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Abstract: Sedimentary basins are near-planetary scale stratigraphic-structural-thermochemical
reactors that produce a cornucopia of organic and inorganic resources. The scale over which fluid
movements coordinate in basins and the broad mix of processes involved is remarkable. Easily
observed characteristics indicate the style of flow that has operated and suggest what kind of resources
the basin has likely produced. The case for this proposition is built by reviewing and interpreting
observations. Features that future basin models might include to become more effective exploration
and development tools are suggested.
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1. Introduction

Sedimentary basins might seem dead and uninteresting. They are, after all, simply the places
where the Earth deposits its debris. In fact, they are remarkably dynamic and host a wide diversity of
processes that have broad implications. We know a lot about basins because the energy and mineral
resources they host have inspired the collection of massive amounts of data and funded extensive
research. This paper reviews the mantle, fluid, capillary, and gas-generating processes that observations
indicate operate in basins. The review is brief and intended to convey the scale and diversity of the
processes involved, indicate why they matter for resources, and suggest how identification of the
particular processes operating in a particular basin might be used in resource exploration.

2. Basin Processes

2.1. Mantle Dynamics

2.1.1. McKenzie’s Stretching Model for Basin Formation

McKenzie’s [1] lithosphere-stretching model was the first to quantitatively tie basin development
to mantle dynamics. In this model the crust and its underlying lithosphere were assumed sutured
together and stretched by tensional tectonic forces such that their original thickness (individually and in
sum) was reduced by a factor β−1, and the width of any portion of the crust/lithosphere was increased
by β. The temperature at the base of the lithosphere/top of the asthenosphere was considered to be
1350 ◦C, and the lithosphere and any ocean water load on it was considered to be in isostatic equilibrium
(e.g., the crust/lithosphere floated on the underlying asthenospheric mantle). The consequence of the
stretching was an immediate increase in heat flow, an immediate subsidence or uplift depending on
the thickness of the crust, and an ensuing slow subsidence as the thinned lithosphere lost heat and
grew back to its original thickness. For typical crust and mantle density and thermal expansion, ocean
water loading, and complete oceanization (β large) of a portion of continent, the initial subsidence
is ~4.2 km if the crust is 35 km thick, 0 km if it is 15 km thick, and −3.2 km (3.2 km of uplift) if the
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crust is initially 0 km thick. The thermal subsidence over the next ~60 million years is 3.2 km. The heat
flow as a function of time can be calculated from the stretching factor, and the maturation of organic
material in the sediments can be computed from this time-temperature history. Sediment loading
causes additional isostatic subsidence, but this can also be taken into account.

The McKenzie stretching model proved a very useful baseline for analyzing when buried organic
material in a basin might generate hydrocarbons and fill structural traps. It spawned a vast literature
investigating the cooling effects of pore fluid movement, modeling the thermal conductivity of
sediments, taking into account the impact of differential stretching of the crust and underlying
lithosphere, accounting for the effects of gradual stretching and crustal flexure, the cooling effects
of rapid sediment deposition, heating by sill intrusion, etc. There proved to be so many factors that
needed to be taken into account that most exploration companies chose to use maturity indicators to
calibrate the heat flow history in their basins rather than try to predict it from the ground up. However,
where from-first-principle predictions can be made they are very informative. An example is given in
what follows.

2.1.2. Rifting and Base Metal Deposition

Focused rifting can produce another kind of basin resource. Japan provides a good example [2].
Japan has been subject to multiple episodes of focused rifting. As illustrated in Figure 1A, Japan
detached from China ~60 million years ago by the rifting and spreading that opened the Japan Basin.
Between 38 and 20 Ma Japan rifted again, and the Yamato Basin opened. The Yamato Rise is a fragment
of Japan that was left behind. Thirteen million years ago Japan rifted again, splitting its volcanic
chain in half. This rift failed, although the volcanoes on either side of the segmented basin network
remain active.Geosciences 2019, 9, x FOR PEER REVIEW 3 of 26 

 

 

Figure 1. Formation of Kuroko-type volcanogenic massive sulfide (VMS) deposits in failed rifts, an 
example from Japan. (A) The rifting history of Japan. (B) The pattern of districts in Japan 
superimposed on hypothetical rift segments. (C) A floating wood block illustration of how dynamic 
loss of asthenosphere head can explain the inferred vertical movements associated with VMS 
formation. (D) VMS deposits may lie beneath rift basin centers. Figure panels A-C are from [2]. 
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Brines form where surface conditions favor net evaporation, and being denser than fresh water 
they sink into the stratigraphy. This tends to happen nearly everywhere. Water with salinity low 
enough to be potable is usually confined to within 300 m of the surface. 

Where there is net evaporation from isolated seas, the seas often become saline enough to 
stratify. This is the case in the Black Sea today, for example. The stratified waters tend to be stagnant 
and any flux of organic material into them will cause them to become anoxic. Thereafter, any organic 
material that settles to the floor of the basin will not be consumed by biological organisms or oxidized. 
Therefore, this is an excellent setting for the production of hydrocarbon source rock, and 
hydrocarbons can be expected to have associated pore waters that are highly saline. Metal solubility 
increases very strongly with salinity and so a relationship between basin oil field brines and base 
metal resources might be anticipated.  

There are tectonic connections that are important. Eugster [4] noted that Red Beds tend to be 
capped by shales and evaporates. Oxidized sediments will be deposited in arid, rifted continental 
settings. As the lithosphere cools and subsides, marine waters will incur, restricted access to the ocean 
is likely, stratified brines pools with unusually high the primary productivity are likely to form, and 
organic rich shales will be deposited and covered by evaporates. Saline lakes have high primary 
productivity, and shales tend to be the first member of an evaporate sequence. Physical and chemical 
processes can in such circumstances be linked in what Eugster called an orderly (by which he meant 
expected) succession. 

2.2. Fluid Dynamics 

2.2.1. Dynamic Permeability  

Fluids extract resources from one location and deposit them in a location where they accumulate. 
One might think that fluid movement requires basin sediments be permeable, and that intrinsic 
sediment properties are in control. In some cases, this is certainly true. But in others fluids make their 
own permeability. 

Consider mud depositing in a basin and converting first to mudstone and then to shale as it is 
buried. Regardless of induration, the sediments compact as they are buried. Porosity, near 90% at the 

Figure 1. Formation of Kuroko-type volcanogenic massive sulfide (VMS) deposits in failed rifts,
an example from Japan. (A) The rifting history of Japan. (B) The pattern of districts in Japan
superimposed on hypothetical rift segments. (C) A floating wood block illustration of how dynamic
loss of asthenosphere head can explain the inferred vertical movements associated with VMS formation.
(D) VMS deposits may lie beneath rift basin centers. Figure panels A–C are from [2].

Just as suggested by McKenzie’s stretching model, the rifting produced basins. One is the
Hokuroku Basin indicated in Figure 1B. Sediments flowed into the Hokuroku Basin from all sides.
A good analogy is the Guaymas Basin in the Gulf of California, which overlies a seafloor spreading
segment of the East Pacific Rise and hosts hydrothermal circulation today. The Hokuroku basin
contains a collection of volcanogenic massive sulfide (VMS) deposits called the Hokuroku mining
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district. VMS deposits are formed by the same processes that are producing seafloor massive sulfide
(SMS) deposits at ocean ridges today. Hundreds of these SMS deposits have been documented [3].

