6 points per square meter, with 15 cm vertical accuracy on non-vegetated terrain
and 25 cm horizontal accuracy. A geographic coordinate system of WGS84 datum was used
to derive the different elevation zones using ESRI ArcGIS 10.5 spatial analyst software.

In addition, a landslide inventory map was produced, and possible landslide sites
were identified from LiDAR ortho photo from the UPM’s Geospatial Information Science
Research Centre (GISRC) and through field investigation.

2.2.1. Landslide Conditioning Factors

The DEM is a fundamental element of GIS datasets and GIS-based analyses [53]. It is
a grid-based, three-dimensional representation of terrain elevation [54]. DEMs are either
created from primary contours or point data using a range of techniques [55]. The use of
high-density airborne laser scanning (ALS) data points gives room for producing a highly
accurate, contemporary DEM [56].

In the present study, LiDAR data was optimized and converted to DEM with 1 m
horizontal resolution to model some relevant landslides conditioning parameters for sus-
ceptibility analysis. Conditioning factors generally describe a range of parameters, such as
data, values, and conditions, that influence the terrain as susceptibility to landslide [28].
Defining and mapping a suitable set of conditioning parameters related to landslide events
involve prior knowledge of the main contributors to the landslides [57]. These condition-
ing factors include terrain geomorphology, climatic conditions, vegetation density, land
cover/use, and anthropogenic factors. Accessibility to thematic layers changes extensively
based on the type, scale, and method of data collection. Moreover, the selected parameters
in this study are those used by other researchers and those with significant influence on the
inconsistency potential of the terrain.

Data with sufficient detail is sometimes rarely available, and this introduces uncer-
tainty into the model. Sources of this uncertainty may be associated with slope geometrical
factors [58], soil properties [59], and a lack of understanding of the relationship between
measured variables and the model parameters. Studies have assessed the effect of uncer-
tainties related to such models [60] for field and spatially distributed landslide predictions.
Such information is found to rarely support risk reduction decision-making. The uncer-
tainties can be dealt with through standard scenario-led strategies, known as top-down
approaches. With these approaches, factors of a general circulation model are downscaled
to derive local rainfall intensities, frequencies, and other climatic variables [61].

The analysis involves manual data input in GIS software, such as data entry, digitiza-
tion, and classification. Hence, possible intrinsic factors and extrinsic factors are derived
from LiDAR bare earth models [62]. Based on expert opinion, literature, and geomorpho-
logical characteristics of the study area, a total of 12 geological, hydrological, and land
use landslide conditioning factors within the study area, namely elevation, slope, aspect,
curvature, hill shade, distance to trees, distance to road, distance to urban, distance to lake,
stream power index (SPI), terrain roughness index (TRI), and topographic wetness index
(TWI), were selected, as shown in Table 1.

SPI expressed as
SPI = AS x tan (β) (1)

where AS represents the specific catchment area, and β means the local slope gradient
measured in degrees. Using their layer toolboxes, the parameter maps, such as slope,
aspect, elevation, curvature, and hill shade, were directly created from the LiDAR-derived
DEM. Other parameter maps, such as SPI, TWI expressed mathematically as
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TWI = In (A/tan β) (2)

where A represents the Catchment area (m2/m) and β represents the slope in degree, and
TRI s expressed mathematically as

TRI = TRI =
√

Abs(max2 −min2) (3)

where max and min represent the biggest and smallest cell values respectively, in the nine
rectangular neighborhoods of altitude, were created from spatial layers, such as slope, flow
direction, and flow accumulation. Furthermore, the shapefiles of distances to roads, lakes,
trees, and build-up were digitized as land-use/cover from the LiDAR orthophoto and
produced using the Euclidean distance method in ArcGIS with 10 × 10 m cell sizes. These
parameters were prepared as a raster dataset using ArcGIS.

Table 1. Summary of the landslide conditioning factors.

Conditioning Factors Calculation Approach Influence on Terrain Value Range

Elevation (m) Derived directly from bare-earth
LiDAR DEM

Captures the terrain climatic and
vegetation growth characteristics 34.668–105.560

Slope (degree)
The maximum rate of change
between cells in the elevation dataset
and its neighbor cells.

