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Abstract: Seabed sediment composition is an important component of benthic habitat and there
are many approaches for producing maps that convey sediment information to marine managers.
Random Forest is a popular statistical method for thematic seabed sediment mapping using both
categorical and quantitative supervised modelling approaches. This study compares the performance
and qualities of these Random Forest approaches to predict the distribution of fine-grained sediments
from grab samples as one component of a multi-model map of sediment classes in Frobisher Bay,
Nunavut, Canada. The second component predicts the presence of coarse substrates from underwater
video. Spatial and non-spatial cross-validations were conducted to evaluate the performance of
categorical and quantitative Random Forest models and maps were compared to determine differences
in predictions. While both approaches seemed highly accurate, the non-spatial cross-validation
suggested greater accuracy using the categorical approach. Using a spatial cross-validation, there
was little difference between approaches—both showed poor extrapolative performance. Spatial
cross-validation methods also suggested evidence of overfitting in the coarse sediment model
caused by the spatial dependence of transect samples. The quantitative modelling approach was
able to predict rare and unsampled sediment classes but the flexibility of probabilistic predictions
from the categorical approach allowed for tuning to maximize extrapolative performance. Results
demonstrate that the apparent accuracies of these models failed to convey important differences
between map predictions and that spatially explicit evaluation strategies may be necessary for
evaluating extrapolative performance. Differentiating extrapolative from interpolative prediction can
aid in selecting appropriate modelling methods.

Keywords: marine habitat mapping; benthic habitat mapping; grain size modelling; spatial
autocorrelation; multiscale; marine geology

1. Introduction

There is growing pressure on marine ecosystems due to human use, especially near coasts where
interactions between terrestrial and marine drivers have the potential to generate large cumulative
impacts [1]. Coastal ecosystems provide many important goods and services to both coastal and inland
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inhabitants [2–4]. Therefore, it is often necessary to balance competing demands from stakeholders
with the sustainable management of marine resources and ecology [5]. Marine spatial planning
(MSP) is a framework by which this can be accomplished [6]. Using MSP, local maps of ecology are
analyzed alongside those of human use to identify overlaps and conflicts. This spatial information
is used to implement management plans for the current and future use of the marine system [6].
Maps are, therefore, key components to such management initiatives as the primary means of conveying
spatial information.

Seafloor substrate maps are particularly useful for determining the distribution of coastal marine
biota. Substrate composition can be a strong predictor of benthic biodiversity [7]. The presence of
hard substrata, for example, can provide attachment surfaces for sessile animals, marine algae, and the
grazers that feed on them, while soft sediments provide habitat for many infaunal invertebrates [7].
Substrate composition also determines seabed complexity by providing structure and shelter for
marine fauna—factors that correlate with biodiversity [8]. Substrate maps can therefore inform on the
distributions of single species or biodiversity—both of which may be important components of a given
management framework.

A variety of methods for producing seabed sediment maps have been explored (e.g., [9–11]).
Surficial sediment maps were traditionally produced by manual interpretation of ground-truth data in
the context of local geomorphology and often, sonar data (e.g., Todd et al. [12]) but modern methods
increasingly rely on automated objective approaches [13]. These have recently become feasible thanks
to the widespread accessibility of digital data, powerful geographic information system (GIS) tools
and high-performance computing – they allow for mapping a range of substrate characteristics. Grab
sample and core data, for example, have been used to predict sediment grain size [10,14] and particulate
organic carbon content in unconsolidated sediments [15], while the presence of rock or hard substrates
has been predicted from underwater video [16,17]. There are now a variety of approaches to choose
from for a given mapping application and it is important to select those that fit the given geographic
and dataset characteristics.

Coupled with high-resolution acoustic mapping, automated statistical methods are among the
most promising recent approaches to mapping seabed sediments. They perform well compared to
other methods [9,18] and are objective—providing several advantages over manual or subjective
approaches [19]. In supervised modelling, ground-truth sediment samples (e.g., grabs, cores,
video observations) are used to train a statistical model based on environmental data (e.g., depth,
seabed morphology, acoustic seabed properties). Statistical relationships between sediment samples
(response variable) and environmental data at the sample location (explanatory variables) are used to
predict sediment characteristics at unsampled locations. With spatially continuous remotely sensed
environmental data, it is therefore possible to produce full-coverage seabed sediment maps from
relatively sparse sediment samples.

For producing classified (thematic) maps of sediment grain size, several common textural
classification schemes, such as Folk [20], place grain size samples on a ternary diagram according to
the ratio of sand:mud and the percentage of gravel (Figure 1a). Similar textural schemes coarsen the
thematic resolution of Folk’s by aggregating to fewer classes, such as the British Geological Survey
(BGS) modification for small-scale (1:1,000,000) maps, which eliminates the “slightly gravelly” classes
(Figure 1b; [21]). To account for substrate types used in the European Nature Information System
(EUNIS) habitat classification, a further simplified version of Folk’s classification with only four classes
has been suggested and is widely used [21,22] (Figure 1c). Among other criteria, the selection of a
classification scheme may be for compatibility with regional management systems (e.g., EUNIS [23,24]),
for alignment with existing literature [25] or for matching with ground-truth data.
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Figure 1. Ternary diagrams with (a) Folk, (b) simplified Folk and (c) European nature information 
system (EUNIS) classes. 

Using a supervised modelling approach, ground-truth sediment data are commonly treated in 
two ways to produce classified maps of seabed sediment according to schemes such as those 
described in Figure 1: 

1. Quantitative measures of a substrate property, such as grain size fraction (e.g., percent mud, 
sand, and gravel), are used to predict quantitative gradational values across the full environmental 
data coverage (e.g., [26]). These predictions are useful for management or further modelling but some 
applications require classified or thematic maps, which can be produced by classifying the 
quantitative predictions according to some scheme (e.g., Figure 1). This is useful for summarizing 
sediment composition in a single map or for ensuring compatibility with regional management plans 
or similar research (see Strong et al. [25] for discussion of classification and compatibility).  