The SMS deposits form when non-boiling 350 ◦C fluids are thermally quenched near the seafloor,
producing black smokers and massive sulfide deposits containing copper, zinc, and gold. Boiling
would produce a vein deposit, so the Kuroku VMS deposits, which are mined today at ~500 m depth,
must have formed at depths >1.5 km below sea level. Thus, the Hokuroku basin must have subsided
more than a kilometer before the VMS deposits formed, and then uplifted after the rifting aborted.
This kind of vertical tectonic behavior is expected. There is a dynamic loss of asthenospheric hydraulic
head as the asthenosphere seeks to fill the void opened by the extension of the lithosphere and crust.
As illustrated in Figure 1C, what happened in Japan is similar to what happens when two wood blocks
in a bathtub are pulled apart. When the blocks are moving apart viscous resistance to the upwelling
of water between the blocks causes the water level to be depressed. When one stops pulling the
blocks apart, the fluid level returns to the bathtub level. If one thinks of the bathtub water being the
asthenosphere, and the blocks the rifted Japanese lithosphere, the vertical motions of the Hokuroku and
other rift basins in Japan can be understood. Basins such as the Hokuroku can have quite a dynamic
history, can be expected to be bounded by significant faults, and may be underlain by hydrothermally
altered rock and VMS mineralization (see [2] for more discussion).

2.1.3. Juxtaposition of Sediments of Contrasting Oxidation State

Brines form where surface conditions favor net evaporation, and being denser than fresh water
they sink into the stratigraphy. This tends to happen nearly everywhere. Water with salinity low
enough to be potable is usually confined to within 300 m of the surface.

Where there is net evaporation from isolated seas, the seas often become saline enough to stratify.
This is the case in the Black Sea today, for example. The stratified waters tend to be stagnant and
any flux of organic material into them will cause them to become anoxic. Thereafter, any organic
material that settles to the floor of the basin will not be consumed by biological organisms or oxidized.
Therefore, this is an excellent setting for the production of hydrocarbon source rock, and hydrocarbons
can be expected to have associated pore waters that are highly saline. Metal solubility increases very
strongly with salinity and so a relationship between basin oil field brines and base metal resources
might be anticipated.

There are tectonic connections that are important. Eugster [4] noted that Red Beds tend to be
capped by shales and evaporates. Oxidized sediments will be deposited in arid, rifted continental
settings. As the lithosphere cools and subsides, marine waters will incur, restricted access to the ocean
is likely, stratified brines pools with unusually high the primary productivity are likely to form, and
organic rich shales will be deposited and covered by evaporates. Saline lakes have high primary
productivity, and shales tend to be the first member of an evaporate sequence. Physical and chemical
processes can in such circumstances be linked in what Eugster called an orderly (by which he meant
expected) succession.

2.2. Fluid Dynamics

2.2.1. Dynamic Permeability

Fluids extract resources from one location and deposit them in a location where they accumulate.
One might think that fluid movement requires basin sediments be permeable, and that intrinsic
sediment properties are in control. In some cases, this is certainly true. But in others fluids make their
own permeability.

Consider mud depositing in a basin and converting first to mudstone and then to shale as it is
buried. Regardless of induration, the sediments compact as they are buried. Porosity, near 90% at
the sea or lake bottom, is ultimately reduced to a few percent at depth. The reduction in porosity
pressurizes the pore fluids up to ~0.85 of the total weight of sediments and water above (e.g., up to
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~0.85 of lithostatic). The fluid pressure does not rise further because at ~0.85 lithostatic the fluids
hydro-fracture the rock and create the permeability needed for their escape to the surface.

The rate of decrease in porosity caused by a specified rate of sedimentation can be calculated for
both a pore pressure gradient 0.85 of lithostatic, and 10% greater than hydrostatic. The permeability
required for water expelled from the pores to escape to the surface can then be calculated.

Figure 2 shows that the dynamic permeability calculated in this fashion depends surprisingly
weakly on sedimentation rate, and is similar to that measured for shales. Pore fluid expulsion
and the associated hydro-fracturing seem to set the permeability of low permeability rocks such as
shales in sedimentary basins. Malin et al. [5] suggest, for quite different reasons, that generally pore
fluids conspire with mechanical processes to control not only the permeability but the distribution of
permeability in the crust.(Calculations and additional discussion can be found in [5,6]).
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Figure 2. Shales have the permeability needed for pore fluids to escape as compaction occurs. The
horizontal hachure shows the measured permeability of shale as a function of porosity. The red curve
shows the permeability required for pore fluids to escape under overpressured conditions, and that
the required permeability depends only very weakly on the sedimentation rate (scale at end shows
how the curve would shift if the sedimentation rate was 2 km/ma or 0.5 km/ma instead of 1 km/ma).
Sandstone permeability is from [7,8], shale permeability is from [9]. Figure is from [6].
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2.2.2. Hydrocarbon Migration

Basin sediments are heated as they are buried and move downward through thermal gradients
typically 20 to 30 ◦C km−1. Organic material is thermally cracked, first to oil (between 90–110 ◦C), and
then to progressively dry (pure CH4) gas (between 110–130 ◦C). Oil and gas under basin conditions are
lighter than water, and both will thus rise buoyantly through the sediments. If their rate of generation is
slow compared to the rate at which they rise, they will rise as isolated rivulets of oil or in gas chimneys.
If their rate of generation is fast compared to the rate at which they can rise, they will displace the
pore water and completely fill the pores with oil or gas. The former is the conventional oil and gas
scenario where the rising hydrocarbons are ponded beneath low permeability strata forming oil and
gas reservoirs. The latter is the unconventional oil and gas scenario that has been of much interest
recently. We’ll return to this latter case later. First consider conventional hydrocarbon migration.

If hydrocarbons mature in a basin with extensive sand layers that are more permeable than ~1
millidarcy (10−15 m2), vertically migrating hydrocarbons can be intercepted and diverted laterally over
hundreds of kilometers. The oils migrate along only the upper centimeters of the carrier beds and fill
reservoirs where the carrier beds are folded or offset by faults. The North Sea presents many examples
of this kind of lateral migration and trapping, and the process is well described in [10]. Even a slight
change in the tilt of the North Sea carrier sands can be important, and Løtviet et al. [11] show how
tilting by glacial isostatic adjustment can redistribute oil in the North Sea.

The Gulf of Mexico is a currently active hydrocarbon generating area where there are no strata
permeable enough to laterally divert the rising hydrocarbons in a very substantial fashion. In the 1990s
we selected a portion of the Gulf of Mexico basin we thought would be large enough to capture the
processes operating there. We called this ~200 × 100 km area of offshore Louisiana the “GRI Corridor”
after our funding source, the Gas Research Institute. The corridor tells quite a remarkable story [12–17].
Briefly (elaboration follows): the oils in reservoirs in the northern half of this Corridor were sourced by
Jurassic carbonate and Eocene shale strata, but in the south only by Jurassic carbonates. The deeper
Jurassic oils matured and migrated first. The Eocene oils matured and migrated later, mixing with the
earlier Jurassic oils in the north but not in the south. The Jurassic carbonates then generated gas which
altered the oils by “gas washing” in a fashion that allows both the depth of washing and the amount of
washing gas to be determined. This small area of one basin generated more hydrocarbon resources
than have been extracted and consumed by humans over the entire petroleum era. Ninety percent
of the generated oil was either expelled into the ocean or retained in the source strata. Discovered
reservoirs in the Corridor constitute less than a fifth of the hydrocarbons currently migrating within it.
The current reservoirs were filled recently (all perhaps in the last 100,000 years). In this flow-through
hydrocarbon system “the present is the key to the present” (statement by Glen Gatenby, 2001).