Controls stress and strain in the soil,
geomorphic process, and hydrology. 0–83.365

Aspect
By creating a map of the steepest
downslope direction from each cell to
its neighbors for an entire region

Aspect reveals the downslope direction
of the maximum rate of change in value
from an individual pixel to its
neighbors

0–359.900

Plan Curvature

Through the calculation of the second
derivative values of the terrain on a
cell-by-cell basis as a fourth-order
polynomial of the form.

Reveals the shape or curvature of the
slope

Convex, flat,
concave

Hillshade
Produced from surface raster putting
illumination source angle and
shadows into consideration

Uses the altitude and azimuth features
to specify the position of the sun 0–254.000

TWI

From raster calculator for slope, flow
direction, and flow accumulation
from DEM. The value with 1
represents a flat area

Used to characterize spatial
topographic diversity and complexity
of landslide terrains and also to
characterize landslides quantitatively

1–9

TRI
By focal statistics (maximum,
minimum, and smooth) in the raster
calculator.

Reveals terrain’s morphological
heterogeneity, convergence and
divergence of the flow of water, and
topography discontinuity

0.110–0.870

SPI By determining the flow
accumulation at each cell.

Reveals the erosion potential from
water flow, sediment yield, and
concentration time.

0–332.577

Distance to road (m)

From Euclidean distance spatial
analyst tool, and input feature source
from the existing digitized roads on
the area

This reveals the possibility that
Landslides may occur on the slopes in
proximity to the road as a result of
modification by humans. Road
constructions that modify the earth’s
surface can impact landslide
susceptibility [63,64].

0–602.000

Distance to Lake (m)

Derived from spatial analyst’s
Euclidean distance function and
inputting water bodies as input
feature source

Shows the effect of eroding or
weathering of the lower part of the
material, which causes the terrain to be
weaker [65].

0–107.200
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Table 1. Cont.

Conditioning Factors Calculation Approach Influence on Terrain Value Range

Distance to build-up (m)

By inputting selected build-up
features as the raster feature source in
the analyst tool using the Euclidean
distance function

Reveals the anthropogenic modification
of the area, which reduces the tectonics
of the slope

0–505.000

Distance to trees (m)
Using the Euclidean distance function
and inputting the digitized trees
feature as the raster source feature

Shows the possibility of vegetation
roots anchoring the subsoil, which
results in additional shear resistance
that counters the destabilizing
gravitational forces

0–650.000

2.2.2. Landslide Inventory

From an archived aerial photo from the UPM’s GISRC database supported with field
observation, google earth, and classified maps, a landslide inventory map with 56 landslide
sites was created.

The 56 landslide points were randomly selected to create the landslide inventory used
for the model validation. The landslide points were further split with a 70:30 ratio. There
are no agreed splitting criteria. However, 70:30 is the most widely used in the research
community [66]. These points are chosen based on the nature and size of the study area
and the type of approach used. Basheer and Hajmeer [67] have recorded different splitting
ratios applied for several statistical approaches. They summarized that Swingler [68] used a
ratio of 80:20 for training and testing their models. Lately, Guzzetti et al. [69] applied a ratio
of 70:30 to delineate landslides from high-resolution images, and Bui et al. [70] also applied
a similar ratio for landslide prediction using soft computing techniques. Random sampling
methods are generally used in all of the studies mentioned above. To have computationally
robust models, a 70:30 ratio was chosen in this research. The compiled landslide inventory
finally comprises 56 records shown in Figure 3, and 70% (39 points) were selected as
the training dataset and 30% (17 points) were selected as the validation dataset, used for
the landslide susceptibility model validation. Raster values of the landslide points were
extracted in ArcGIS and used to build the validation datasets in SPSS.
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3. Methodology

The point cloud acquired by Airborne LiDAR was utilized in this study to generate
the high-resolution DEM. The conditioning parameters derived from DEM and shapefiles
from the LiDAR orthophoto/google earth have 1-m and 10-m pixel sizes. However, all the
factors were normalized to 10-m pixel sizes.