2. Ground-truth data are aggregated according to a classification scheme prior to modelling, 
thereby treating them as categorical variables (e.g., [27]). It may also be the case that inherited data 
(e.g., from the literature, online databases, legacy data) are already classified and the quantitative 
data are unavailable or that datasets consist of sediment classes derived from visual assessment. In 
these cases, the options available to the modeler are limited and the categorical classification 
approach may be the logical choice. Using this approach, a model can predict the occurrence of the 
observed classes over the full extent of the environmental data. 

Here we will refer to these as “quantitative” and “categorical” modelling approaches. While the 
quantitative approach is also known as “continuous” or “regression” modelling and categorical is 

Figure 1. Ternary diagrams with (a) Folk, (b) simplified Folk and (c) European nature information
system (EUNIS) classes.

Using a supervised modelling approach, ground-truth sediment data are commonly treated in
two ways to produce classified maps of seabed sediment according to schemes such as those described
in Figure 1:

1. Quantitative measures of a substrate property, such as grain size fraction (e.g., percent mud,
sand, and gravel), are used to predict quantitative gradational values across the full environmental
data coverage (e.g., [26]). These predictions are useful for management or further modelling but
some applications require classified or thematic maps, which can be produced by classifying the
quantitative predictions according to some scheme (e.g., Figure 1). This is useful for summarizing
sediment composition in a single map or for ensuring compatibility with regional management plans
or similar research (see Strong et al. [25] for discussion of classification and compatibility).

2. Ground-truth data are aggregated according to a classification scheme prior to modelling,
thereby treating them as categorical variables (e.g., [27]). It may also be the case that inherited data
(e.g., from the literature, online databases, legacy data) are already classified and the quantitative data
are unavailable or that datasets consist of sediment classes derived from visual assessment. In these
cases, the options available to the modeler are limited and the categorical classification approach may
be the logical choice. Using this approach, a model can predict the occurrence of the observed classes
over the full extent of the environmental data.

Here we will refer to these as “quantitative” and “categorical” modelling approaches. While the
quantitative approach is also known as “continuous” or “regression” modelling and categorical is
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commonly referred to as “classification,” we use the terms “quantitative” and “categorical” to reduce
confusion, since the other terms also have other meanings that are relevant here (e.g., “classified” maps
can be produced from either approach and all predictions are “spatially continuous”).

Each of these broad approaches contain numerous individual modelling techniques with their
own intricacies, many of which have been compared in the ecological and conservation management
literature (e.g., presence-absence models [28], regression models [29], machine learning [30],
geostatistical and hybrid methods [18,31]). Among machine learning techniques, Random Forest [32]
is a particularly flexible and accurate method that is capable of both quantitative and categorical
modelling. This flexibility, coupled with widespread availability via popular statistical and GIS
software (e.g., R, ArcGIS), has made Random Forest popular for seabed mapping. Given the goal of
producing a classified (i.e., “thematic”) seabed map using continuous sediment data, Random Forest
could be applied using either quantitative or categorical approaches (Figure 2) at the discretion of
the user.
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Figure 2. Two common supervised workflows for producing objective classified seabed sediment maps.

There are apparent advantages and disadvantages to both quantitative and categorical sediment
modelling approaches for producing classified maps. Unclassified quantitative predictions on their own
constitute a useful result for further modelling and mapping and are flexible once produced—it is easy
to classify and reclassify quantitative values as necessary. The modelling process can be complex though,
potentially involving data transformations such as additive log-ratios for compositional data [33],
multiple models for different log-ratios [26] and multiple corresponding tuning and variable selection
procedures. On the other hand, the categorical modelling procedure can be more straightforward,
requiring little data manipulation once ground-truth measurements have been aggregated into classes
and explanatory variables have been selected. Class labels can be predicted to new data relatively
easily. Once produced though, classes are more static compared to quantitative predictions. It may be
possible to simply aggregate mapped classes to a more general scheme (e.g., Folk to simplified Folk;
Figure 1) but it may also be necessary to re-classify the ground-truth, select new variables and re-tune
model parameters for a new classification, especially if the original scheme is a poor match for the data.

Otherwise, characteristics of the ground-truth data and the type of prediction required by
the models may be important qualities for determining the suitability of modelling approaches.
For example, sample size, distribution and bias, class prevalence and spatial dependence are known to
have profound effects on the performance of distribution models [29,34,35] and particularly Random
Forest [36]. These and other dataset characteristics might influence the appropriateness of the approach
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selected for producing classified maps. For instance, rare classes may be difficult to model using a
categorical approach when they have been sampled few times but may cause less of an issue when
modelled as quantitative variables. In some cases, clustered or uneven sampling may create spatial
dependence in the response data [37], violating assumptions of independence [38]. This could have
unintended consequences for prediction and apparent model accuracy, especially when extrapolating
to new locations [37,39] and these could depend partly on the modelling approach. Here we refer
to extrapolation in a spatial sense as predictions outside of the sampled area, whereas interpolation
occurs between sample locations. An implicit assumption then, is that interpolation operates within
the sampled environmental conditions, while extrapolation may predict outside of them.

The primary goal of this study was to create a classified seabed sediment map for inner Frobisher
Bay, Nunavut, Canada from grab samples and underwater video using the Random Forest statistical
modelling algorithm. Ground-truth characteristics, however, suggested that spatial dependence might
be an issue when extrapolating seabed sediment characteristics to unsampled locations and evaluating
these predictions. We therefore undertook a spatially explicit investigation of the qualities of the
two modelling approaches—quantitative and categorical (Figure 2) —for predicting sediment grain
size classes from grab samples using Random Forest. Coarse substrates that were not adequately
represented in grab samples were modelled separately using underwater video data and the two
predictions were subsequently combined to produce a single map of surficial sediment distribution.