Perhaps the most immediately obvious and remarkable feature of the GRI Corridor is the regular
N-S change in the chemistry of its reservoir oils (Figure 3) [14]. Over 90 wt% of the +10 n-alkane
component of the oils in the Tiger Shoals field at the north end of the Corridor have been removed by
gas washing. At the South Marsh Island Block 9 field (SMI 9) slightly to the south, 50% have been
removed. At South Eugene Island Block 330 15% have been removed. At the Jolliet field at the south
end of the transect, the oils have not been washed at all, and 0 Wt% of the n-alkanes have been removed.

Figure 3B illustrates how the n-alkane depletion is measured. Unaltered oils have a linear
logarithmic decrease in the n-alkane mole fraction with carbon number, called the Kissen slope.
This unaltered trend is shown by the black slanted line that melds to the measured n-alkane mole
fractions of the un-depleted oil (red squares) at carbon numbers greater than 24. The mass depletion (in
this case 90 wt%) is the purple shaded area. The depletion results from dry gas (methane) interacting
with the oils. At basin pressures, methane can dissolve a lot of oil, and the lower carbon numbers are
more soluble than the higher ones, which accounts for the greater depletion of the low carbon numbers
(the rollover of the mole fraction curve). The depletion caused by gas washing can be distinguished
from other kinds of alteration such as bacterial degradation. Modeling [18–21] shows that the break
number at which the oil composition departs from the Kissen trend measures the depth at which the
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oil was washed, and the degree of n-alkane depletion measures the amount of gas that washed the oil.
The reservoir oils in the transect appear to have been gas washed in the first sand layer encountered by
the hydrocarbons rising to fill the reservoirs.Geosciences 2019, 9, x FOR PEER REVIEW 6 of 26 
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Figure 3. Systematic changes in the n-alkane chemistry of 138 oils from N to S across a 202 km (N-S) by
125 km (E–W) transect in the offshore Louisiana Gulf of Mexico. (A) The transect is red rectangle in the
insert. Below the insert the sample locations are shown on the left, and the percent n-alkane depletion
on the right. (B) Illustration of how the n-alkane depletion is calculated (purple area) with reference to
the un-washed n-alkane distribution (bounding straight line melding onto the measured n-alkane mole
fractions indicted by red squares). The illustration is for Tiger Shoals. Figure simplified from [18].

Extensive modeling was carried out to determine if the washing could have been produced by
the oil and gas generated in the Corridor [15]. First the McKenzie stretching factor was determined
from the sediment thickness and water depth along a 1050 km section near the Corridor that was
contributed by Exxon. The section ran from the Lousiana border with Mississippi to the Sigsbee
Knolls in the Gulf of Mexico. The evolution of the basin was reconstructed by back-stripping and
decompaction. Heat flow, temperature, and vitrinite reflectance were calculated using a finite element
grid tied to deposited strata and extending to the 150 km depth. The mantle heat flux determined
from the stretching factor was applied there. Radiogenic heat production in the crust and sediments,
changes in the surface temperature with water depth, the cooling due to sediment deposition, and the
effect of compaction on lithology-specific thermal conductivity were taken into account. This modeling
matched Exxon’s measured heat flow data as well as temperature and vitrinite reflectance depth
profiles using unadjusted literature parameters. Heat flow is about half normal (30 mW m−2) near
the shelf edge due to cooling by rapid sedimentation there, and about half this low heat flow is due
to radiogenic heat production in the basin sediments. Despite the low heat flow, the temperature
gradient is ~20 ◦C km−1 because of the low thermal conductivity of shales in the vertical direction.
Agreement between the model and observations is excellent, and identification of the sources of heat is
instructive, but great care had to be taken to include and properly specify all the important parameters
in the model.

Heat flow at the base of the sediment section was then extracted from the portion of the Exxon
line corresponding to the Corridor, and temperature calculated for the evolution of a much more
realistic stratigraphy. Radiogenic heat production in the sediments was included, and the stratigraphic
evolution included inversion of the Louann salt to a surface sill which was then buried. Salt diapirism
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and mini-basin formation was simulated. Maturation of a 100 m thick 5 wt% TOC (total organic
carbon) carbonate Jurassic source strata (Type II kerogen) across the full section, and a 30 m thick 4 wt%
TOC Type III Eocene coal across the northern half of the section was then calculated. The matured
hydrocarbons were moved vertically out of the source strata once the saturation in the source strata
exceeded 20 vol%, and moved upward thereafter when the pores of an element were filled to a specified
migration saturation.

Gas is venting actively at hundreds of locations along the Corridor and there are many discovered
hydrocarbon reservoirs. The modeling indicates that for gas to vent, the pore saturation of migrating
hydrocarbons must be much less than 0.5%. The oils in the northern half of the section contain oleanane,
a biomarker from plants that evolved in mid-Cretaceous time. The northern oils are also low in sulfur.
Both indicate these oils came from the silicate Eocene source rock. For the Eocene oils to be dominant
in the northern half of the Corridor, the migrating hydrocarbon pore saturation must be <0.05%. For a
migration pore saturation of 0.025%, the oils are 85% Eocene at Tiger Shoals and 50% Eocene at the
middle of the Corridor close to the end of the Eocene section, and there is sufficient late-generated gas
to wash the oils as observed. Overall, the Corridor generated 184 Btoe (billion tons of oil equivalent) of
hydrocarbons, mainly from Jurassic source beds, 37 Btoe were retained in the source rocks, 15 Btoe
are in migration pathways between the source strata and the surface, and 131 Btoe (~1000 billion
barrels- about 20% more than humans have consumed across the entire petroleum era) have been
expelled into the ocean. Most of the oil has either been expelled (71%) or retained in the source strata
(20%). The hydrocarbons discovered in the Corridor (1.4 Btoe) constitute ~9% of the hydrocarbons
expelled from the source but not yet vented from the Corridor. The migration and filling is ongoing
and the reservoirs were all filled recently, some very recently. The Jolliet reservoirs are hosted in
0.6 to 1.8 Ma strata. The model hydrocarbon flux across the 0.95 Ma horizon at the Jolliet location,
assuming draw from a 40 km diameter mini-basin size area, is 190 and 110 tons of oil and gas per year
respectively. Thus the Jolliet reservoirs (4400 kt oil and 3100 kt gas) could have been filled in 23 and 29
ka, respectively. The gas venting rate at Bush Hill near the Joliet field is estimated to be 900 t per year,
which suggests the filling rate could be even more rapid [22].

2.2.3. Nature of Fluid Flow in Basins

Steady Expulsion: The Kupferschiefer Deposits in Germany and Poland

Base metal enrichment of the Kupferschiefer shale in Germany and Poland provides one of the
most spectacular and best-documented examples of basin base metal mineralization.

The Kupferschiefer is the lowermost unit of the Zechstein evaporate sequence that extends from
the England across the North Sea to southeastern Poland. It is a thin (usually 30 to 60 cm, but sometimes
up to 1m thick), 258 Ma old pyrite and organic rich (~6% carbon) black shale, enriched in Cu, Pb, Zn,
Au and other metals, and mined since at least 1199 AD. The technical challenges of mining made the
Germans early leaders in technology. The deposits in Poland were discovered in 1957.

