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Abstract: Soil moisture monitoring and characterization of the spatial and temporal variability of
this hydrologic parameter at scales from small catchments to large river basins continues to receive
much attention, reflecting its critical role in subsurface-land surface-atmospheric interactions and
its importance to drought analysis, irrigation planning, crop yield forecasting, flood protection, and
forest fire prevention. Synthetic Aperture Radar (SAR) data acquired at different spatial resolutions
have been successfully used to estimate soil moisture in different semi-arid areas of the world for
many years. This research investigated the potential of linear multiple regressions and Artificial
Neural Networks (ANN) based models that incorporate different geophysical variables with Radarsat
1 SAR fine imagery and concurrently measured soil moisture measurements to estimate surface soil
moisture in Nash Draw, NM. An artificial neural network based model with vegetation density,
soil type, and elevation data as input in addition to radar backscatter values was found suitable to
estimate surface soil moisture in this area with reasonable accuracy. This model was applied to a time
series of SAR data acquired in 2006 to produce soil moisture data covering a normal wet season in
the study site.

Keywords: SAR backscatter; soil moisture estimation; semi-arid environment; multiple regressions;
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1. Introduction

Soil moisture, is an important hydrologic variable that controls the interactions (and feedbacks)
between land surface and atmospheric processes [1]. It plays a very important role in the distribution
of precipitation between runoff and infiltration. Soil moisture monitoring and characterization of
the spatial and temporal variability of this hydrologic parameter at scales from small catchments to
large river basins continues to receive much attention, reflecting its critical role in subsurface-land
surface-atmospheric interactions and its importance to drought analysis, crop yield forecasting,
irrigation planning, flood protection, and forest fire prevention [2–4].

In semi-arid environments ground water recharge is one of the most difficult parameters to
quantify, where a number of recharge mechanisms, including soil moisture change, on variable
temporal and spatial scales. Several studies showed that temporal analysis of soil moisture can be used
to understand ground water recharge [5,6]. Remote sensing technology has been used successfully to
estimate soil moisture [3,7–10] and map its spatio-temporal distribution in semi-arid environments
and could potentially contribute to ground water recharge studies.
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Synthetic Aperture Radar (SAR) data are particularly well suited for estimating soil moisture
due to the relationship between the dielectric constant and soil moisture [11,12]. The microwave
measurements are strongly dependent on the dielectric properties of the target. For a soil, dielectric
properties are a function of the amount of water present. The real part of the complex dielectric
constant of water in this spectral region (microwave) is approximately 80 comparing to the value for
dry soil is about three. This large contrast provides a basis for estimating the moisture for dielectric
values between these two extremes [13,14]. It is not always possible to take advantage of the dielectric
constant and soil moisture relationship since microwave measurements are also influenced by surface
roughness, which varies significantly from place to place due to diverse land use and land covers.
That’s why no global SAR based operational algorithm exists for estimating soil moisture [15].

Studies, particularly in the past two decades, have resulted in a multitude of methods, algorithms,
and models relating satellite-based radar backscatter imagery to estimate surface soil moisture
content [3,10,11,16–20]. The most commonly used algorithms are developed by a semi-empirical
approach [21,22]. In a given bare soil condition, radar backscatter is linearly dependent on volumetric
soil moisture content (θw) in the upper 2 to 5 cm of soil with a correlation (R2)~ 0.8 to 0.9 [21,22].
However, the presence of vegetation cover complicates soil moisture estimation due to the interaction
of the microwaves with the vegetation and soil [12]. The radar backscatter from a surface with
vegetation consists of three components: (1) product of the backscatter contribution of bare soil surface
(σs

˝) and the two way attenuation of the vegetation layer (τ2), (2) the direct backscatter contribution
of the vegetation layer (σ˝

dv), and (3) multiple scattering involving the vegetation elements and the
ground surface (σ˝

int) [12].
σ˝ “ τ2σ˝

s ` σ˝
dv ` σ˝

int (1)

In soil moisture estimation for semi-arid environments using different SAR data the influence of
sparse vegetation were found negligible by several studies [11,16–19,22]. That means, for a given soil
with uniform surface roughness (R), θw can be estimated using the following simple linear regression
expression since in this case σ˝ « σ˝

s.
θw “ a` bσ˝ (2)

where a and b are regression coefficients, usually determined from field experiments encompassing the
target-invariant, scene-invariant SAR wavelength, incidence angle, polarization, and calibration.