Specifically, when evaluating the quantitative and categorical Random Forest models for producing
classified maps, we investigated: (1) their performance when extrapolating grain size predictions
to new locations and if this was affected by spatial autocorrelation; (2) the appropriateness of three
levels of classification based on the relative proportions of grain size measurements; and (3) if the two
approaches produced similar maps. Because the observations of coarse sediment from video transects
were likely to be spatially autocorrelated, we investigated if the proximity of these samples: (1) inflated
the apparent accuracy of coarse substrate predictions; and (2) caused overfitting in model training.
The results of these investigations informed the selection of modelling approach, while also providing
spatially explicit accuracy estimates. Based on the results, we provide recommendations on the utility
and potential pitfalls of these approaches in a spatial context.

2. Materials and Methods

2.1. Study Area

Frobisher Bay is a long (~265 km), northwest-southeast-oriented macrotidal fjord located in
southeastern Baffin Island, Nunavut, Canada (Figure 3). It can be partitioned into two morphologically
distinct sections. The inner part spans from the northwest head of the bay to the mid-bay islands, with
a maximum depth of approximately 350 m. Much of this section is shallow (< 100 m) with extreme
tides (> 10 m) resulting in extensive tidal flats. The mid-bay islands separate the predominantly muddy
shallow inner bay from the coarse and bedrock-dominated outer bay, which deepens to over 800 m and
opens to the North Atlantic. The southwest coast of the outer bay is the fault boundary of a half-graben
and is characterized by steep rock cliffs.

This study focuses on inner Frobisher Bay. The morphology and orientation of submarine
features here are a product of repeated Quaternary glaciations, the most recent of which receded
between 9-7 ka BP [40,41]. These have produced a complex, heterogeneous seabed, with erosional and
depositional glacial features such as scour troughs and moraines indicative of northwest-southeast ice
flow. Currently, seabed sediments are re-mobilized by several non-glacial processes, including tidal
currents, submarine slope failures and iceberg and sea-ice scour [42].
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Figure 3. (a) Frobisher Bay, Nunavut, Canada with 200 m bathymetric contours from the GEBCO_2014
grid (The General Bathymetric Chart of the Oceans; [43]) and coastline reproduced from ESRI [44], with
(b) location on southeastern Baffin Island and (c) the study area – inner Frobisher Bay.

2.2. Environmental Data

Multibeam echosounder (MBES) bathymetry and backscatter data (Figures 4 and 5) were collected
between 2006 and 2017 to characterize the seabed as part of the ArcticNet project “Integrated Marine
Geoscience to Guide Environmental Impact Assessment and Sustainable Development in Frobisher
Bay, Nunavut” [42]. The CCGS Amundsen collected opportunistic MBES data during transit to and
from Iqaluit between the years 2006–2008 with a Kongsberg EM300 30 kHz echosounder and between
2009-2017 with an EM302 (30 kHz). The RV Nuliajuk completed targeted surveys in the bay between
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2012–2013 with an EM3002 (300 kHz) and between 2014–2016 with an EM2040C (200–400 kHz). Details
on MBES data processing are included in Appendix A.
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2.3. Ground-Truth

Ideally, a sediment model would rely on a single consistent source of ground-truth data, yet grab
samples commonly fail to accurately represent coarser sediments [45,46], while it can be difficult to
consistently distinguish mud from sand in underwater video [47]. To overcome these limitations, we
modelled finer grain sizes (< 4000 µm) using grab sample data and coarse substrates (≥ 4000 µm; that
is, pebble, cobble, boulder) from video observations.

Grab samples (n = 239) and underwater video (n = 78) were collected in 2015 and 2016 to provide
substrate ground-truth for the MBES data (Figures 4 and 5). Ground-truth sites were selected from the
area of MBES coverage prior to each field season using a random approach, stratified by water depth
up to 200 m and seabed slope. Because sampling and mapping occurred simultaneously, only part of
the final mapped area was available for sample site selection each year, resulting in unsampled areas.

A live-feed Deep Blue Pro underwater camera with a GoPro Hero4 was deployed at each selected
site to collect high-definition video for a four-minute drift. Two lights were attached to the camera
mount to illuminate the seabed and two green lasers, spaced 5 cm apart, were attached for scale.
Positioning was obtained using a Garmin 18x PC GPS with video overlay, providing coordinates at the
surface for the duration of the recording. GPS accuracy was rated at < 3 m and though efforts were
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made to keep the location of the GPS above the camera during drifts, it is likely that the locational error
was greater under windy or high-current conditions due to horizontal drift of the camera from the
vessel, especially at the greatest depths. Positional error potentially exceeded 10 m under high-drift
conditions; if this was suspected, the drift was cut short. Still frames were extracted for analysis every
10 s for the duration of the video. If coarse substrates (pebble, cobble, boulder) were visible in a
frame, they were labelled as “present.” All observations were aggregated so that coarse substrates
were labelled as “present” or “absent” for each 10 m raster cell that was sampled.

Up to three sediment samples were collected from the area near each site using either a 24-l Van
Veen or a 2.4-l Petite Ponar grab and individually georeferenced from the surface using the ship’s
GPS location. Each grab sample was sub-sampled for ~100 g of sediment, which was considered
sufficient for measuring grain size composition up to 4000 µm. These were stored in a sample jar and
frozen for transport. In the lab, samples were thawed and dried at low heat in an oven. Samples were
dry-sieved for 5 min in a mechanical sieve shaker to separate mud (< 63 µm), sand (63–2000 µm) and
gravel (2000–4000 µm) fractions. Many samples had a high proportion of flocculant mud that failed
to disperse during dry sieving. To obtain an accurate measure of the mud fraction, samples were
gently spray-rinsed through a 63 µm sieve and agitated by hand, washing away the mud fraction.
The remaining sediments coarser than 63 µm were re-dried and weighed to estimate the proportion of
mud that was lost. The weights of each fraction were divided by the total weight to obtain percent
mud, sand and gravel composition.