The result showed great topographic potential for terrain classification. The high-
resolution LiDAR-derived DEM improved landslide investigations by implementing the
AHP and fuzzy logic for susceptibility analysis following the methodology flowchart in
Figure 4. Literature reveals that topographic data with a resolution relevant to the scale
of morphological characteristics is vital to studying these landslide properties [71]. In this
study, a general discussion of landslide mapping methods is presented. Moreover, the
features of the study area have been described. The methods used to generate LSM are
then discussed, followed by the production of the resulting maps. These maps are then
validated to evaluate the influence of source and spatial resolution. Finally, a discussion
and conclusion are presented.
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3.1. Landslide Susceptibility Mapping (LSM)

LSM is an effective strategy for identifying areas prone to landslide hazards. It
plays an essential part in hazard mitigation. The LSM gives helpful information on the
spatial distribution of potential slope failures [72]. In the past two decades, substantial
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research studies on LSM have been conducted worldwide. Over the years, different
methodologies have been applied to creating LSM. LSMs are also crucial for identifying
landslide-prone areas and risk management and reduction, apart from their significance to
hazard mitigation [73]. The LSM can be produced by combining the necessary landslide
data and independent variables [74].

3.2. Analytic Hierarchy Process (AHP)

AHP was first introduced by Saaty [75]. AHP is a multi-criteria decision analysis
(MCDA) technique primarily based on model building [76] and comparative assessment of
the criteria to synthesize priorities with a ratio scale [77]. It evaluates the importance of
each landslide factor in a hierarchical order. For over a few decades, AHP has been widely
applied in MCDA to acquire the objective weights of criteria in a GIS environment [78].
AHP incorporates the consistency ratio (CR) calculus that should be inferior to 0.1. Ensuring
that the weighting of the criteria pairwise is not random. The AHP approach is generally
comprised of the construction of pairwise comparison, normalization of matrix weight,
derivation of priority sector, calculation of the maximum Eigenvalue, computation of the
consistency index (CI) using Eigenvalue, and the analysis of random index (RI). Note that
the value of CR obtained must be lower than 0.1 for the result to be acceptable [79]. The
AHP entails the identification and selection of the factors influencing the outcome of the
model. The pairwise comparison method involves three steps: (i) Construction of a Pairwise
comparison matrix: AHP assigns weights and ranks the landslide conditioning parameters
according to their level of importance through predefined scores of 1/9—1. Applying the
AHP approach [80], expert evaluations are expressed in numerical values according to
the assessment scale and also applied to this study. Each landslide factor was assigned a
numerical value based on its relative importance in this study area. (ii) Computation of
criterion weights comprises three operations, namely, find the sum of the values in each
column of the matrix, and divide the element in the matrix by its column total (the resulting
matrix is referred to as the normalized pairwise comparison matrix). (iii) Finally, compute
the average of the elements in each row of the normalized matrix by dividing the sum of
normalized scores for every row by the number of criteria. The resulting averages provide
an estimate of the relative weights of the criteria being compared. The following steps are
involved in the calculation of the final weights for all parameters [81]. Sum the value of the
pair-wise comparison matrix in the columns using Equation (4).

Lij = ∑n
n=1 Cij (4)

where Lij is the total column value of the pair-wise comparison matrix and Cij is the criteria
applied. Divide all components in the matrix using their total row to get a normalized pair-
wise comparison matrix. Divide the sum of the matrix’s normalized row by the number of
the parameter (N) to get the standard weight by applying Equation (5).

Wij =
∑n

j=1 Xij

N
(5)

where Wij = standard weight. X = the judgement matrix. To calculate the consistency vector
values Equation (6) has been used:

λ = ∑n
i=1 CVij (6)

where λ = consistency vector and V = consistency value
To approximate the CR, the weighted vector sum is calculated by multiplying the

pairwise matrix with the weight. Each of the elements is divided by their corresponding
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weights. To achieve the comparison matrix, the Eigenvalue (λmax) and the total number of
factors (n) have to be the same. The CI is mathematically expressed as Equation (7):

CI =
λmax− n

n− 1
(7)

where CI is the consistency index, λmax represents the Eigenvalue, and n is the total number
of compared factors. CR is utilized for checking the consistency of the comparison matrix
expressed, as shown in Equation (8).