Using high resolution SAR data, however, it is not always possible to obtain strong linear
relationship between measured soil moisture and radar backscatter even in semi-arid environments.
Depending on the amount of vegetation present, its dielectric properties, height and geometry, the
sensitivity of microwave backscatter to variations in volumetric soil moisture may be significantly
reduced [23]. As shown by [23], in a semi-arid environment of south-eastern New Mexico vegetation
coverage can significantly reduce the accuracy of soil moisture estimation using numerical models
based on simple linear (R2 = 0.05 to 0.24) and non-linear (R2 = 0.24) relationships between radar
backscatter from high resolution SAR imagery and near real time in situ soil moisture measurements.
In addition to the vegetation density, the SAR backscattering can also be influenced by the variation in soil
types and soil salinity since they may affect the surface dielectric properties. Topographic variations
can also influence the distribution of soil moisture in the field.

This paper investigated the potential of multiple linear regressions and Artificial Neural Networks
(ANN) based models to improve soil moisture estimation in south-eastern New Mexico using high
resolution Radarsat 1 SAR imagery. The models used SAR backscatters and near real time soil moisture
measurements along with vegetation density, soil type, elevation, and soil salinity measurements.
A time series of SAR based soil moisture estimation data were generated for an entire wet season in
the study site using the developed numerical models.



Geosciences 2016, 6, 1 3 of 20

2. Study Site

A small area in south-eastern New Mexico called Nash Draw was selected as the study site for
this study (Figure 1). It is located about 30 km east of Carlsbad, NM. It covers an area of about 400 km2

and the study site occupies 225 km2 of it. The extent of the site is limited between 103.78˝W–103.92˝W
longitude and 32.23˝N–32.36˝N latitude. It is a part of the north-eastern Chihuahua desert, which is
characterized by semi-arid environments and sparsely vegetated rangeland. The topographic relief in
the region is not significant. The maximum relief across the area is approximately 200 m.

Nash Draw is a karst valley that developed in response to subsurface dissolution of evaporites
(including halite and sulfate rocks) and subsidence of the overlying strata [24]. It is a complex
example of the localized effects of evaporite karst on surface topography, near-surface geology, and
hydrology [25]. Different areas of Nash Draw display small karst features, including caves, sinkholes,
dolines, and larger integrated forms such as valleys or elongated depressions [25].

The hydrologic system within Nash Draw is poorly understood. Much of Nash Draw exhibits
no significant integrated surface drainage [25], while much of the area is covered by a thick blanket
of dune sand. That is why it is very difficult to identify the potential locations for ground water
recharge in this area. Therefore, to assist in understanding the existing hydrologic processes modifying
Nash Draw it is very important to determine the spatio-temporal distribution of surface soil moisture.

Since the study site covers an area of 225 km2 high resolution SAR data would be very suitable to
obtain remote sensing derived soil moisture estimation for this area. This is the reason Nash Draw was
found suitable as a test site for the conducted study.

Rainfall in Nash Draw is unreliable and erratic, with August as the wettest part of the year and
the rainy season ending in October. Therefore, it was considered that imagery acquired from August
to November should record the maximum variation of soil moisture in the study site.
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3.1. Synthetic Aperture Radar (SAR)

Due to its high spatial resolution, Radarsat 1 SAR Fine imagery was selected for estimating soil
moisture in the study site. Five scenes of Radarsat 1 SAR Fine imagery, with 10 m spatial resolution
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and 50 km swath, covering the Nash Draw area were acquired from the Alaska Satellite Facility (ASF).
The scenes were acquired in descending mode at a 37˝ incidence angle on 2 and 26 August, 19 September,
13 October, and 6 November of 2006. Figure 2 shows the Time series of the acquired SAR imagery.Geosciences 2016, 6 5 
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Figure 2. Time series of acquired SAR imagery.