2.4. Statistical Modelling

The Random Forest machine learning algorithm was used to model both sediment grain size and
presence of coarse substrates. Random Forest is an ensemble modelling method that uses bagging [48]
to combine the results of many individual classification or regression trees, whereby many bootstrap
samples of the modelling dataset are drawn and a decision tree is fit to each [32]. A random set of
predictor variables is selected to partition the data at each decision tree node and the data not selected
for a given bootstrap sample (termed “out-of-bag” observations) are predicted by the decision tree.
This provides several useful metrics, such as (1) a predicted class or value for each observation based
on majority vote, (2) estimates of accuracy that are comparable to cross-validation and (3) estimates of
variable importance (see Cutler et al. [49] for explanation in an ecological context) and these can be
used to evaluate the quality of the model.

Because Random Forest is an ensemble of decisions trees, it is generally considered robust to
noisy or unimportant predictors [32,50]. Large numbers of quantitative and categorical variables
can therefore be included in the model and non-linear responses are automatically modeled with
interaction (a quality of decision trees). Furthermore, it can perform both quantitative and categorical
modelling (e.g., Figure 2). These qualities have made Random Forest popular for environmental
modelling, yet the resulting ensemble of trees is complex, making it difficult to understand exactly how
model predictions are derived. Ways in which variables interact in the model, for example, is difficult
to know given that interactions can be multiple levels deep for each decision tree, of which there are
hundreds or thousands. Though this complexity makes Random Forest a powerful predictor in the
range of sampled conditions, it may be less effective at extrapolation [51,52], especially for rare classes.
This is sometimes alleviated by subsampling the sample dataset to ensure equal class observations,
yet this method can potentially cause rare classes to be overpredicted [36]. These qualities must be
considered when evaluating the suitability of Random Forest for a given modelling application.

For the categorical grain size modelling approach, samples were assigned class labels according to
three ternary schemes prior to modelling to test different levels of data aggregation. The Folk [20] and
simplified Folk schemes were used according to Long [21]. Here, the “slightly gravelly” boundary for
the Folk classification is at 1% rather than “trace,” as in Folk [20]. The third classification was simply
“muddy” or “sandy” if there was a majority of either size fraction. This was used instead of the EUNIS
simplification to the Folk classification (Figure 1c), which was not appropriate given the data – most
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samples were muddy and < 5% gravel. The EUNIS simplification would aggregate nearly all the
samples into the class “mud and sandy mud.”

For the quantitative approach, percent mud, sand, and gravel measurements were transformed to
an unbound additive log-ratio (ALR) scale [33] with respect to the mud fraction:

ALRsm = log10 (
S
M

) (1)

ALRgm = log10 (
G
M

) (2)

where ALRsm and ALRgm are the additive log-ratios of sand to mud and gravel to mud and M, S, and G
are the proportions of mud, sand, and gravel size fractions measured in a grab sample, respectively.
Note that the results are unaffected by the choice of size fraction to serve as the denominator [53].
Model predictions were then back-transformed to a compositional scale bound between 0 and 1,
corresponding to the relative percentage of each size fraction and summing to 1 for each sample [54]:

S =
10(ALRsm)

10(ALRsm) + 10(ALRgm) + 1
(3)

G =
10(ALRgm)

10(ALRsm) + 10(ALRgm) + 1
(4)

M = 1− (S + G) (5)

To produce a classified map from the quantitative output, predictions were classified according to
the three ternary schemes above.

The presence or absence of coarse substrates was recorded for each underwater video still frame
to produce binary presence-absence data. These were used to train a categorical Random Forest model,
essentially treating the presence or absence of coarse substrates as a two-class categorical response.
Random Forest can output class probabilities rather than the class of majority vote, which allows the
presence threshold to be tuned according to the classification goal, rather than the arbitrary default
value of 0.5. Though tuning this threshold cannot solve the problem of poor model fit, it can potentially
increase the efficiency of meeting explicit predictive goals for a binary classifier (such as balancing
correctly classified presences and absences or accurately predicting a certain sediment class), especially
when model prediction and performance are highly sensitive to class prevalence [55].

2.5. Explanatory Variables

In addition to the primary MBES data (bathymetry and backscatter), 11 secondary variables were
tested for inclusion in each of quantitative and categorical grain size models and the coarse substrate
model using a multiscale approach ([56]; Appendix B). Five bathymetric derivatives that describe most
of the topographic structure of a surface suggested by Lecours et al. [57] were calculated using their
toolbox for ArcGIS (the eastness and northness of seabed slope aspect, relative difference to the mean
bathymetric value, slope, local bathymetric standard deviation; [58]). Local bathymetric standard
deviation was omitted because it was highly correlated with seabed slope but did not perform as
well. Three measures of surface curvature (total, plan, profile) were derived using the “Curvature”
tool in ArcGIS Pro v.2.2.3 and two measures of surface complexity (surface area:planar area [SA:PA],
vector ruggedness measure [VRM]) were derived using the Benthic Terrain Modeler toolbox [59] for
their potential as topographic surrogates that influence bottom currents and potentially sediment
transport. The range of backscatter values in a circular neighborhood and their standard deviation
(SD) in a 3 x 3-pixel neighborhood were derived for each spatial scale as potential surrogates for local
substrate variability. The Euclidean distance to the nearest coast was calculated as a potential predictor
of sediment grain size based on transport distance from terrestrial sources.
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Random Forest is generally considered robust to noise, ignoring unimportant predictors, yet there
are benefits to variable reduction such as decreased variability between model runs and more accurate
estimates of error [36]. We simplified the predictor set by removing variables that had Spearman’s
ρ ≥ 0.70—a common threshold for reducing correlated variables (e.g., [60–62]; Appendix B).