In the early Carboniferous (~350 ma) the 1700 × 500 km area later covered by the Zechstein
sediments was the site of Hercynian clastic foreland basin sedimentation. In the Autunian (295–285 Ma),
wrench tectonics extended the area and heated the lithosphere. Oxidized Rotliegende sediments
accumulated in a basin and range topography with sill injection and some mafic volcanism. Erosion
in a semi-desert setting of seasonal rivers and playa lakes leveled the topography. The peneplane
was then partly covered by white aeolian dune sands (the Weissliegendes) which were later partially
reworked into beach sands. As the lithosphere cooled, the area that would become the Permian
Basin subsided in a broad down warp to 100 s of meters below sea level, but remained subaerial
until ~259 Ma when it was suddenly flooded [23]. The laminated shale/shaly limestone or dolostone
Kupferschiefer could thus be deposited throughout the basin below wave level in calm, shallow
waters. The waters in this restricted basin were saline, the organic productivity high, and the bottom
anaerobic [24]. The reduced, ubiquitous Kupferschiefer starkly contrasted with the oxidized sediments
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below. Four to five carbonate-anhydrite-salt cycles were then deposited in a shallow marine setting on
top of the Kupferschefer. By the end of the Cretaceous up to 8 km of sediments had accumulated over
the Kupferschiefer [6,23–29].

The mineralization occurred as post-Kupferschiefer sediment deposition loaded and compacted
the underlying sediments. Oxidized brines, expelled from the compacting pores, forced their way
through the Kupferscheifer and immediately adjacent strata, and pushed through in greater quantities
where these strata were less resistive to flow. The metal-bearing oxidized brines were reduced as
they moved through the reducing strata, and base metals were deposited. Where there was sufficient
brine throughput, the Kupferschiefer was completely oxidized (called Rote Fäule or red fooling
rock because it is barren of mineralization and red because the iron-bearing sulfides have been
replaced by hematite) [24,27,30]. This process of metal deposition is not unusual. It also occurred in the
midcontinent Proterozoic rift in the upper Peninsula of Michigan, for example, where reduced siltstones
and shales of the Nonesuch Formation were oxidized by brines expelled from the underlying Copper
Harbor conglomerate [6,31–33]. What is remarkable about the Polish Kupferschiefer mineralzation
is the documentation of its metallization by 774 drillholes (50,000 analyzed samples) across all of
Poland [34] (now there are 1700 drill holes [26]). The metallization maps allow us to estimate the
volume of brine required to produce the metal enrichment. The estimated volume is so large that a
large fraction of the brine expelled from the basin must have participated in the mineralization.

Figure 4 shows the copper surface density in kg/m2 from one of the maps in the Metallogenic
Atlas of the Zechstein Copper-bearing Series in Poland [34]. Similar maps in the Atlas show the zinc
and lead metal surface density. The metal surface density shown in Figure 4D is the kilograms of metal
in the Kupferschiefer and adjacent strata under each m2 of plan area. The entire mineralized portion
of the Lower Zechstein was analyzed down to a cutoff grade of 0.1%. The maximum thickness of
the mineralized interval was 123 m, but typically the thickness analyzed was between 10 and 60 m.
The metal density contours can be integrated to obtain the total metal added. I did this by tracing
and summing the area of each metal density interval (e.g., 1–5, 5–10, 10–50 kg m−2, etc.) in the Atlas
maps, and multiplying by the log average metal density added in each interval, as shown in Table 1.
For example, the metal added between the 1 and 5 kg m−2 contours equals the area of this contour
interval times 2.24 (= 100.5(log 1 + log 5)). The metal added between the 5 and 10 kg m−2 contours equals
the area of this contour interval times 4.83. The 4.83 kg m−2 metal added equals the metal under this
contour (7.07 = 100.5(log 5 + log 10)) minus the 2.24 kg m−2 log average surface density of the first contour
interval. Table 1 shows that 824, 927, and 1523 million tons of Cu, Pb and Zn, respectively, were added
to the Kupferschiefer and immediately adjacent sediments in the area covered by the Atlas maps.
The reserves of the Lubin, Polkowice-Sieroszosice and Rudna mining districts (near the black mining
symbol at the north border of the red-outlined Fore-Sudetic Block in Figure 4D) are 30.4 Mt Cu [26].
The mine reserves thus constitute only 3.6% of the metallization.

The 9th row of Table 1 (labeled Brine in column 1) indicates the concentration of metals that
would have to precipitate from the brine to account for the metallization in the 8th row of the table, if
the brine volume expelled through the Kupferschiefer were 200,000 km3. For this volume of brine,
4.1, 4.6 and 7.6 ppm of Cu, Pb, and Zn respectively would have to precipitate for the observed metal
tonnages to be deposited. Metal concentrations more than those required have been measured in oil
field brines (last 3 rows in Table 1). The 200,000 km3 volume of brine is very large. It could be supplied
if compaction reduced the porosity of a 4 km thick strata covering a 500 × 500 km area (the area of
Poland) by 20%. Such a reduction of porosity is possible (see discussion below), so the hypothesis of
mineralization-by-brine-expulsion is plausible. Much could be discussed (e.g., the magnitude of the
porosity change early and later in burial, how much basement rocks might compact, how much brine
was expelled unrecorded through the Rote Fäule vents, etc.). The important point made by this rough
calculation is that the brine expulsion recorded by the metallization mapped in Poland constitutes
a significant portion of the brine that could be expelled by compaction from the sub-Kupferschiefer
eastern portion of the Southern Permian Basin.
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Figure 4. Key aspects of the Kupferschiefer mineralization in Poland. (A) Pyrite in the Kupfereschiefer
is replaced first by Zn, then Pb, then increasingly copper rich sulfides and finally flushed completely
of metals (Rote Fäule). (B) The metallization and Cu enrichment and depletion is zoned around
sites of more intense brine discharge near the Fore-Sudetic Block (red outline in D). Figure from [34].
(C) The Zechstein (blue cross hatched) and its basal Kupferschifer shale are underlain by the Rotliegend
sediments (orange), Carboniferous sediments (blue), and Variscan (light brown), Caledonian (red),
and pre-Cambrian (pink) basement rocks. Section from [28]. (D) Copper surface density determined
by 774 drill holes through the Kupferschiefer [34]. Red outlines the Fore-Sudetic Block. The Lubin,
Polkowice-Sieroszosice and Rudna mines are all adjacent to this block at the location marked by the
black crossed rock picks.

Table 1. Integration of metal surface densities in Metallogenic Atlas of Poland [34]. The first column
indicates the metal surface density interval in the Atlas maps, and the second the log average metal
content added by the interval, as discussed in the text. The next 3 columns show the area covered by
each surface density interval, and the last 3 columns the additional metal introduced in each surface
density interval, (e.g., the metallization) in millions of tons of Cu, Pb, and Zn. The 7th and 8th rows
(labeled Sum and Brine in columns 1 and 2) show the total Cu, Pb, and Zn introduced in the area covered
by the map, and the ppm that must have been extracted from a brine volume of 200,000 km3 to account
for the introduced metals. The last 3 rows show metal concentrations observed in oil field brines.

Surface Density
Interval

Log Average
Metal Added ACu APb Azn MCu MPb MZn

(kg m−2) 1000 km2 106 tons

1 to 5 2.24 60.0 70.0 162.0 134 157 363

5 to 10 4.83 32.0 42.9 82.4 155 207 398

10 to 50 13.05 20.0 27.0 58.0 261 352 757

50 to 100 39.04 3.3 5.4 0.1 129 211 5

100 to 500 121.23 1.2 145 0 0

Sum 116.5 145.3 302.5 824 927 1523

Brine (km3) 200,000 ppm 4.1 4.6 7.6

Rotliegende [35], ppm 1 50 50

Akkrum field [36], ppm <0.5 50 60

Chelekin, 50–80 ◦C, [37], ppm 0.9 to 15
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Another remarkable aspect of the Kupferschiefer mineralization, illustrated schematically in
Figure 4A,B, is a regular regional scale metal zonation. As shown by a color-coded metal dominance
map in the Atlas (but not reproduced here), the northeast of the map area in Figure 4D is largely
unenriched in base metals and the original Kupferschiefer pyrite dominates. To the west of this pyrite
zone lies an NE-SW trending band of about equal area where Zn is dominant. To the west of this lies a
smaller band where Pb is dominant, to farther still to the lies an area where Cu is dominant, and still
further west is an area of barren Rote Fäule.