3.1.1. SAR Pre-Processing

All acquired SAR imagery were received as Level 0 products and then converted to level
1 products. These Level 1 SAR data were terrain corrected, calibrated, and filtered in preparation for
soil moisture estimation.

Data Calibration

Sigma-naught (σ˝) describes the average reflectivity or scattering co-efficient of a radar scene.
Beta-naught (β˝) interprets the brightness estimates of mean reflectivity and separates the radiometric
response and reflectivity dependent on the terrain properties, such as local slope. According to [26]:

σo “ βo ` 10log10psinlq (3)

βo “ 10log10pDN2 ` A3{A2q (4)

where, DN—Digital number, A3—fixed offset from the radiometric data record, A2—Look-Up Table
(LUT) value, and l—local incidence angle.



Geosciences 2016, 6, 1 5 of 20

Calibrating the radar scene in sigma naught (σ˝) requires normalization using the knowledge
of local incidence angle as we can see in Equation (3). However, this normalization is not required
for beta naught (β˝) and for an area with low relief (that is, no significant influence with the variation
of local incidence angle). Since the topographic relief is not significant in the study site the acquired
SAR data were calibrated as beta naught for this research. An experiment was conducted using one
radar scene to determine the suitability of σ˝ or β˝ for soil moisture estimation in the study site. It was
found that backscatter values as β˝ show better correlation with soil moisture than backscatter values
as σ˝ in the study site. It is believed that β˝ produces a better estimation of soil moisture due to the
low relief in the study site [27,28].

Removing Speckles

In radar remote sensing, coherent imaging systems produce images with a granular appearance.
Bright and dark spots caused by random constructive and destructive interference of the wavelets
returning from the various scatterers within the resolution cell of the system [29]. The effect of
this interference process is regarded as a multiplicative noise, called speckle. Removing speckles
is an essential component of SAR image pre-processing techniques. Speckles should be reduced,
preserving edges and image texture to extract information from SAR imagery [30].

The best approach for removing speckles in SAR imagery is to use speckle removing filters.
These speckle removing filters are developed on the basis of the multiplicative model with an exponential
probability density function [31]. To remove the speckles in the acquired radar scenes different types
of filtering techniques available in the Erdas Imagine image processing software were tested with
different window sizes. The “Lee” filtering technique with 5 ˆ 5 window size was found efficient in
removing the speckles and was used to de-speckle the acquired radar scenes.

Geometric Correction

All SAR data were obtained as georectified using the Universal Transverse Mercator (UTM)
projection system from the Alaska Satellite Facility (ASF). The GIS coverage of the sample locations
and all other GIS data were georectified to the same projection system. A recent aerial photograph was
used to aid the georectification process.

3.2. Digital Elevation Model (DEM)

The knowledge of the local incident angle is essential for the quantitative estimation of soil
moisture and roughness from SAR data. In the absence of topographic relief the local incident angle
equals the radar look angle. In areas with large topographic relief, the incident angle becomes a function
of the radar look angle and the local terrain slope. This makes the straightforward surface parameter
estimation difficult. It is then necessary to correct the SAR data for terrain to allow geometric overlays
of remotely sensed data from different sensors and/or geometries. The elevation of the study site
varies from 900 m to 1100 m. Despite the minimal topographic influence, a terrain correction was
performed using USGS 30 m Digital Elevation Model (DEM) (Figure 3) to improve geometric accuracy
of the data. Since topographic variations influence the distribution of soil moisture in the field the
acquired DEM was also used in the SAR soil moisture estimation models.
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3.3. In Situ Soil Moisture Measurements

Near-real time soil moisture data is needed for quantitative estimation of soil moisture using SAR
data. Soil samples were collected in the selected parts of Nash Draw and analyzed them to calculate
volumetric soil moisture for calibrating the SAR imagery acquired on 2 August 2006 and 6 November 2006.
Eighty soil samples were collected in the study site for each date.