2.6. Evaluating Model Performance

All predictions were first tested using a leave-one-out cross validation (LOO CV). Using this
approach, a single sample is removed from the dataset and all other samples (N-1) are used to train the
model. The class of the withheld sample is then predicted using the N-1 model. This is repeated for
every sample in the dataset, producing observed and predicted classes at every sample location, which
are used to estimate predictive performance. Error matrices were computed to observe the success in
predicting the observed classes. From this we derived the percent correctly classified and the kappa
coefficient [63]. Percent correctly classified is simply the proportion of test samples that were assigned
the correct label. Kappa is a statistic that reflects whether the model achieved better results than to be
expected at random and is calculated from

κ =
po − pe

1− pe
(6)

where κ is the value of kappa between −1 and 1 (with 0 describing predictions that are no better than
random), po is the proportion correctly classified and pe is the proportion correctly classified due to
chance, based on the frequency of observations and predictions of each class. Because the performance
of the coarse presence-absence model depends on the probability threshold, the threshold-independent
area under the receiver operating characteristic curve (AUC), which is the plot of sensitivity against
1-specificity [64] and the maximum kappa values at all thresholds (e.g., [28]) were used to compare
candidate models.

Spatial autocorrelation is known to inflate estimates of predictive performance [36,65].
To determine its effects on the modelling approaches tested here and whether models were able
to extrapolate to unsampled locations, we also conducted a spatial leave-one-out cross-validation
(S-LOO CV) [66]. This procedure is identical to LOO CV, except that a spatial buffer is placed around
the withheld test point and training data from within this buffer are omitted from both model training
and testing so that there are no training data proximal to the test. This aims to eliminate spatial bias in
accuracy assessment by removing points that are spatially autocorrelated with the test site up to the
specified buffer distance.

We calculated empirical variograms for the observed grain size values and coarse substrate
observations to determine a suitable buffer distance. We used the variogram model range to estimate
the distance beyond which the effects of autocorrelation are negligible. This distance has been suggested
as adequate for S-LOO CV [67]. Variograms were calculated up to 5000 m and multiple models were
tested for characterizing the major range using the Geostatistical Wizard in ArcGIS Pro v.2.2.3.

The coarse substrate model was trained using image frames from video transects and these were
expected to be highly autocorrelated due to their proximity. Therefore, in addition to the above two
assessment procedures, we conducted a spatially resampled leave-one-out cross-validation (SR-LOO
CV) to determine whether this spatial dependence affected model fitting in addition to performance
estimation. Because Random Forest is an “embarrassingly parallel” algorithm [50], separate “forests”
can be combined and treated as a single model to make predictions. The SR-LOO CV builds on S-LOO
CV by using the same spatial buffering procedure (i.e., the withheld test sample is spatially buffered;
points within the buffer are excluded from training and testing), except that each training point for
each “leave-one-out” iteration is also spatially buffered, so that no adjacent points are used for model
fitting or testing (similar to the algorithm in Holland et al. [68]). Because this severely limits the
number of samples available for training each iteration of Random Forest, we can randomly subsample
each “leave-one-out” training dataset many times (100 here) to acquire different subsets of spatially
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independent training data. By producing only a small number of trees (ntree) from each of the 100
spatially independent data subsets, it is possible to achieve the same number of trees in a forest that are
desirable in a full “leave-one-out” iteration (e.g., ntree = 2000 here). This effectively creates the same
number of trees as in a normal Random Forest run but produces the “forest” using the combination of
many small, spatially independent subsets, rather than the full dataset.

The results of these cross-validations were analyzed to address the goals of this study. For grain
size predictions, we first investigated the performance of the quantitative and categorical approaches to
determine if these models could successfully extrapolate sediment grain sizes at unsampled locations
and whether spatial autocorrelation interfered with assessing map accuracy. Performance was assessed
using multiple classification schemes at different levels of grain size detail (i.e., aggregation) to select
one that fit the data. We then compared maps produced using both approaches to determine if and how
any differences in model performance manifested in the mapped predictions and if the maps agreed.
For predicting the presence of coarse substrates, we tested whether the proximity of sample points
within video transects inflated estimates of predictive performance and also whether their proximity
caused overfitting of Random Forest models.

2.7. Map Prediction

Predictions of sediment grain size and the presence of coarse substrates were combined to produce
a single map of seabed sediment distribution. The results from the accuracy assessments and map
comparison, and also the qualities inherent in the two modelling approaches, were used to select a
suitable model for predicting sediment grain size classes. The probability of coarse substrate presence
was predicted for the entire study area. To combine these predictions with those of grain size, an
occurrence threshold was set to maximize the sum of sensitivity and specificity, which aims to balance
the class accuracy of predictions [60] and which has been demonstrated to perform well compared to
other threshold selection criteria [55]. Thus, the combined map predicts the sediment grain size class
and whether coarse substrates are present for each pixel throughout the study area (e.g., “muddy with
coarse substrate”).

3. Results

3.1. Grain Size Data

The sampled substrates were primarily muddy, with some sandy sediments (Figure 6). When
classified according to Folk [20], the most common class was (g)sM (40.72%), followed by sM (38.14%)
and (g)mS (13.40%). The simplified Folk scheme eliminates the “slightly gravelly” modifier, aggregating
the classes (g)sM and (g)mS with sM and mS, increasing these class proportions to 78.87% and 18.04%,
respectively. In the “muddy/sandy” classification, 79.38% of samples fall into the “muddy” class, with
the remaining 20.62% in “sandy.” Coarse substrates were observed in 20.06% of raster cells containing
underwater video observations (e.g., Figure 7; Table 1).
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Table 1. Coarse substrate observations from underwater video frames.