CR =
CI
RI

(8)

where CR is the consistency ratio, CI is the consistency index, and RI is the random CI of the
pairwise comparison matrix. The CI rules that a CR equal to or less than 0.1 represents an
acceptable matrix. In contrast, a ratio greater than 0.1 shows that the matrix is inconsistent.
Table 2 shows the pairwise comparison matrix of the landslide factors for this study area.

Table 2. The pairwise comparison matrix of the landslide parameters.

S E H C A DL DT TWI TRI DB DR SPI

Slope (S) 2 4 3 5 8 7 7 9 9 8 6
Elevation (E) 1/2 3 3 4 6 6 5 8 8 8 4
Hillshade (H) 1/4 1/3 1/2 2 5 4 3 6 7 6 2
Curvature (C) 1/3 1/3 2 1 4 3 3 5 5 6 2
Aspect (A) 1/5 1/4 1/2 1 3 2 2 5 5 5 1
D. Lake (DL) 1/8 1/6 1/5 1/4 1/3 1/3 1/3 2 3 4 1/4
D. Trees (DT) 1/7 1/6 1/4 1/3 1/2 3 1 4 6 5 1
TWI 1/7 1/5 1/3 1/3 1/2 3 1 3 5 4 1/5
TRI 1/9 1/8 1/6 1/5 1/5 1/2 1/4 1/3 2 2 1/6
D. Build-up (DB) 1/9 1/8 1/7 1/5 1/5 1/3 1/6 1/5 1/2 1/2 1/7
D. Road (DR) 1/8 1/8 1/6 1/6 1/5 1/4 1/5 1/4 1/2 2 1/9
SPI 1/6 1/4 1/2 1/2 1 4 1 5 6 7 9

The twelve landslide factors were correlated and overlayed using the ArcGIS spatial
analyst weighted overlay function to obtain the landslide susceptibility map.

3.3. Fuzzy Logic

The Fuzzy set theory, which Zadeh first introduced in 1965, is widely applied as a
modeling methodology in complex systems that are difficult to define, especially in crisp
numbers [82]. Generally, in fuzzy set theory, each set is assigned a varying membership
value to the elements between 0 and 1, reflecting the certainty of the membership’s de-
gree [83]. The membership values can also be user-defined or based on the normalized
ratio of the percentage of occurrence to the rate of non-occurrence for a given attribute [84]
which was applied in this study as in Table 3. The fuzzy membership or fuzzification
transforms the input raster into a scale of 0 and 1, indicating the strength of membership in
a set based on a specified fuzzification algorithm. A value of 1 indicates full membership in
the fuzzy set with membership decreasing to 0, indicating that it is not a member of the
fuzzy set.

All datasets have been standardized and expressed in units that can be compared
based on the nature of the data and experts’ opinions. Each membership function differs
in its equation and application and is based on which best captures the transformation of
the data on the phenomenon being modeled. The Fuzzy Large function is used when the
larger input values are more likely to be a member of the set. The Fuzzy Linear function
uses a linear function between the user-specified minimum and maximum values. The
Fuzzy Near function is most suitable if membership is near a specific value.
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Table 3. The fuzzification conditioning factors.

Criteria Membership Function

Elevation Linear

Slope Large

Aspect Near

Curvature Near

Hill shade Linear

Distance to Lake Linear

Distance to trees Linear

Distance to Build up Linear

Distance to Road Linear

SPI Large

TRI Large

TWI Large

The choice of the most suitable operators to combine the conditioning factors layers
is crucial. There are five different operators to choose from: “AND”, “OR”, “PRODUCT”,
“SUM”, and “GAMMA”. These five fuzzy operators can be expressed mathematically as:

µAND = MIN(µA, µB, µC) (9)

µOR = MAX(µA, µB, µC) (10)

µPRODUCT = 1−∏n
i=1 µi (11)

µSUM = 1−∏n
i=1(1− µi) (12)

µGAMMA = (Fuzzya lg ebraicsum)λ (13)

The fuzzy “AND” function is the minimum of the fuzzy membership from the fuzzy
input raster. The “OR” function is the maximum of the fuzzy membership from the input
raster. The fuzzy “PRODUCT” is a decreasing function used when multiple evidence is less
critical or smaller than any input alone. The “SUM” function is an increasing function used
when considerable evidence is more significant than any inputs alone. The GAMMA is the
algebraic product of the fuzzy “SUM” and fuzzy “PRODUCT” both raised to the power of
gamma.