3.3.1. Sampling Technique

A stratified soil sampling technique [32] was used to acquire the soil samples. The study site was
divided into four equal parts and random sample points were selected in each part using 500 m grid
spacing, with 20 samples collected in each part. Accessibility and variation in soil types was used to
select sampling sites. Figure 4 shows the distribution of the soil sample locations in the study site.
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RADARSAT 1 acquires imagery in C-band with HH polarization at 5.7 cm wavelength and
5.3 GHz frequency. According to [33] the RADARSAT 1 beam should be able to penetrate ground up
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to top few cm in dry bare soil condition. Therefore, samples were collected at a depth of approximately
3 cm below the land surface.

3.3.2. Volumetric Soil Moisture Measurement

Gravimetric soil moisture values were calculated from the obtained soil samples using the ASTM
standard test method [34]. It was then converted to volumetric soil moisture using sample volume
(Equations (5) and (6)). Table 1 shows the statistics of the soil moisture measurements for both August
and November data sets.

Vw “
pMw ´Mdq

ρw
pcm3q (5)

θv “
Vw

Vs
ˆ 100p%q (6)

where, Vw—the volume of water content in the obtained soil sample (cm3), Ms—the mass of moist soil
(g), Md—the mass of dry soil (g), ρw—water density (g/cm3), θv—volumetric soil moisture (%), and
the volume of the sample container Vs = 76.55 (cm3).

Table 1. Statistics of in situ soil moisture measurements.

Statistical Parameters
Measurements (in %)

1–3 August 2006 4–6 November 2006

Mean 6.48 2.80
Minimum 2.55 0.26
Maximum 14.53 10.16

Standard Deviation 2.56 2.13

3.4. Vegetation Data

Vegetation cover strongly influences soil moisture estimation due to the interaction of the
microwaves with the vegetation and soil. The amount of vegetation, its dielectric properties, and
distribution pattern can significantly affect the sensitivity of microwave backscatter to soil moisture.
The SAR imagery time series data were used to produce vegetation distribution maps for the study
site and a vegetation density map for each SAR image acquisition date.

The ISODATA clustering algorithm was used to classify each SAR image to produce the vegetation
density map for the study site. The image was classified into 25 classes and then recoded the data into
four classes: thin or non-vegetated areas, sparsely vegetated areas, densely vegetated areas, and water.
Field observations of vegetation were used to recode the data and produced vegetation density maps (Figure 5).
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3.5. Soil Type and Soil Salinity

The soil data were acquired from the U. S. Department of Agriculture Natural Resource Conservation
Service (USDA-NRCS) and converted into a 10 m gridded soil type dataset. This dataset was
incorporated into the soil moisture estimation model. Figure 6 shows the soil type map for the study
site. The soil type data was used in both multiple linear regressions and artificial neural networks
based soil moisture estimation models.
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Figure 6. Measurements of soil moisture, soil salinity, and radar backscatter values shown on different
soil types in Nash Draw (August 2006 data set).

The salinity of the 80 soil samples (collected for in situ soil moisture measurements in August 2006)
were measured using USDA Soil Water Extract 1:5 methods [35]. The measurement is expressed by
Electrical Conductivity (EC) in µS/cm. The soil salinity measurements were also used in both multiple
linear regressions and artificial neural networks based soil moisture estimation models. Figure 6 shows
the distribution of measured soil moisture, soil salinity, and radar backscatter values of different soil
types in Nash Draw, NM.

4. Methods

In this study, multiple linear regressions and Artificial Neural Networks (ANN) based models
were used to investigate the influence of vegetation, elevation, soil type, and salinity on soil moisture
estimation using microwave imagery. Coefficient of determination (R2) values were used to evaluate
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the suitability of the different numerical models to estimate and map soil moisture distributions.
Soil moisture maps were prepared for the five SAR imagery acquisition dates using the most suitable
numerical model.