Coarse Substrates Raster Cells

Present 65
Absent 259

3.2. Spatial Autocorrelation

Estimates of major range from the Geostatistical Wizard variogram models were used to determine
a buffer distance for the spatial leave-one-out cross-validations. Circular variogram models provided a
distinct major range compared to the more asymptotic models (e.g., exponential, Gaussian, Bessel),
were relatively stable with varying input parameters and fit the data comparatively well. The major
ranges of the circular mud and sand variogram models were 1497 m and 1210 m, respectively, when
calculated at a maximum distance of 5000 m (see Appendix C). There appeared to be little change in
gravel measurement variance with increasing distance and they did not yield a useable variogram
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model. We selected a buffer distance of 1500 m for the S-LOO CV based on the mud and sand major
range estimates. The major range of the circular coarse substrate model was 199 m; we selected a buffer
distance of 200 m for S-LOO CV and SR-LOO CV methods based on this model.

3.3. Variable Selection

Different sets of scale-dependent variables were selected for modelling ALRsm, ALRgm, grain size
classes, and the presence of coarse substrates (Tables 2 and 3). Backscatter range was commonly
correlated with the backscatter standard deviation (SD) (ρ ≥ 0.70) and only one of these two variables
was generally selected, except in the classification model where the correlation between backscatter
range at 250 m scale and backscatter SD at 100 m scale was below this threshold. The different curvature
measures were often correlated at similar scales and also to RDMV. Total curvature was correlated
with one of these variables at every scale tested and consistently had a weaker relationship with the
response—it was therefore removed from all models. The two measures of complexity, SA:PA and
VRM, were also correlated at similar scales.

Table 2. Scale-specific variables selected for sediment grain size models.

ALRsm ALRgm Classification

Variable Spatial Scale
(m) Variable Spatial Scale

(m) Variable Spatial Scale
(m)

Backscatter - Bathymetry - Bathymetry -
Bathymetry - Backscatter - Backscatter -

Distance from coast - Distance from coast - Distance from coast -
Backscatter range 200 Backscatter SD 100 Backscatter range 250

Eastness 50 Eastness 100 Backscatter SD 100
Eastness 500 Eastness 400 Eastness 10

Northness 10 Northness 250 Eastness 450
Plan curvature 50 Plan curvature 50 Northness 10
Plan curvature 350 Plan curvature 300 Plan curvature 150

Profile curvature 450 Profile curvature 300 Plan curvature 300
RDMV 300 Profile curvature 450 Profile curvature 300
SA:PA 10 Slope 10 RDMV 200
Slope 10 Slope 450 RDMV 350
Slope 500 VRM 200 Slope 10
VRM 400 VRM 400 Slope 450

VRM 10

Table 3. Variables selected for coarse substrate model.

Coarse Substrates

Variable Scale (m)

Bathymetry -
Backscatter -

Distance from coast -
Backscatter SD 100

Eastness 100
Eastness 500

Northness 250
Plan curvature 100
Plan curvature 350

Profile curvature 10
RDMV 100
RDMV 300
Slope 200
VRM 100
VRM 350
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3.4. Grain Size Model Evaluation and Comparison

The LOO CV suggested that the simplified Folk and muddy/sandy classes were predicted
accurately, with predictions from the categorical approach generally more accurate than the quantitative,
while Folk classes were not predicted accurately using either approach (Table 4). The error matrix shows
that this poorer performance was the result of several uncommon Folk classes that were not successfully
predicted (Appendix D); the categorical Folk predictions had a percent correctly classified of 54.64%
and predictions that were only marginally better than random (κ = 0.25). The greater accuracies of the
simplified Folk and muddy/sandy schemes is a product of rare classes being aggregated into broader
ones, reducing their misclassification. Though the quantitative approach was generally less accurate
than the categorical using LOO CV with all schemes, it was similar in that the simplified schemes were
predicted more successfully than the Folk. Again, this was a result of aggregating rare Folk classes into
broader ones, making them easier to predict.

In contrast to the LOO CV results, there was little difference in performance between the two
approaches when evaluated using S-LOO CV – both demonstrated poor predictive performance.
All performance metrics were lower using the S-LOO CV, except for the quantitative Folk predictions
(Table 4). The percent correctly classified was reduced only marginally—by 7.92% to not at all—yet
kappa values all indicate that the performance of these models is hardly better than by random chance
based on class prevalence. The disparity between percent correctly classified and kappa scores in the
S-LOO CV assessments is the result of an increased inability to predict the rarer classes (see error
matrices in Appendix D). Results of the unclassified mud, sand, and gravel quantitative predictions
are presented in Appendix E.

Table 4. Performance of quantitative and categorical grain size predictions using three schemes with
spatial and non-spatial cross-validations.

LOO CV S-LOO CV (1500 m)

Categorical Quantitative Categorical Quantitative

Folk
% correctly
classified 54.64 48.46 46.72 48.58

Kappa 0.25 0.14 0.12 0.10

Simplified Folk
% correctly
classified 85.50 82.25 78.79 78.11

Kappa 0.52 0.34 0.05 0.04

Muddy/Sandy
% correctly
classified 86.29 84.62 78.36 79.88

Kappa 0.53 0.41 0.06 0.11

Despite similarities in predictive performance when evaluated using S-LOO CV, there were
obvious differences in map predictions between categorical and quantitative Random Forest model
predictions. The quantitative approach predicted the occurrence of classes that were not observed in
ground-truth samples, such as the Folk class gM in the deep channels in the southeast part of the bay
(Figure 8b), which was the third most commonly predicted class and was only predicted in unsampled
areas. Conversely, the categorical approach generally predicted the most common class (sM) in these
areas. (g)sM was the most commonly predicted Folk class in the classified quantitative map, occurring
in 65.36% of raster cells, while it was only the second most common for the categorical map, occurring
in 44.04% of cells. sM was the most common for the categorical map, occurring in 52.83% of cells,
while it was the second most common in the classified quantitative map, occurring in only 27.79% of
cells. The prediction of unsampled classes using the quantitative approach accounted for much of
the disagreement between maps but they also disagreed on the extent of the most common classes
throughout the study area.
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Figure 8. Predicted Folk grain size classes for (a) categorical and (b) quantitative models, with
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The primary differences between categorical and quantitative Random Forest approaches for
the simplified Folk classified maps (Figure 9) was the prediction of unsampled classes. Again, the
quantitative approach predicted extensive areas of gM in the deep southeast channel that were not
predicted using the categorical approach. In all other areas the two map predictions were similar,
with 93.15% and 96.37% of quantitative and categorical maps classified as sM, respectively. Both
approaches predicted similar distributions of mS, primarily near Iqaluit, in the northernmost mapped
area and near the southwestern coast. “Muddy/sandy” maps (Figure 10) were highly similar between
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the two approaches with nearly 97% agreement, having eliminated all unsampled classes. “Sandy”
sediment was primarily predicted where mS occurred in the simplified Folk maps. Predicted class
proportions between the approaches were similar, with “sandy” sediment predicted in 3.61% of cells in
the classified quantitative map and 4.60% in the categorical map – the remaining being “muddy.”