What this suggests is that the oxidized brines have forced their way through the Kupferschiefer.
Where only a little brine was forced through, sphalerite is the dominant mineral and Zn dominates.
With more brine throughput Zn is flushed out, and Pb is the dominant metal. With still more throughput,
successively more Cu-rich sulfides (chalcopyrite, then bornite, then chalcocite) dominate. With still
more brine throughput, all the sulfides are oxidized, all the base metals are flushed out, and only
hematite remains (Rote Fäule). Gold and platinum-group metals precipitated at the base of the zone
of copper enrichment and the top of the encroaching Rote Fäule [38]. The metal enrichment process
involves oxidative titration of the reduced Kupferschiefer shale by brine throughput. This story is a
common one and applies to other types of base metal deposits, for example Kuroko-type volcanogenic
massive sulfide deposits [39].

The progressive westerly increase of brine movement through the Kupferschiefer in Poland
suggests the brines below the Kupferschiefer moved to the west. Near the Fore-Sudedetic Block the
leakage through the Kupferschiefer was optimal for metal enrichment and the mines are located
there, as indicated in Figure 4. Why was leakage easier through the Kupferschiefer in western Poland,
and why does the brine throughput per unit area change so regularly? The brines must have had
remarkably equal access to the base of the Kupferschiefer. Perhaps this is not surprising. The first
Zechstein deposition was a thin basal limestone which could be very permeable and the Variscan
sediments could be permeable. If the leakage was slow, uniform access to the base of the Kupferschiefer
could be expected provided only that the underlying rocks were dramatically more permeable, as
seems very likely. What is important here is that the metal zoning is remarkably coherent, so brine
access must have been relatively uniform, and, in this case at least, the regular increase in leakage can
be followed westward to the locations where it produced mineral deposits.

A couple of brief comments: First, transgressive reduced black shales lying between evaporates
and red beds of continental origin are commonly enough mineralized that a “Kupferschiefer” sub-type
of the sediment-hosted statiform copper deposit class has been distinguished [40]. Second, the estimate
of the volume of brine expelled is for the eastern portion of the Southern Permian Basin. An equally
large area of the western part of the basin would be required to produce the German Kupferschiefer
deposits. Third, the few mm thick horizontal chalcocite and other veins in the Kupferschiefer indicate
the brines forcing their way through were nearly lithostatically over-pressured, and that flow persisted
through the Kupferschiefer for protracted periods of time. Near lithostatic pressures were required to
jack the horizontal veins open, and time was required to fill them with mineralization. Over 80% of the
mineralization is disseminated (replacement of framboids) which appears to have occurred early in the
mineralization history, but the veins indicate overpressure. Fourth, convective flow is not responsible
for the metal zoning. The Kupferschiefer is underlain by very permeable strata (the Weissliegend sands
and conglomerates) which preclude the possibility of horizontal pressure gradient even vaguely large
enough for brine convection to drive flow horizontally through the Kupfersciefer. Flow was driven by
fluid overpressures (pressures greater than hydrostatic) produced by compaction, or possibly positive
volume change hydrocarbon maturation reactions. Overpressured fluids were driven vertically (with
perhaps slight, few meter scale, lateral diversions) through the Kupferschiefer. The metal zoning is
due to the amount of brine throughput, as discussed above. Finally, the Kupferschiefer metallization
records regional scale brine flow and documents leakage through a sealing shale capped by evaporites.
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Episodic Expulsion: Mississippi Valley Type Pb-Zn Deposits

The sediment-hosted base metal deposits, of which the Kupferschiefer is a sub-type, seem to have
formed by quiet, steady expulsion of over-pressured brine. Mississippi Valley-Type (MVT) Pb-Zn
deposits formed by short, sudden pulses of brine expulsion. Ore deposition is by cooling rather
than reduction.

From the homogenization temperature of sphalerite fluid inclusions we know that ore deposition in
MVT deposits occurred at T > 80 ◦C (Figure 5A), but the low maturation of conodonts indicates the sites
could have been heated, cumulatively, for only a short period of time (<200,000 yrs; [41]). The deposits
formed within a kilometer of the surface. Figure 5B shows that for the near subsurface to be even
slightly warmed, a million years of compactive brine expulsion must occur in a few years. Temperature
constraints thus suggest that the ore deposition occurred in short pulses. Other observations support
this conclusion. For example, 8 pulses of mineralization have been documented in the Buick mine in
the Viburnum Trend (carbonate reef escape hatch; [42]). Eight episodes of chalcopyrite deposition,
6 of sphalerite, 5 of galena and quartz have been documented in the Tri-state district [43]. Thermal
pulses are indicated by cathodoluminescent banding in hydrothermal dolomite that is coherent over
275 km south of the Viburnum Trend [44]). The ore minerals show corrosion between pulses of
deposition, and the cathodoluminescent bands show unconformities, as would be expected if the
hydrothermal discharge were pulsed, and between pulses, cool meteoric water incurred and partly
dissolved the mineralization.Geosciences 2019, 9, x FOR PEER REVIEW 12 of 26 
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[48] documented that basins are commonly pressure-compartmented. Its poster child example is the 
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Figure 5. (A) Mississippi Valley-Type (MVT) lead-zinc deposits formed at shallow depths and
temperatures >80 ◦C. From [45]. (B) To warm the near-surface significantly requires a million years
of compactive expulsion to occur in <10 years. (C) Cross basin hydrologic flow warms the discharge
margin but also cools the basin. Temperatures at 1 km depth can be raised only to half the maximum in
the basin. From [46].

Hydrologic flow across the basin is too steady to easily explain pulses in mineralization (topography
changes slowly), cross basin flow would flush the brines before the margins are warmed, and cross
basin flow at the rates required to warm the margins will cool the basin as shown in Figure 5C (see
reviews in [6,41]). What caused the pulses of brine expulsion? For over 30 years I could find no good
explanation, but now there is a mechanism that might just work: gas suddenly introduced to the
brine-filled aquifer following the failure of a capillary seal, as discussed below.
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2.3. Capillary Dynamics

2.3.1. Basin Pressure Compartments

On 30 July 1987 Dave Powley (Amoco Production Company) made a presentation to the Gas
Research Institute (GRI) in Chicago entitled “Subsurface Fluid Compartments” [47]. His presentation
described how, over the previous two decades, Amoco studies by John S. Bradley and himself showed
that basins are commonly over-pressured (but sometimes under-pressured) and compartmented at
depths greater than 3 and sometimes just 1 km. The pressure is different between compartments, but
the gradient is hydrostatic within compartments. He described the compartments as “huge [beer]
bottles [which have been variably shaken]. Each one has a thin, essentially impermeable, outer seal and
an internal volume which exhibits effective internal hydraulic communication.” Figure 6A reproduces
his presentation figure. He stated: “ . . . the compartments have an amazing longevity” and can “ . . .
cut indiscriminately across structures, facies, formations, and geologic time horizons . . . ”. He gave
examples from Romania, Norway, Burma, and Alaska. He urged GRI to investigate the causes of basin
pressure compartmentation.