4.1. Multiple Linear Regressions

In semi-arid environments, the influence of sparse vegetation was found negligible in several soil
moisture estimation studies using SAR data, e.g., [11,16–19]. However, as shown by [23] the vegetation
distribution pattern in Nash Draw could significantly influence the soil moisture estimation using high
resolution SAR data. The obtained vegetation density and distribution maps of Nash Draw (Figure 5)
also support this observation.

In estimating soil moisture from low frequency radar backscattering (L band radar), the di-electric
constant was found to be weakly sensitive to soil types [12]. The sensitivity of higher frequency radar
backscattering (C band radar) to soil types, however, has not been fully analyzed in the published
literature. Several studies reported that soil moisture estimation using L-band radar should consider
the impact of soil salinity in the model [36–38]. Since in this research the soil moisture estimation
model used C band radar, the impact of both soil type and soil salinity on soil moisture estimation
was investigated.

Multiple linear regressions were conducted incorporating vegetation density information,
elevation, soil type, and soil salinity in addition to radar backscattering (measured as βº) to estimate
soil moisture in the study site. The regression was done in a step fashion where independent variables
(vegetation density information, elevation, soil type, and soil salinity) were sequentially added to the
regression analysis to evaluate the effects of each independent variable in soil moisture estimation.

Equations (7)–(11) are the numerical models developed by multiple linear regressions with the
observed in situ soil moisture measurements and different combination of independent variables to
estimate soil moisture in Nash Draw, NM. The observed soil moisture data were acquired from the
2 August data set. Table 2 shows the coefficient of determination (R2) values of the corresponding
models. From the results of the simple linear regressions it was found that both the 2 August and the
6 November data sets produced similar results. Therefore, it was decided to use only one data set to
evaluate the model performance.

θw “ 16.01` 0.50βo ´ 0.86V (7)

θw “ 13.90` 0.42βo ´ 0.79V ` 0.22S (8)

θw “ 26.85` 0.40βo ´ 0.81V ` 0.01E (9)

θw “ 18.17` 0.38βo ´ 0.77V ` 0.21S´ 0.01E (10)

θw “ 24.91` 0.27βo ´ 0.97V ` 0.14S´ 0.02E´ 0.01SL (11)

where, β˝-–Backscatter value, V—Vegetation, S—Soil type, E—Elevation, and SL—Soil salinity.

Table 2. Coefficient of determination (R2) values of multiple linear regression based models.

Independent Variables Coefficient of Determination (R2) Insignificant Variables

β˝, V 0.50 --
β˝, V, S 0.60 --
β˝, V, E 0.51 E
β˝, V, S, E 0.61 E
β˝, V, S, E and SL 0.66 E and SL

Note: β˝—Backscatter value; V—Vegetation; S—Soil type; E—Elevation; and SL—Soil salinity.
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4.2. Artificial Neural Networks (ANN)

Most SAR based soil moisture estimation models are based on the assumption that soil moisture
distribution is linearly related to the radar backscatter of the soil moisture surface, e.g., [11,12,21,39].
There are a few studies that explore the non-linear relationships between soil surface moisture and
radar backscatters. In this study, Artificial Neural Networks (ANN) based numerical models were
developed to estimate soil surface moisture from SAR data and to explore the non-linear relationship
between soil moisture and SAR backscatters. The significance of vegetation coverage, elevation, soil
type, and soil salinity in soil moisture estimation using SAR data and artificial neural networks based
models was also investigated.

Artificial neural networks, are a branch of artificial intelligence [40] in which the solution to a problem
is learned from a set of examples [41]. A neural network can be regarded as a nonlinear mathematical
function, which transforms a set of input variables into a set of output variables. The use of neural
networks has been shown to be effective alternatives to more traditional statistical techniques [42].
Neural networks can be trained to approximate any smooth, measurable function [42], can model
highly non-linear functions, and can be trained to be accurately generalized when presented with
unseen data [26]. In a typical neural network model, a single neuron forms a weighted sum of the
inputs x1,x2, . . . ,xd given by a = Σiwixi, and then transforms this sum using a non-linear activation
function g( ) to give a final output z = g(a) (Figure 7).