A fuzzy overlay methodology was used for this analysis because it is very appropriate
for the continuous datasets used and accommodates discrete datasets. The fuzzy analysis
is in two stages [85]: First, each criterion in the analysis must be converted to fuzzy
membership values using the fuzzy membership function (a mathematical model that
creates the relationship between the observed and computed membership value. Moreover,
the fuzzified data are overlaid using a fuzzy overlay tool. Assigning a fuzzy membership
value to the observed data is feasible with gaussian, gamma, linear, near, large, or small
relationships. When full membership is assigned to large or small observed values, a linear
relationship occurs, and a consistent rate of change to non-membership. The minimum
or maximum observed values in the linear function can be changed to create minimum-
maximum thresholds which are useful for detecting and removal of outliers of large or small
observed values. The Small function assigns membership preference to small observed
values. Likewise, the large function considers large observed values. With Small or Large
functions, non-linear relationships can also be created between the datasets.

Irrespective of which function is used, the rate of change can be manipulated to
alter the nature of the spread of the function. For example, the midpoint (baseline for
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membership/non-membership) can be specified in the observed data to make the fuzzy
membership value equal to 0.5. Gaussian membership transforms the data values into
a normal distribution function. For a normal distribution curve, the midpoint which
describes the ideal definition for the set has a value of 1; and the values of the input data
decrease in membership in the positive and negative directions away from the midpoint
until further where the values move far away from the ideal definition where they are no
longer part of the set and are assigned 0 [86,87]. Selecting the ideal fuzzy overlay among
several available operators (AND, OR, PRODUCT, SUM, GAMMA) to combine the criteria
layers is critical. The fuzzy overlay analysis was carried out through the fuzzy overlay tool
in the ArcGIS 10.5 software. After standardization, each one of the fuzzy types was used,
while the “GAMMA” function gave the most acceptable result.

3.4. Validation

Validation is an essential scientific investigation process that reveals a model’s out-
put [88]. LSM accuracy can be validated using different validation techniques. Receiver
operating characteristics (ROC) and area under the curve (AUC) validation techniques
were implemented to evaluate and compare the landslide mapping methods. The most
commonly used method is the ROC curve [89]. The ROC is primarily used for model
validation. It compares the value of measured and predicted variables to compute the
probability correspondence in class occurrence [90]. Thus, the ROC curve was used in
this study to validate and compare the landslide maps of AHP and Fuzzy. This validation
approach shows the trade-off between the true positive rate (TPR) and the false positive rate
(FPR) in the LSM. The classified and ground truth data sets were computed in Microsoft
Excel and exported to SPSS to plot the ROC curve. The vertical axis of the curve shows the
sensitivity, while the horizontal axis shows the specificity. The AUC offers the accuracy
of the LSM. The AUC plot of sensitivity and specificity shows the overall accuracy from
0 to 1. The values closer to 1 has better accuracy and vice-versa. This means that when
AUC = 1, the classifier can accurately differentiate between all the positive and the negative
class points. However, where AUC = 0, then the classifier would be predicting all negatives
as positives, and all positives as negatives. It is the measure of the ability of a classifier
to differentiate between classes and is used to summarize the ROC curve. The higher the
AUC, the better the model performance at differentiating the positive and negative classes.

The ROC curve was produced by plotting TPR values against the false positive rate
(FPR) values using a threshold setting. From the Statistical Package for the Social Sciences
(SPSS) software, the ROC curve was generated. The ROC measures the relationship between
sensitivity and specificity in a binary classifier and plots against each other. Sensitivity, also
known as the true positive rate (TPR) quantifies the ratio of positive classified points to all
landslide classes. At the same time, specificity, also known as the false positive rate (FPR),
measures the probability of falsely rejecting the null hypothesis [91].

Sensitivity ==
TP

TP + FN
(14)

Speci f icity ==
TN

FP + TN
(15)

where TP and TN represent the true positive and true negative, respectively, which are the
number of landslide pixels classified correctly. FN and FP represent the false negative and
false positive, respectively, which are the number of incorrectly classified landslide pixels.