Over the next 10 years, the Gas Research Institute funded research on basin compartmentation
and sealing. The first phase independently confirmed pressure compartmentation. AAPG Memoir
61 [48] documented that basins are commonly pressure-compartmented. Its poster child example
is the Anadarko [49]. A highly over-pressured, gas-rich (20 tcf), ~240 × 113 × 5 km thick portion
of this basin is overlain and underlain by normal hydrostatic pressures, as illustrated in Figure 6B.
This zone has been overpressured for >250 Ma. It is so internally compartmented that Zuhair Al-Shaieb
termed it a megacompartment complex. Compartments are nested within compartments in an almost
fractal fashion.Geosciences 2019, 9, x FOR PEER REVIEW 13 of 26 
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Figure 6. (A) Buried bottle illustration of basin pressure compartmentation from Powley’s 1987 address
to the Gas Research Institute (GRI) [47]. (B) Overpressure in the Anadarko Basin (gray) from [49]. (C)
Top of overpressure (12 pound per gallon mudweight) from 2131 wells in the GRI Corridor. Deepest
portion of the surface lies about 3.8 km under central Louisiana. (D) topographic highs in the top of
overpressure tend to underlie oil reservoirs. For relation in full Corridor see [12].

That overpressure compartments can cross cut stratigraphy and have irregular surfaces is
illustrated by Figure 6C, which shows the top of overpressure in the offshore Louisiana GRI Corridor
(located in the insert in Figure 6C). The top of overpressure (TOOP) is defined in this figure by the
12 lb/gal mud weight surface (lithostatic is ~22.7 lb/gal) interpolated from mud weights in the header
logs of 2131 wells and Krieged to produce the surface shown. The TOOP transgresses from 112 Ma
Cretaceous to 2.4 Ma Quaternary strata as it shallows toward the continental slope from ~3.8 km under
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central Louisiana to <1 km depth on the slope. The TOOP surface is highly irregular, with topographic
highs rising ~1km from the baseline surface. The topographic highs are spatially associated with
discovered oil fields (Figure 6D; [12]). Twenty of 29 hydrocarbon fields in the Corridor are near
topographic highs in the TOOP.

2.3.2. Capillary Seals

The second phase of GRI funding addressed the origin of the seals that bound the pressure
compartments. How capillary forces impede the migration of hydrocarbons was understood: Water
typically wets silicate surfaces and surface tension pulls water strongly into a shale. Oil, on the other
hand, must be compressed to move from the large pores of a sand into the finer openings of a shale,
and, unless the required entry pressure is exceeded, it will pond below the shale [50]. How a capillary
seal of this nature could impede the movement of both brine and water was not clear, and Bradley and
Powley [51] were careful to distinguish the compartment “pressure seal” that impedes both brine and
hydrocarbons, from a capillary seal which impedes just hydrocarbons.

As illustrated in Figure 7, experiments carried out by Jennifer Shosa [52] show that, under the
right circumstances, capillary seals can impede both brine and hydrocarbons. The right circumstance
is that sufficient quantities of both wetting and non-wetting fluid phases be present in the pore space.
Shosa passed CO2-laden water through a 0.5 m long 12.7 mm inner diameter sand-packed tube that
contained 2 to 8 fine-grained impeding layers. The impeding layers consisted of 13 to 15 mm thick
intervals of 2 µm diameter sand held in place by adjacent 45 µm diameter sand layers ~11 mm thick, as
illustrated in the insert. Flow was driven through the tube and through these fine impeding layers
by a high-performance liquid chromatography (HPLC) piston pump. Pressure was controlled with a
backpressure regulator at the discharge end, and reduced slowly with time. Until the pressure dropped
below 290 psi and the CO2 began to exsolve, flow through the tube was single phase and the pressure
difference between the entry and exit ends was very small (first 5 1

4 h in Figure 7). When the CO2 began
to exsolve, flow through the tube was terminated and the pressure at the discharge and was reduced to
atmospheric. The pressure at the entry end dropped to 163 psi over a short transition period (cross
hatched band), and then remained unchanged for 3 weeks. The pore fraction of CO2 gas after this
decompression was 54%.
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Figure 7. Pressure changes as CO2-laden water is driven across a sand-packed tube with 5 fine-sand
barriers as pressure is reduced. Until the pressure is reduced to the point that CO2 exsolves, the pressure
difference between in inlet and outlet is small and predicted by the darcy flow equation. After CO2

exsolves, the flow of both gas and water stops despite a 163 psi pressure drop. The fine-sand barriers
are illustrated in the insert, as is the nature of the sealing (red gas bubbles blocking flow into all the
pores of the fine-grained layer). Figure modified from [52].



Geosciences 2019, 9, 520 14 of 25

The total pressure drop is linearly related to the number of barriers. Six barriers have twice
the pressure drop of 3 barriers and six times the drop of one barrier. Re-pressuring past 290 psi
restores single phase flow and the single phase permeability is unchanged and predicted well by the
Kozeny-Carmen relationship. The capillary pressure drop is predicted well by the Laplace relationship
(insert) which equates the pressure drop across a fine-grained layer to the product of twice the
CO2-water interfacial tension, σ, and the difference of the inverse radii of the fine and coarse pores on
either side of the interface. The Laplace relationship does not contain permeability, and the temperature
dependence of the capillary pressure drop, measured between 20 and 100 ◦C, is that of CO2-water
interfacial tension. The two-phase barrier to flow in the experiment is thus clearly of a capillary nature.
The capillary seals remained intact when 0.3 tube pore volumes of CO2-saturated fluid were passed
through them. The flow blockage can be visualized as gas bubbles preventing flow into all the pores
in the fine sand like toilet plungers (see insert). Capillary seals are remarkably easy to form in the
laboratory, and remarkably durable.

The kind of seal formed in Shosa’s experiments has many new properties and implications.
It is not a lithologic seal. Although it may seem tied to lithology because it forms at a particular
fine-grained layer or sequence of fine-grained layers, it can shift to other fine-grained layers. The top
of overpressure can migrate upwards. Since sealing depends on both wetting (brine) and non-wetting
(usually gas) phases being present, where either is dominant the seal does not exist. In a gas chimney,
for example, gas is free to move inside the pipe and water is free to move outside the pipe. Only in the
transition zone between gas and water are both fluids present in sufficient quantities to be immobilized.
A proper-mixture-proportion impermeable sheath confines the pipe. A consequence is that a Shosa
seal can fail completely, and release a great volume of gas from a pressurized compartment, and
then re-heal. Finally, Shosa seals should form naturally and spontaneously in basins, and produce
just the kind of pressure compartments observed. While recognizing that there is much we don’t
know about the kind of seals formed in Shosa’s experiments, the following paragraphs discuss our
current perceptions.

Pressure Compartmentation is Spontaneous and Natural

Shosa seals should form spontaneously and pressure compartment basins just as observed.
Hydrocarbon maturation will saturate brines in a basin, and compaction and reactions with positive
volume change will oblige those brines to move through the stratigraphy. As the brine moves upward
and decompresses, a bit of gas will exsolve and plug some of the pores in a shale parting or other
comparatively fine-grained barrier, reducing its permeability. The decrease in permeability will divert
the brine to an adjacent location, and exsolved gas will reduce its permeability. Eventually, enough
partings will be sealed that the flow is stopped. In this fashion local pressure compartments will form.
The overpressures in the compartments will be variable, and they will exchange brine as they are buried,
further compacted, and further pressured. The details will be complicated and probably unpredictable,
but pressure compartments in basins can be expected to form naturally and spontaneously.