A feed forward neural network can be regarded as a nonlinear mathematical function, which
transforms a set of input variables into a set of output variables. The multilayer perceptron is the
most widely used feed forward neural network. Figure 7 shows a single processing unit of neural
networks. If we consider a set of m such units, all with common inputs, then we arrive at a neural
network having a single layer of adaptive parameters (weights) as illustrated in Figure 8. The output
variables are denoted by zj and are given by Equation (12).

zj “ g
ˆ

ÿd

i“0
wjixi

˙

(12)

where wji—the weight from input i to unit j, and g( )—an activation function as discussed previously.Geosciences 2016, 6 13 
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Figure 7. A single processing unit in neural networks.

Artificial neural networks, based non-linear numerical models were developed for soil moisture
estimation for the entire study site using the 2 August data set. Five different neural networks based
models were developed, through addition of different variables, to estimate soil moisture in Nash Draw.
The first model had only one input, the backscatter values. This model uses the non-linear relationship
between radar backscatter and soil moisture content. The other four models used additional inputs
(e.g., vegetation coverage, elevation, soil type, and soil salinity) in different combinations with radar
backscatter values. JMP statistical software was used to perform the neural networks based analysis.
The model coefficient of determination (R2) and cross validation coefficient of determination (CV R2)
values were used to evaluate the model performance for soil moisture prediction. The impact of
soil salinity was investigated and inclusion of this variable did not significantly improve model
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performance. Figure 9 shows the simplified schematic of the models that were developed. Table 3
shows the R2 and CV R2 values of the corresponding models.
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Table 3. Coefficient of determination (R2) and cross validation coefficient of determination (CV R2) of
the neural networks based numerical models for soil moisture estimation.

Input Variables Hidden Nodes Coefficient of Determination (R2) Cross Validation (CV) R2

β˝ 3 0.24 0.11
β˝, V 5 0.74 0.49
β˝, V, E 4 0.77 0.54
β˝, V, E 5 0.81 0.44
β˝, V, E, S 4 0.83 0.56
β˝, V, E, S 5 0.82 0.47
β˝, V, E, S and SL 3 0.76 0.45
β˝, V, E, S and SL 4 0.82 0.54
β˝, V, E, S and SL 5 0.90 0.58

Note: β˝—Backscatter value; V—Vegetation; S—Soil type; E—Elevation; SL—Soil salinity.
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5. Results

5.1. Soil Moisture Estimation

Near-real time field observations, acquired at the beginning and end of the time series, in conjunction
with SAR data were used to estimate soil moisture from the SAR imagery acquired on five different
dates in 2006. Model coefficient of determination (R2) and model cross validation coefficient of
determination (CV R2) (for non-linear models) values were compared and used to evaluate their
suitability for soil moisture estimation in Nash Draw. The model with the highest R2 and CV R2

values was considered as the most appropriate model for soil moisture estimation. The accuracy
of the selected models was evaluated by Kappa statistics. The selected soil moisture estimation
numerical models were then used to convert ßº SAR data into soil moisture data. The soil moisture
data was divided into several categories to aid in the interpretation of the spatial distribution of the
soil moisture in the study site.

The following observations were made after the evaluation of the R2 and CV R2 values of the
models developed for soil moisture estimation in Nash Draw, NM.

1. Simple linear regression between radar backscatter values and in situ soil moisture measurements
can be used to develop SAR-based soil moisture estimation models with model R2 values of 0.51 to 0.61,
but application of the model should be restricted to non-vegetated to thinly vegetated areas [23].

2. Multiple linear regressions using radar backscatter values, vegetation density, soil type, and
elevation as independent variables can be used to develop soil moisture estimation models for
the entire study site, including areas with thicker vegetation.