A synthetic index AUC was also calculated from the ROC curves. The value of AUC
ranges between 0 and 1 which represents the excellent and poor relationship between AUC
and the prediction rate
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4. Results
4.1. LSM by AHP

The resulting CR for all the parameters was less than 0.10. This means that the relative
weights were appropriate, and the comparisons were consistent [92]. The calculation
yielded an acceptable level of CR in the pairwise comparison, sufficient to recognize the
weights of the parameters in the landslide susceptibility model. Moreover, the highest
weight was assigned to the slope. Elevation, curvature, aspect, STP, and hill shade were
also influential. Other parameters, such as TWI, TRI, distance to road, distance to the
lake, distance to build up, and distance to trees, were identified as less important. The
12 different landslide factors were correlated and overlayed using the ArcGIS spatial analyst
weighted overlay function to obtain the landslide susceptibility map. Using the natural
break classification method, the AHP LSM was subsequently divided into; very low, low,
moderate, high, and very high susceptibility classes [93,94]. From the AHP map, 20.65%
of the area falls within the very-low susceptibility zone, 20.18% is for the low, 20.37% for
moderate, 19.45% for the high, and 19.35% for the very-high susceptible areas.

4.2. LSM by Fuzzy Logic

The fuzzy logic applies the fuzzy membership/fuzzification functions rather than the
weighted parameters approach used by the AHP method for the landslide conditioning
parameter reclassification. After the initial reclassification of each parameter, it followed
the reclassification to the simple interpretation of raster data by altering single input values
into new output values that were further converted to the continuum of fuzzy logical
values between 0 and 1; 0 represents unstable (completely false), and 1 represents stable
(completely true) stable terrain. Fuzzy logic uses the reclassified conditioning parameters
to create a landslide susceptibility map. Different fuzzy operators were implemented in
the analysis, with the fuzzy gamma operator showing the most acceptable result. After
standardization, each one of the fuzzy types was used, while the “GAMMA” function gave
the most satisfactory result. Fuzzy Gamma establishes the connections between the various
input criteria and simply does not return the value of a single membership set as fuzzy
OR and fuzzy AND functions. Fuzzy Gamma is applied when the values are greater than
the fuzzy Product but less than the fuzzy “Sum”. Where the specified gamma is 1, the
result will be similar to fuzzy “Sum”; where gamma is 0, the output is similar to fuzzy
Product. Values in between allow the combination of evidence between the two extremes
and possibly different from fuzzy “OR” or fuzzy “AND”. Fuzzy Gamma is a compromise
of the advanced effect of fuzzy “Sum” and the decreasing effect of fuzzy “Product”. The
fuzzy overlay process sums up the landslide conditioning parameters in a GIS environment
to produce the final susceptibility map. The output map produced by fuzzy logic was
classified into five risk classes, namely: Very High, High, Moderate, Low, and Very Low,
as shown in Figure 5. LSM produced by fuzzy logic offers 14.53% spatial area coverage of
very low, 42.83% of low susceptibility area, 27.98% of moderate susceptible area, 12.19% of
the highly susceptible area, and 2.47% of very highly susceptible areas.

Based on a global verification of the influence of topography and environment on the
terrain classification, the output maps of the landslide susceptibility models were evaluated
qualitatively, which is essential in selecting the most effective method of LSM for a given
study location. Table 4 explains the risk level classes and their description and implication.

4.3. LSM Validation

The LSMs validation is an integral step in every landslide modeling process. The
accuracy and efficiency of the AHP and the fuzzy methods were evaluated by applying an
independent ROC and the AUC threshold approach. Both methods have generally been
involved in the analysis of different types of landslide susceptibility studies.
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Table 4. The level of risk (Australian Geo-Mechanics Society).