Geosciences 2019, 9, x FOR PEER REVIEW 18 of 35 

 

proportions between the approaches were similar, with “sandy” sediment predicted in 3.61% of cells 
in the classified quantitative map and 4.60% in the categorical map – the remaining being “muddy.” 

 
Figure 9. Predicted simplified Folk grain size classes for (a) categorical and (b) quantitative models, 
with (c) agreement between predictions. 

Figure 9. Predicted simplified Folk grain size classes for (a) categorical and (b) quantitative models,
with (c) agreement between predictions.



Geosciences 2019, 9, 254 18 of 34

Geosciences 2019, 9, x FOR PEER REVIEW 19 of 35 

 

 
Figure 10. Predicted “muddy/sandy” grain size classes for (a) categorical and (b) quantitative 
Random Forest models, with (c) agreement between predictions. 

3.5. Coarse Model Assessment 

The LOO CV suggested that the presence of coarse substrates was predicted accurately but the 
S-LOO CV did not (Table 5). The maximum kappa value obtained using LOO CV (𝜅 = 0.62; Table 5) 
suggested that the model had potential to predict much better than expected by chance (depending 
on the threshold selected). The threshold-independent AUC value (0.86) also suggested strong 
predictive performance. Conversely, S-LOO CV yielded lower maximum kappa and AUC values. 
Accuracy of the SR-LOO CV, however, was higher than the S-LOO CV with the same spatial 

Figure 10. Predicted “muddy/sandy” grain size classes for (a) categorical and (b) quantitative Random
Forest models, with (c) agreement between predictions.

3.5. Coarse Model Assessment

The LOO CV suggested that the presence of coarse substrates was predicted accurately but the
S-LOO CV did not (Table 5). The maximum kappa value obtained using LOO CV (κ = 0.62; Table 5)
suggested that the model had potential to predict much better than expected by chance (depending on
the threshold selected). The threshold-independent AUC value (0.86) also suggested strong predictive
performance. Conversely, S-LOO CV yielded lower maximum kappa and AUC values. Accuracy of
the SR-LOO CV, however, was higher than the S-LOO CV with the same spatial constraints (200 m
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buffer), suggesting potential model overfitting caused by the proximity of the training data that may
have been alleviated when training data were forced to be independent.

Table 5. Threshold-independent accuracy of coarse substrate model using spatial and non-spatial cross
validation (CV) approaches and with spatially independent training data.

LOO CV S-LOO CV (200 m) SR-LOO CV (200 m)

AUC 0.86 0.67 0.76
Max kappa 0.62 0.24 0.40

The map of coarse substrates shows the probability of occurrence for each pixel (Figure 11). Coarse
substrates were predicted to occur throughout the bay but primarily on the flanks of topographic highs
and on several coasts (see the northern and westernmost mapped areas; Figure 11). Coarse substrates
were also predicted in the southeast section of the bay on the flanks of deep channels and near the
islands to the east, where backscatter return was high (Figure 5).
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3.6. Combined Map and Model Tuning

The two-class categorical muddy/sandy predictions were selected to combine with coarse substrate
predictions to produce a single map of surficial sediments (Figure 12). Because the grain size scheme is
binary, the categorical Random Forest predictions have the distinct advantage of a flexible threshold of
occurrence, which can be readily optimized. Setting the threshold to maximize the sum of sensitivity
and specificity (0.18; [55]) for predicting “sandy” sediments using S-LOO CV yielded κ = 0.27. Having
selected this model, the performance was tested after dropping further unimportant predictors
identified from estimates of variable importance. Maintaining only the top six variables (bathymetry,
backscatter, 300 m profile curvature, 10 m and 450 m slopes, 10 m VRM) resulted in more accurate and
more stable grain size predictions using S-LOO CV. At the 0.18 threshold, predictions were classified
correctly ~70% of the time, with κ = 0.34 (Table 6).Geosciences 2019, 9, x FOR PEER REVIEW 22 of 35 

 

 
Figure 12. Combined map of grain size classification and coarse substrate predictions. 

4. Discussion 

The predicted seabed sediment classes generally agreed with expectation given the 
geomorphology of the bay, yet particular locations without ground-truth data require further 
investigation. The majority of the low-relief seabed was classified as “muddy,” which is not 
surprising given what was observed in grab samples and underwater video (e.g., Figures 6 and 7a). 
Sandy sediments predicted south and southwest of Iqaluit may be partially attributable to sediment 
input from the Sylvia Grinnell River, directly west of the city. This is also an area of distinct sea-ice 
scouring [42] with higher acoustic backscatter than the surrounding seabed (Figure 5) and several 
distinctly reflective features that were classified as “sandy with coarse substrate.” This class was also 
predicted at several locations along the coast, fining to muddier grain sizes with increasing distance 
and depth. Otherwise, exposed coarse substrates predicted along the flanks of steep topographic 
features may be attributable to current winnowing of unstable fine sediments [69]. This is likely the 
case in the high-relief, deep southeastern channels, where coarse substrates were predicted 
extensively. Further investigation is necessary in these deep channels though—this was an 
unsampled area of high disagreement between the categorical and quantitative models (Figures 8 
and 9). One might expect a muddier composition at the bottoms of these deep channels, yet sandier 
grain sizes were predicted, likely as a product of the high backscatter response (Figure 5). 