3. Neural networks based models, using radar backscatter values, vegetation density, soil type, and
elevation can also be used to estimate soil moisture for the entire study site, including areas with
thicker vegetation. Neural networks based models achieved higher R2 values and performed
better than multiple linear regressions based models.

A neural network based numerical model using radar backscatter values, vegetation density, soil
type and elevation was used to estimate soil moisture in the study site. This model was developed for
both the 2 August and the 6 November data sets. The R2 and CV R2 values for the August model were
0.83 and 0.56 respectively, and 0.81 and 0.55 for the November model, respectively.

The model developed for the 2 August data set was also used to map soil moisture for the
26 August data set. The model developed for the 6 November data set was also used to map soil
moisture for the 13 October data set. Since 19 September is approximately temporally equal from
both 2 August and 6 November, we applied both the 2 August and the 6 November models to the
19 September data set and estimated soil moisture by taking the average of the two estimations.

Two sets of 50 m resolution soil moisture data were produced for each of the five dates of SAR
data for the study site. The first set includes the unclassified soil moisture data, where the value of
each pixel of the dataset is the volumetric soil moisture estimation (Figure 10). In the second dataset
each pixel is classified into six categories of soil moisture to map the spatial variations in soil moisture
at 2.5% intervals (Figure 11).
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5.2. Accuracy Assessment

Kappa statistics [43,44] were used to evaluate the accuracy of the soil moisture estimation data
produced from the SAR imagery. Kappa statistics have been used successfully for accuracy assessment
in different remote sensing based studies, e.g., [13,45–47]. It is a discrete multivariate technique of
accuracy assessment [28]. Kappa coefficients express the proportionate reduction in error generated by
a classification process compared with the error of a completely random classification. For example,
a value of 0.82 implies that the classification process is avoiding 82% of the errors that a completely
random classification generates [43]. Kappa can be thought of as the chance-corrected proportional
agreement, and possible values range from +1 (perfect agreement) to ´1 (complete disagreement).
A value of 0 indicates no agreement above that expected by chance. The calculation of the Kappa
coefficients is explained below using an example of a 2 ˆ 2 matrix (Table 4).

Table 4. Computation of Kappa coefficients.

– SAR Soil Moisture
Total

Class 1 Class 2

Reference Soil Moisture
Class 1 P11 P12 P11 + P12 = α
Class 2 P21 P22 P21 + P22 = β

Total P11 + P21 = γ P12 + P22 = δ P11 + P22 = χ
Total number of data points: Q = α + β = γ + δ

Observed agreement:

Po “
χ

Q
(13)

Chance agreement:

Pe “
α

Q
ˆ

γ

Q
`

δ

Q
ˆ

β

Q
(14)

Kappa coefficient:

K “
Po ´ Pe

1´ Pe
(15)

Kappa analysis requires continuous ground truth data so that a sufficient amount of random
reference data can be obtained. Therefore, a continuous soil moisture surface was created from the
in situ soil moisture data, using kriging [48]. Jackknife resampling techniques was used to correct for
bias [49]. The measured in situ soil moisture data were randomly divided into a training set (90%) and
testing set (10%) and were analyzed using the Arc GIS Geostatistical Analyst software. The training
data set was used to create the krigged soil moisture surface and the testing data was used to evaluate
the kriging results. Ten different krigged soil moisture data sets were generated using 10 different
training data sets obtained from the same in situ soil moisture measurements. The RMS error, average
standard error, standardized mean of error, and standardized RMS error (obtained from the evaluation
of kriging results with the testing data) were used to select the appropriate kriging surface. Figure 12
shows the krigged surface generated for the 2 August and 6 November data sets.