Incarcerated Gas

Gas flowing upward in a gas chimney is in a sense incarcerated by its bounding Shosa seals. Gas
chimneys are common in hydrocarbon basins and are generally cylindrical, with diameters up to 3 km
or more. But the best example of incarcerated gas is basin center gas (see [6] for a more extensive
summary than offered here). Huge volumes of gas are incarcerated in the centers of basins where
the permeability is <0.1 md (<10−16 m2), and the gas is typically under-pressured with respect to
hydrostatic. Examples are the Appalachian basin from New York to Tennessee documented with over
76,500 wells [53,54], and the Western Canada Sedimentary basin, well documented by [55]. In the
600 × ~100 km portion of the Western Canada basin it is not possible to drill a well that does not hit
gas; the issue is only to find zones permeable enough to produce it. This is also the situation in the
Arkoma Basin which lies just east of the Anadarko Basin discussed above. The water saturation is so
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low in the Arkoma that it is impossible to produce water from it. The pressure gradient is gas-static
(~1 MPa km−1), 1/10th the usual hydrostatic gradient. The Marcellus Shale is dry as a bone and contains
over-pressured gas [56].

In all these cases, except the gas chimney, the gas has been incarcerated for geologic periods of
time (hundreds of millions of years). The incarceration is by Shosa-type capillary seals. The basins are
rich enough in organic material that enough gas has been generated to not only expel all the water
but also, in some cases, blow dry the pore space to desiccation. Normally, capillary forces would
draw water into the formations, but Shosa-type capillary seals formed in the transition zone to water
saturated sediments prevent the imbibition of water.

Seal Migration

Shosa seals can migrate, and porosity profiles record the history of their formation and movement.
Under hydrostatic conditions porosity is reduced almost linearly with depth. But because compaction
depends on effective vertical stress (the weight of the overlying sediments and water minus the pore
pressure), over-pressuring will arrest compaction.

Figure 8 illustrates how porosity changes with depth can be interpreted in terms of seal formation
and migration. The black points indicate the porosity determined by density log. The yellow band
is the model interpretation. The width of the band reflects the range in initial sediment porosities
indicated by the measurements.

The pore pressure is hydrostatic and the compaction normal above 1430 m. If the blue-shaded H.
selli shale became impermeable when its base was at 550 m water depth, the fixed seal compartment
beneath it would have steadily increased in pressure (with no compaction because the pressure increase
would keep the effective stress constant) until it began to hydrofrac and leak at a burial depth of 1430 m.
As the seal top was buried from 1430 and the 2020 m depth, leakage caused the top of overpressure to
migrate upward with sedimentation, capturing porosity at a constant depth and leading to a constant
porosity-depth profile. The theoretical background and analysis of porosity depth profiles for 40 Gulf
of Mexico wells can be found in [57]. The point here is that a porosity profile can tell us about when
seals formed and how they migrated.

Fluids Migrate Together

One implication of a compartmented basin is that brines and hydrocarbons will tend to migrate
together more than they otherwise might. Both will pass through the compartment seals only where
and when they leak. Because the effective stress is lowest there, seals will tend to leak at topographic
highs in the top of overpressure. Thus it is no surprise that hydrocarbon reservoirs are located
preferentially near these highs. Brines will also flow preferentially through the topographic highs, and
flow down the pressure gradient of the seal (and the higher temperature gradient it tends to host) will
alter the seal. In the final volume of the GRI report, Jennifer Shosa lays the foundation for using the
alteration as a flow meter for expelled brine [16].

Fluid Release Valve

Shosa seals can open and shut like valves. When open, very large volumes of gas can be released
very quickly. Figure 9 gives a calculated example for a series of three 1cm-thick partings with 0.1 md
permeability. The caption explains the valve-like operation.
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Figure 9. Illustration of Shosa seal operating as a pressure release valve. (Top) The capillary-blocked
pressure drop across the 3-parting seal is 22.5 bars. (Middle) If gas were to penetrate the seal, as shown
in the second panel, resistance to flow would be only the permeability of the partings. An expulsion
Darcy flux of 10 m y−1 would produce a pressure drop across all three partings of less than 0.2 bars.
Gas in the compartment could be expelled rapidly and completely. (Bottom) Once pressure in the
compartment had been dissipated, water would be imbibed into the seal strata until the seal was
restored, as shown in the bottom panel. Pressure in the compartment might then build up again if gas
generation continued, until a second rupture and discharge occurred. Figure modified from [41].

Gas Pulsar Formation of Mississippi Valley-Type (MVT) Deposits

Figure 10 illustrates how failure of the seal between the gas-filled Arkoma and the darcy
permeability aquifer system underlying the interior of the North American continent could have
delivered pulses of hot brine to the sites of metal deposition. Weathering of Precambrian rocks in
North America produced the extensive mid-continent darcy permeability Lamotte and Mt. Simon
sandstones. These were subsequently overlain by karstic (and therefore very permeable) carbonates.
The bines that produced the mid-continent MVT deposits discharged from these aquifers where the
basal sands or carbonates approached the surface or were intersected by numerous or major faults.
The pattern of hematite reduction in the Lamotte and the decrease northward from the Hicks Dome
source of anomalous flourine in the St. Peter sandstone, suggest the mineralizing brines came from the
Arkoma (Figure 10).
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Figure 10. Periodic massive expulsion of gas from the Arkoma into the Lamotte and karstic Cambrian
carbonates could displace sufficient volumes of brine rapidly enough to form the MVT deposits found
in the North American interior (grey stippled areas). Brine flow from the Arkoma is suggested by the
pattern of hematite reduction in the Lamotte, and the pattern of F carried north from the Hicks Dome
and associated intrusions. Figure from [41] is a composite of figures from [58–60].

How could the presently gas-filled and under-pressured Arkoma have propelled the brines?
The hypothesis is that back in the Permian when the Arkoma was actively generating gas it was
overpressured. Periodically the capillary barrier between the Arkoma and the Lamotte and overlying
carbonate was invaded by gas, rendered permeable, and perhaps as much as 3240 km3 of gas was
rapidly injected into the aquifers. The brine displaced by this gas exited the aquifer system rapidly at all
the most permeable excape locations, e.g., at exactly the sites of MVT deposition. After decompression,
imbibition of water resealed the barrier seal, the Arkoma repressured and then delivered a second
pulse of gas which caused a second pulse of brine and mineralization, etc. The expulsion could be
rapid enough to warm the sites of MVT deposition as observed [41]. The underpressured state of the
gas in the Arkoma indicates that the gas pressure after the last expulsive pulse was, and is presently,
controlled by capillary seals at the top of the gas zone (e.g., [55]).

Late Paleozoic Remagnetization of the North American Mid-Continent

A plethora of paleomagnetic studies have confirmed that the entire mid-continent of the U.S. was
re-magnetized in the Late Paleozoic. The area re-magnetized, by magnetite deposition, is that shown
in Figure 10, but extends into Indiana, Kentucky and Ohio as well. It is considered a consequence of
tectonically-driven brine migration [61], and occurred at the time the MVT deposits formed [62–64].
It is logical that the pulses of massive brine expulsion discussed in the previous section were also
responsible for this continent-scale re-magnitization.
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Impact on Oil Production

If gas exsolves from oil during production, capillary seals may reduce production.
Capillary barriers can be accounted for by changing Darcy’s law to a plastic flow law wherein
a small pressure gradient must be exceeded for any flow to occur. For a typical reservoir system gas
exsolution and capillary barriers might reduce hydrocarbon flow to a well by 20% in 183 days. The
damage will be fastest and greatest for the best producing wells because the drawdown cone for such
wells extends further and encounters more capillary barriers. If production is stopped, the pressure
will recover, the exsolved gas will dissolve, and the well will produce as it did initially [65]. Shosa
seals have production implications.