Hazard Rating Description Implications

Very High The event is expected to occur Extensive investigation, planning, and implementation of
treatment options are essential to reduce risk to acceptable levels

High The event will probably occur under
adverse conditions

Detailed investigation, planning, and implementation of
treatment options essential to reduce risk to acceptable levels

Moderate The event could occur under adverse
conditions

It May be acceptable provided a treatment plan is implemented to
maintain or reduce the risk level

Low The event might occur under very
adverse conditions

It can be accepted. Treatment to reduce risk levels should be
defined

Very Low The event is conceivable but only under
exceptional circumstances Accepted. Managed by routine procedures.

In this study, the final landslide susceptibility maps of the AHP and fuzzy were val-
idated by comparing the locations of the existing landslides, using the prediction rate
methods. The predictive rate method uses the validation dataset to evaluate the landslide
susceptibility model’s predictability [95]. Moreover, the prediction rate explained the land-
slide susceptibility models’ prediction capability over the landslide conditioning factors. A
vital point in landslide susceptibility analysis is the need to validate the results to provide
significant results. For verification of the landslide susceptibility maps, the 30% validation
dataset [96,97] (17 landslide locations) was used based on the random selection.

The values of the AUC show the accuracies of the landslide susceptibility methods
applied. From the ROC result in Figure 6, the AUC values of the AHP and Fuzzy logic are
0.859 and 0.802 at a 95% confidence level, respectively. A higher AUC value represents a
higher level of accuracy of a susceptibility map. This indicates that the AHP susceptibility
map is more accurate as compared to the fuzzy. Generally, the result of the accuracy
assessment shows a satisfactory outcome for the susceptibility maps.
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5. Discussion

The impact of landslide events in urbanized areas should not be underestimated
because it, directly and indirectly, affects lives and properties. Some of these impacts may
include loss of industrial, agricultural, forest, and tourist revenues as a result of damage to
land, facilities, or transportation systems, and loss of human or animal productivity due to
injury or death.

Different LSM models have previously been developed, though, there is no known
better universal guideline for LSM model selection. LSM results depend on the structure of
the model and data quality [98]. The landslide phenomena investigation and LSM follow a
certain number of steps. Landslide conditioning parameters, landslide models, software,
and DEMs are essential to successful landslide susceptibility mapping, and they are directly
or indirectly connected. Advances in methodologies, software, and DEM resolutions have
allowed researchers to choose the most suitable approach, software, and DEMs for the area
and the research objectives. Landslide conditioning parameters are a reference to landslide
studies as they can test the stability of an area. The parameter’s influence differs and can
affect the accuracy of the analysis [99]. Moreover, LSM can be achieved using landslide
models. Thus, many models have been developed. The most common method based on
multicriteria decision-making algorithms is AHP and fuzzy.

Furthermore, the significance of DEMs in landslide susceptibility studies at either small
or large scales was outlined by researchers [100]. For this reason, the importance of DEMs
in landslide mapping is inevitable, though several limitations should be considered. For
example, the DEMs created from topographic maps are inaccurate in steep terrains [101].
Hence, low-accuracy DEMs tend to flatten the roughness of the topography, thereby
decreasing the reliability of the prediction [102]. According to Andrea et al. [103], the
spatial resolution of DEMs is important for reliable landslide studies. They evaluated
the effectiveness of different DEM resolutions to project ground deformation velocities
measured using the PSInSAR technique in the San Fratello and Giampilieri, Italy using (i)
a 20-m resolution DEM of the Italian Military Geographic Institute, (ii) a 2=m resolution
DEM derived from airborne laser scanning LiDAR data for the San Fratello 2010 landslide,
and (iii) a 1-m resolution DEM derived from ALS LiDAR data for the area of Giampilieri.
The evaluation was performed by comparing the DEMs elevation with those of each single
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permanent scatterer (PS) and projecting the measured velocities along the steepest slope
direction. Results showed that the 1-m DEM resolution is more suitable for landslide
studies. It has been argued that the higher spatial resolution satellite images provide
more details for the level of generalization relevant for decision makers at the smaller
scale, rendering [104]. One of the most significant features of LiDAR is its very high
vertical accuracy, which allows it to represent the Earth’s surface with high accuracy [103].
Warren et al. [105] compared slopes measured in the field with those derived from DEMs
and found that higher-resolution DEMs (1 m) produced better results than lower-resolution
DEMs (12 m). In this research, 1-m resolution LiDAR data were utilized for the landslide
susceptibility study.