Both SAR derived soil moisture data and the krigged soil moisture prediction surfaces were
categorized into three class intervals. For the 2 August data set, the classes were 0.0%–5.0%, 5.0%–10.0%,
and >10.0%. Since the soil moisture values were much lower in the November data set, these ranges
were 0.0%–2.5%, 2.5%–5.0%, and >5.0%. Three hundred randomly generated points were used to
calculate the Kappa coefficients and perform an accuracy assessment. Erdas Imagine image processing
software was used to perform this accuracy assessment and Kappa analysis. Kappa coefficients were
calculated for both the individual classes and the whole data sets.
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6. Discussions

Research conducted by [23] has shown that in semi-arid environments even sparse vegetation can
adversely influence the accuracy of soil moisture values estimated from radar backscatter (obtained
from high resolution SAR data) using a linear relationship. This observation is supported by lower R2

values (0.24 and 0.05 for the August and the November datasets respectively) for the linear numerical
models developed for the entire study site and higher R2 values (0.61 and 0.52 for the August and the
November datasets respectively) for linear numerical models developed for portions of the study site
with little or no vegetation. The lowest R2 values were from linear numerical models developed for
the more densely vegetated portions of the study site (0.01 to 0.04).

This research shows that soil moisture estimation using high resolution SAR data in a semi-arid
environment can be improved by developing numerical models that use multiple linear regressions
incorporating additional variables such as, vegetation density, soil type, and elevation in addition to
radar backscatter values. Regression coefficients as high as 0.61 were obtained for a numerical model
covering the entire study site using multiple linear regressions.

The non-linear relationship between radar backscatter values and soil moisture was also investigated
by [23] using artificial neural networks. It showed that a neural network developed using only radar
backscatter values and soil moisture had an R2 value of 0.24, similar to the R2 value obtained from
numerical models using simple linear regressions. This study obtained significant improvement in soil
moisture estimation when additional variables such as, vegetation density, soil type, and elevation
were added as inputs to the artificial neural networks based models. The use of these additional inputs
results in coefficients of determination of 0.83 and 0.81 for the entire study site for the 2 August and
the 6 November datasets, respectively. The cross validation coefficients of determination (CV R2) of
the same models were 0.56 and 0.55, respectively.

Soil moisture data were produced using artificial neural networks based non-linear models that
incorporated inputs of vegetation density, soil type, elevation, and radar backscatter values. The accuracy
of the modeled soil moisture data was also evaluated by the comparison of a soil moisture distribution
surface from the models with a soil moisture surface obtained by kriging the in situ measurements.
The comparison was done by Kappa statistics. The overall accuracy and the Kappa coefficient for the
soil moisture data obtained for 2 August and 6 November were 75.67% and 77.67%, and 0.43 and 0.61,
respectively. Although the obtained kappa coefficient values indicate overall good agreement between
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the measured and estimated soil moisture values, however, it is worth looking into the possibility
of having the influence of autocorrelation between these two soil moisture data sets. As suggested
by [50] since most thematic maps have some degrees of spatial autocorrelation, the calculated expected
agreement (by Kappa statistics) could be usually higher than the true expected agreement.

7. Conclusions and Future Work

This research demonstrates the proof of concept of the application of Artificial Neural Networks
(ANN) based models for estimating soil surface moisture in semi-arid environments of south-eastern
New Mexico using high resolution SAR data (Radarsat 1 SAR Fine data). It is strongly believed that
the methods developed in this research can be used to produce soil moisture data from high resolution
SAR imagery in semi-arid environments, such as Nash Draw in New Mexico. The hydrology of
Nash Draw in New Mexico is characterized by evaporite karst and is not well understood. The data
produced in this research should be very useful to identify the pattern of soil moisture distribution in
space and time and contribute to a better understanding of the groundwater recharge in the study area.

In the future, to develop an operational soil moisture estimation tool (for this particular area)
using high resolution SAR data, the proposed modeling effort can be further enhanced/improved
by considering: (1) inclusion of surface roughness parameters in the artificial neural networks based
models in addition to vegetation density, soil type, and elevation; (2) incorporation of near real-time
high resolution optical satellite data for mapping vegetation density; and (3) involving other statistical
tests such as Root Mean Squared Error (RMSE), Mean Absolute Percent Error (MAPE) etc. for model
accuracy assessments. It is also recommended to use high resolution L-band SAR data with the
capability of multi-polarization. L band data will provide the opportunity to obtain moisture estimation
in greater depth.
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