Table S1. Height and diameter equations used for inventory data update (Guzmán Álvarez et. al., 2012). Diameter at breast height (D_i , cm), number of stems (N, trees ha⁻¹), height (H_i , m), Site Index (IS) competition index (IC_i) tree age (E_i), biomass fractions (stem W_s , thick branches W_{tkb} , medium branches W_{mb} , thin branches W_{tmb} , roots W_r , thick-medium branches W_{tkmb}).

Species	Equations for inventory data update	Equations for tree age update	Equations for biomass estimation	
			Biomass fraction	Equations
Pinus halepensis	$H_i = e^{-3,7991+0,94876 \cdot ln(Ei)+1,0459 \cdot ln(IS)}$	$H_i = e^{(ln(di)+0,1073*ln(N_i)+0,00046*ln(ICi)-1,4971)/0,9398}$	Stem	$W_s = 0.0139 \cdot d^2 \cdot H$
			Thick branches	For d >27.5 cm
				$W_{tkb} = 3.926 \cdot (d-27.5)$
	$d_i = e^{1,4971+0,9398 \cdot ln(Hi)-0,1073 \cdot ln(N_i)-0,00046 ln(ICi)}$	$E_i = e^{(ln(Hi) - 1,0459*ln(IS) + 3,7991)/0,94876}$	Medium branches	$W_{mb} = 4.257 + 0.00506 \cdot d^2 \cdot H - 0.0722 \cdot d \cdot H$
			Thin branches	$W_{tnb} = 6.197 + 0.00932 \cdot d^2 \cdot H - 0.0686 \cdot d \cdot H$
			Roots	$W_r = 0.0785 \cdot d^2$
Pinus pinaster	$H_i = e^{-3.9777 + 1.0166 \cdot ln(Ei) + 1.0182 \cdot ln(IS)}$	$H_i = e^{(ln(di)+0.0934*ln(N_i)+0.00026*ln(ICi)-1.1049)/1.1004}$	Stem	$W_s = 0.0278 \cdot d^{2.115} \cdot H^{0.618}$
			Thick-medium branches	$W_{tkmb} = 0.000381 \cdot d^{3.141}$
	$d_i = e^{0,8671+1,1349 \cdot ln(Hi)-0,0499 \cdot ln(N_i)-0,000053ln(ICi)}$	$E_i = e^{(ln(Hi) - 1,0182*ln(IS) + 3,9777)/1,0166}$	Thin branches	$W_{tnb} = 0.0129 \cdot d^{2.32}$
			Roots	$W_r = 0.00444 \cdot d^{2.804}$
Pinus nigra	$H_i = e^{-4,1267+1,0454 \cdot ln(Ei)+1,0189 \cdot ln(IS)}$	$H_i = e^{(ln(di)+0.0499*ln(N_i)+0.000053*ln(ICi)-0.8671)/1.1349}$	Stem	$W_s = 0.0403 \cdot d^{1.838} \cdot H^{0.945}$
			Thick branches	For d >32.5 cm
				$W_{tkb} = 0.228 \cdot (d-32.5)^2$
	$d_i = e^{1,1049+1,1004 \cdot \ln(Hi) - 0,0934 \cdot \ln(N_i) - 0,00042 \cdot \ln(ICi)}$	$E_i = e^{(ln(Hi) - 1,0189*ln(IS) + 4,1267)/1,0454}$	Medium branches	$W_{\rm mb} = 0.0521 \cdot d^2$
			Thin branches	$W_{tnb} = 0.0720 \cdot d^2$
			Roots	$W_r = 0.0189 \cdot d^{2.445}$
Pinus sylvestris	$H_i = e^{-4,0619+1,0176 \cdot ln(Ei)+1,0329 \cdot ln(IS)}$	$H_i = e^{(ln(di)+0,1056*ln(N_i)+0,000723*ln(ICi)-1,7441)/0,8306}$	Stem	$W_s = 0.0154 \cdot d^2 \cdot H$
			Thick branches	For d >32.5 cm
				$W_{tkb} = 0.54 \cdot (d-37.5)^2 - 0.0119 \cdot (d-37.5)^2 \cdot H$
	$d_i = e^{1,7441+0,8306 \cdot ln(Hi)-0,1056 \cdot ln(N_i)-0,000723 \cdot ln(ICi)}$	$E_i = e^{(ln(Hi) - 1,0329*ln(IS) + 4,0619)/1,0176}$	Medium branches	$W_{mb} = 0.0295 \cdot d^{2.745} \cdot H^{-0.899}$
			Thin branches	$W_{tnb} = 0.53 \cdot d^{2.199} \cdot H^{-1.153}$
			Roots	$W_r = 0.13 \cdot d^2$