For this study, the most effective data were used, and their quality was thoroughly
investigated by applying the AHP and fuzzy logic model for landslide susceptibility at
Serdang, Malaysia. To achieve this, the AHP prioritized the effective criteria and variables
and applied pairwise comparison to create a matrix. The AHP method is carried out in
different stages; the creation of pairwise comparison, normalization of the weight of the
matrix, derivation of priority sector, calculation of maximum Eigenvalue, computation
of the CI with Eigenvalue, analysis of RI, and calculation of CR. The AHP weights and
ranks the conditioning factors according to their influence on the location. Systematic
analysis of the pair-wise comparison matrix of a list of the landslide conditioning factors
was performed using expert opinion scores between 1 and 1/9 to indicate the relative
importance. This is considered one of the most suitable and reliable decision-making
approaches. The fuzzy membership or fuzzification transforms the input raster into a scale
of 0 and 1, indicating the strength of membership in a set based on a specified fuzzification
algorithm. A value of 1 indicates full membership in the fuzzy set with membership
decreasing to 0, indicating that it is not a member of the fuzzy set. All the datasets have
been standardized and expressed in units that can be compared based on the nature of the
data and experts’ opinions.

The results of the models showed high accuracy and substantially in agreement when
detecting the factor classes that have primary importance for the development of landslides
in this area. High landslide susceptibility area is mainly found on cut slopes at the center
and southern part of the maps. Moreover, the low susceptibility areas are mainly located
in the east and northern parts of the area on the maps. Based on the terrain’s geologic
materials, such as bedrock, residual soil, earth, and their mixture, slope movement may
occur in five modes, including fall, topple, slide, spread, and flow [6]. The most notable
landslide type in Malaysia is the shallow landslide, where the earth is usually less than 4-m
deep and occurs during or immediately after intense rainfall [104]. The slopes in this area
are characterized by residual soil and soil susceptible to shallow landslide.

Expert opinion is very important in solving complex landslide problems. However,
opinions may differ for every individual and thus may be subjected to uncertainty and
subjectivity. Therefore, it is vital to analyze the spatial relationship between the land-
slide conditioning parameters and landslide locations. The two test results showed the
effectiveness and independence of all applied selected conditioning factors.

6. Conclusions

Landslide hazard is a complex environmental phenomenon that is gradually becom-
ing a serious threat, especially for people living in hilly areas. This study area is highly
vulnerable to landslides as it is characterized by rugged topography and earth movements.
Rapid urban expansion, man-made activities, such as construction, and road cutting are
aggravating landslides. Therefore, an integrated geomorphological, hydrological, meteo-
rological, and anthropogenic approach is required to minimize risk. In this research, the
production of reliable and accurate LSM of the study area to predict the possibility of
landslide occurrence was carried out to evaluate and determine the areas at risk of possible
future landslides by comparing the AHP and fuzzy logic methodology. Twelve landslide
factor maps, i.e., elevation, slope, aspect, hill shade, curvature, SPI, TWI, TRI, distance to
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build up, distance to road, distance to trees, and distance to lakes, were selected based
on expert opinion, literature, and geomorphological characteristics of the terrain. The
LSM maps produced by AHP revealed 20.65% very low, 20.18% low, 20.37% moderate,
19.45% high, and 19.35% very high susceptible areas. At the same time, LSM produced
by fuzzy revealed 14.53% very low, 42.83% low, 27.98% moderate, 12.19% high, and 2.47%
very high susceptible areas. Both models were validated using a total of 56 landslide and
non-landslide points. The accuracy of each landslide susceptibility result was validated
using the ROC method, which reveals that both models are highly effective. The result
of the AHP with an accuracy of 0.859 is slightly more acceptable than the fuzzy with an
accuracy of 0.802. These analyses explain the need for the comparison of knowledge-based
and data-driven models for landslide susceptibility. A precise LSM model highly depends
on conditional factors. It thus assists decision-makers, landscapers, and urban planners in
Malaysia in identifying hazard-prone areas for mitigation. It is highly recommended to
carry out further studies in this area using different susceptibility models and to incorporate
LSM into existing regional plans, especially for hilly and mountainous areas.
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