2.3.3. Mud Volcanoes

Mud volcanism, such as is occurring in Azerbaijan, results when sediments lack sufficient
induration to allow maturing gas and oil to escape. Hydrocarbons maturing at ~14 km depth in
Azerbaijan produce overpressures that make the sediments quick (as in quick sand). The result is
oil- and gas-spewing mud volcanoes 1 to 3.5 km in diameter. As illustrated in a spectacular geologic
atlas [66], the stratigraphy is literally turning itself inside out, and there is an observed triad of oil, gas,
and diapiric structures (Figure 11).
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Figure 11. Mud volcanoes result when hydrocarbons are generated in un-indurated sediments. Mud
Volcanoes of the Azerbaijan Atlas [66].

2.4. Non-Hydrocarbon Gas Dynamics

Non-hydrocarbon gases generated in basins contribute information on how basins operate.
Consider two: CO2 and H2.

2.4.1. CO2 Generation and Titration

Some reservoirs trap almost pure CO2, and it is not uncommon for gas in reservoirs to contain a
few percent CO2. In the latter case, the partial pressure of CO2 depends systematically on temperature,
which indicates chemical equilibrium with siderite or magnesite [67], as shown in Figure 12A.
Most reservoirs contain almost no CO2. These observations can be understood and modeled as
indicated in Figure 12.
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Figure 12. (A) Log partial pressure of CO2 in equilibrium with aluminosilicates and various carbonate
minerals. From [67]. (B) Whether basin reservoirs can contain almost no, a few percent, or nearly 100%
CO2 depends on whether the sediments along the pathways between the CO2 source at >330 C and the
reservoir contain Ca aluminosilicates (almost no CO2 at location A), just Fe or Mg aluminosilicates
(a few percent CO2 at location), or no aluminosilicates (~100% CO2 at location C). From [68]. (C) shows
how the titration process has been implemented in basin models. From [68].

At 350 ◦C the partial pressure of water vapor and CO2 exceeds the fluid pressure in over-pressured
basins, and a separate gas phase is formed. But dissolved CO2 is highly reactive, and as it migrates
upward it will react with any silicate minerals that contain Ca, Mg, or Fe to form carbonates. The CO2

in the rising gas will be consumed. So long as the stratigraphy contains calcium aluminosilicates, the
partial pressure in the gas and in reservoirs will be very low. If the Ca aluminosilicates have been fully
reacted but Mg or Fe aluminosilicates remain, the partial pressure of CO2 in the reservoirs will depend
on temperature and lie on the Smith and Ehrenberg (S&E) [67] buffer trend shown in Figure 12A. When
the Mg or Fe aluminosilicates are titrated, there is no buffer control, and the reservoirs can be filled
with pure CO2. The titration is illustrated in Figure 12B. Reservoirs at location C can contain 100% CO2,
reservoirs at location B a few percent CO2, and reservoirs at location A will contain no CO2. Figure 12C
shows how this titration process has been implemented in basin models (see [68]). Documentation of
titrated migration pathways could reveal a lot about how gas migrates over substantial intervals of
time in basins.

2.4.2. H2 Generation

Prinzhofer and Cathles [69] describe how H2, generated at 250 ◦C from ammonium breakdown,
migrates to the surface to vent in pulses in Brazil. The daily pulses of H2 appear to be related to
atmospheric tidal pressure changes. Modeling the pulses could help constrain the economic potential
of the H2 resource.
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3. Summary and Discussion

The above discussion by no means reviews all the interesting phenomena in basins, but hopefully
has reviewed enough to ground a discussion of what might be beneficially incorporated into future
basin models.

Space for sediment deposition is produced by rifting and spreading, processes governed by plate
tectonics. On occasion models can be constructed that successfully predict the warming of sediments
from first principles, and when this is done large scale basin properties are constrained, such as the
degree of cooling by sediment deposition and warming by sediment radiogenicity. When first-principle
models deviate from measured temperature or maturity profiles, processes such as cooling or warming
by ground water circulation, or warming by sill intrusion may be inferred and perhaps quantified.
Thus, ground-up models could produce insights useful enough to justify the effort required to construct
them. Papers in this volume that assess the impact of sill emplacement are a step in this direction and
illustrate the practical value that could be realized.

Defining permeability is perhaps the most important step in exploring for and producing basin
resources. But what if permeability is set by the rate of fluid escape required by the sedimentation rate
as suggested above? What if the distribution of permeability must be scale invariant as suggested
by Malin et al. [5]. What if the most permeable flow pathways in this distribution could be imaged
seismically as suggested by Sicking and Malin [70]. Incorporating such considerations and methods
could produce far more accurate basin and production models.

Fluid flow is what we want to know because it is what redistributes and accumulates basin
resources. The scale of flow in basins is stunning. Half the eastern portion of the Southern Permian
Basin contributed the brine that mineralized the Kupferschiefer and produced the deposits in Poland.
Pulses of brine flow remagnetized a substantial portion of the North American mid-continent while
producing the MVT deposits found there. Knowing that a basin does not follow its paleomagnetic
polar wander path, and therefore that it has been remagnetized, might be a clue to look for MVT
deposits in that basin. Knowing that a basin has experienced pulses of rapid fluid flow (the kind that
can remagnetize large areas) suggests the basin did not sustain the overpressured conditions for long
periods as is required to produce Kupferschiefer style mineralization. Pulses of brine expulsion may
not be optimum for hydrocarbon accumulation, or may displace accumulations from their expected
positions. But pulses can produce MVT deposits.

Chemical alteration tells a lot. It is striking that the Cu enrichment of the Kupferschiefer and
immediately surrounding strata is 28 times larger than the Cu in the discovered Polish deposits.
The ubiquity of the Kupferschiefer metallization is remarkable. Large areas in Poland show metal
enrichment (Zn, Pb, or Cu) well above background. The relative enrichment of Zn, Pb, and Cu shows a
regular westward increase in leakage through the Kupferschiefer that ultimately produces ore deposits
near the Fore-Sudedetic-Block. The Polish example suggests that if enriched metal content in a shale
overlying red beds is noted, particularly if the shale shows indications of fluid overpressuring at the
time of mineralization, one should look for base metal zoning in the shale and follow the gradient
toward more intense leakage and mineralization. Similarly, measured reservoir CO2 concentrations on
the Smith and Ehrenberg concentration-temperature trend indicate CO2 reservoirs might be found
down section. A lot of useful information might be extracted from the patterns of chemical alteration.
Patterns of chemical alteration could be used to train more capable basin models.

Capillary seal dynamics of the Shosa type deserves a lot of attention. Porosity profiles that tell
when seals formed and how they migrated constrain the timing of hydrocarbon maturation and
overpressuring. Since Shosa seals require a non-aqueous (usually hydrocarbon) fluid phase, basin
flow was completely different before organic material was buried in sufficient quantity to produce
hydrocarbon fluids. Paleozoic MVT deposits should not exist, and this seems to be the case [71].

It is hoped that this short paper has convinced the reader that sedimentary basins are indeed giant
stratigraphic-structural-thermochemical reactors with surprising and fascinating characteristics and
useful mineral and hydrocarbon products. Thanks to the focused exploration and research over the
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last 100 years we know enough about basins to begin to appreciate how they operate and how their
processes interact. But, I suspect our understanding is just beginning. In the future we will understand
a great deal more about their large scale interactions, and models that incorporate this understanding
will be more effective exploration and extraction tools.
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