Abbreviation	LiDAR metric
Total.return.count	Total number of all returns of the plot
Return.1.count	Count of returns of return number 1 within
	the plot
Return.2.count	Count of returns of return number 2 within
	the plot
Elev.minimum	Minimum elevation from all returns of the
	plot
Elev maximum	Maximum elevation from all returns of the
	nlot
Elev mean	Mean elevation from all returns of the plot
Flev mode	Mode elevation from all returns of the plot
Elev stddev	Standard deviation of elevations within the
	standard deviation of elevations within the
Flow vorignes	piot Variance of elevations within the plot
Elev. Variance	Coefficient of universition of elevations within
Elev.C v	Coefficient of variation of elevations within
	the plot
Elev.IQ	Interquartile distance of elevations within the
1 1	plot
Elev.skewness	Skewness of the elevation from all returns of
	the plot
Elev.kurtosis	Kurtosis of the elevation from all returns of
	the plot
Elev.AAD	Average Absolute Deviation
Elev.MAD.median	Median of the absolute deviations from the
	overall median
Elev.MAD.mode	Median of the absolute deviations from the
	overall mode
Elev.L1	First L-moment of the return heights of the
	plot
Elev.L2	Second L-moment of the return heights of
	the plot
Elev.L4	Third L-moment of the return heights of the
	plot
Elev L CV	L-moment coefficient of variation of the
	return heights of the plot
Fley L skewness	I -moment skewness of the return heights of
	the plot
Fley I kurtosis	uic piùi I -moment kurtosis of the return heights of
LICY.L.KUI (USIS	the plot
E_{1} D50	uic pion
Elev.P30	sour percentrie of the return heights of the
	piot
Elev.P60	outh percentile of the return heights of the
	plot
Elev.P70	/0th percentile of the return heights of the
	plot
Elev.P75	75th percentile of the return heights of the
	plot
Elev.P80	80th percentile of the return heights of the
	plot
Elev.P90	90th percentile of the return heights of the
	plot
Elev.P95	95th percentile of the return heights of the

 Table S2. Selected LiDAR metrics parameters to run statistical analyses (McGaughey, 2018).

Abbreviation

Elev.P99

Canopy.relief.ratio

Elev.SQRT.mean.SQ Elev.CURT.mean.CUBE Percentage.first.returns.above.200 Percentage.all.returns.above.200 All.returns.above.200...Total.first.returns...100

First.returns.above.200 All.returns.above.200 Percentage.first.returns.above.mean Percentage.first.returns.above.mode Percentage.all.returns.above.mean Percentage.all.returns.above.mode All.returns.above.mean...100

All.returns.above.mode...Total.first.returns...100

First.returns.above.mean

First.returns.above.mode

All.returns.above.mean

All.returns.above.mode

Total.first.returns Total.all.returns

LiDAR metric

plot 99th percentile of the return heights of the plot (mean height- min height) / (max height min height) Generalized means for the 2nd power Generalized means for the 3rd power Percentage of first returns above 2 meters Percentage of all returns above 2 meters Number of returns above 2 meters / total first returns * 100 Number of first returns above 2 meters Number of all returns above 2 meters Percentage of first returns above mean height Percentage of first returns above mode height Percentage of all returns above mean height Percentage of all returns above mode height Number of returns above the mean height / total first returns * 100 Number of returns above the mode height / total first returns * 100 Number of first returns above the mean height of the plot Number of first returns above the mode height of the plot Number of all returns above the mean height of the plot Number of all returns above the mode height of the plot Number of first returns of the plot Number of all returns of the plot

Table S3. Root mean square error (RMSE) and bias of bivariate relationships between observed and predicted C stock in live-biomass (MgC·ha⁻¹) and Soil Carbon stock (SOC_{depth}, MgC·ha⁻¹) k-NN model with RF distance calculation.

		Internal validation	External validation	Cross-validation
	RMSE	4.07	4.01	5.26
Biomass	RMSE %	40.00	41.55	52.50
P halenensis	BIAS	-0.29	-0.55	-0.41
1. naiepensis	BIAS %	-2.89	-5.70	-4.07
D.	RMSE	18.96	27.38	20.86
Biomass	RMSE %	39.15	62.35	44.35
P niora	BIAS	0.15	-3.98	0.25
1. mgra	BIAS %	0.31	-9.06	0.53
	RMSE	8.18	21.00	16.56
Biomass	RMSE %	14.55	41.43	30.38
P ninaster	BIAS	-0.72	0.47	0.92
1. pinaster	BIAS %	-1.28	0.92	1.68
D.	RMSE	13.47	34.99	33.45
Biomass	RMSE %	36.88	101.38	93.13
P sylvestris	BIAS	0.67	-3.14	-0.80
1. 5917651115	BIAS %	1.84	-9.10	-2.24
	RMSE	3.21	6.29	4.92
SOC_{10} stock	RMSE %	44.49	67.37	62.64
laver)	BIAS	-0.20	-0.44	-0.32
iujei)	BIAS %	-2.80	-4.72	-4.11
	RMSE	8.69	14.01	12.92
SOC_{40} stock	RMSE %	33.87	42.39	46.35
laver)	BIAS	-0.39	-0.64	-0.31
	BIAS %	-1.52	-1.95	-1.09

Figure S1. Study area in Sierra de los Filabres (Almería province, Andalusia. South-eastern Spain) showing the distribution of field plots corresponding to performed forests inventories within Filabres public forests.