Figure 12. Combined map of grain size classification and coarse substrate predictions.

Table 6. Accuracies of grain size and coarse substrate components of combined seabed
sediment predictions.

Muddy/Sandy (Variables Reduced) Coarse Presence-Absence

% correctly classified 70.37 75.64
Kappa 0.34 0.40
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The presence or absence of coarse substrates was dichotomized using a 0.27 threshold of occurrence
to maximize the sum of sensitivity and specificity [55]. These predictions were 75.34% accurate with
κ = 0.40 using the SR-LOO CV method (Table 6). The final seabed sediment class was determined
by specifying the predicted grain size class (“muddy” or “sandy”) and whether coarse substrates are
present (Figure 12).

4. Discussion

The predicted seabed sediment classes generally agreed with expectation given the geomorphology
of the bay, yet particular locations without ground-truth data require further investigation. The majority
of the low-relief seabed was classified as “muddy,” which is not surprising given what was observed
in grab samples and underwater video (e.g., Figures 6 and 7a). Sandy sediments predicted south and
southwest of Iqaluit may be partially attributable to sediment input from the Sylvia Grinnell River,
directly west of the city. This is also an area of distinct sea-ice scouring [42] with higher acoustic
backscatter than the surrounding seabed (Figure 5) and several distinctly reflective features that were
classified as “sandy with coarse substrate.” This class was also predicted at several locations along the
coast, fining to muddier grain sizes with increasing distance and depth. Otherwise, exposed coarse
substrates predicted along the flanks of steep topographic features may be attributable to current
winnowing of unstable fine sediments [69]. This is likely the case in the high-relief, deep southeastern
channels, where coarse substrates were predicted extensively. Further investigation is necessary in
these deep channels though—this was an unsampled area of high disagreement between the categorical
and quantitative models (Figures 8 and 9). One might expect a muddier composition at the bottoms of
these deep channels, yet sandier grain sizes were predicted, likely as a product of the high backscatter
response (Figure 5).

4.1. Model Comparison

There was little difference in accuracy between quantitative and categorical Random Forest
approaches when using spatially explicit cross-validation methods but their maps differed substantially.
Using a two-class scheme, it was possible to tune the threshold of occurrence for the probabilistic
output of the categorical model to obtain a higher accuracy than the quantitative model and this was
selected for the final map. The most noticeable difference between maps was that the quantitative
approach predicted extensive patches of sediment classes that were not observed in the ground-truth
data, where the categorical approach predicted the most commonly observed classes. The predicted
proportions and distributions of the classes also differed between approaches.

Although the quantitative Random Forest approach failed at extrapolation in this study, it has
several characteristics that may be otherwise desirable. Because classification of quantitative predictions
is done post hoc, this method might avoid some of the difficulty associated with predicting unbalanced
classes—one of the major shortcomings of the categorical approach. Furthermore, as demonstrated
here, predictions are not constrained to the classes that were sampled. Thus, if the model were fit well,
it may be possible to predict rare and unsampled classes at new locations, while this is not feasible with
the categorical approach. This may be a particularly useful quality if unsampled areas are expected
to contain different sediment characteristics than the sample sites, yet it requires a high degree of
confidence in the modelled relationships between grain size composition and the explanatory variables.
The spatial leave-one-out CV error matrices for classified quantitative predictions (Appendix D) failed
to indicate that the model could successfully predict rare classes in this study and we did not have
the confidence to adopt predictions of unobserved classes in unsampled areas. It is quite possible
that these areas do actually contain different sedimentary characteristics though, as their morphology
and backscatter characteristics were unique but there is no way to confirm this. Sampling these areas
would be a priority in future work.

It is also worth considering characteristics of the unclassified quantitative predictions of mud,
sand, and gravel, which may offer some advantages over classification. These predictions represent
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gradational changes in sediment composition, which are more realistic and potentially more desirable
than discrete classes. If classes are required, quantitative predictions are completely flexible with
regards to classification scheme. Because the quantitative values remain the same, it is not necessary to
run through the model fitting procedure to test different classifications – the class boundaries simply
need to be adjusted. Other methods could also be used to optimize the classification of quantitative
predictions to produce relevant and distinct classes, such as multivariate clustering. This way, it is
possible to define an appropriate number of classes with boundaries that are most relevant to a given
study area.

The qualities of the categorical Random Forest approach ultimately made it more suitable for this
study but one major difficulty was assessing whether rare classes were predicted correctly. Because the
data were spatially autocorrelated, samples of rare classes were likely to occur close to one another.
Using a spatial CV approach, in which samples proximal to the test data are omitted from model
training (as in S-LOO CV) or proximal samples are not allowed for either training or testing (as in
SR-LOO CV), can potentially remove most or all other samples of a rare class, making it impossible to
assess if it was predicted accurately. Selecting a classification scheme that matches the data facilitates the
estimation of accuracy by ensuring an adequate number of samples for training and testing each class.
Here, the Folk and simplified Folk schemes each contained several classes with very few observations
(< 5) and the success in predicting these could not be confidently determined. The muddy/sandy
classification better fit the data, providing adequate samples of each class to evaluate predictive success.

Though the muddy/sandy classification was a good fit given these data (Figure 6), the class
prevalence was still unbalanced. Another solution afforded by the categorical approach is that the
threshold of occurrence can be optimized. Setting this threshold to maximize the sum of sensitivity +

specificity equally weights the success in predicting each class and this produced higher extrapolative
(i.e., S-LOO CV) accuracy than the quantitative approach, especially after removing superfluous
variables. Another common approach used to predict rare classes is to subsample the dataset to ensure
equal class representation but that requires enough samples of the rarest class to allow a reasonable
subsample size. Furthermore, some research has suggested that the proportions of classes in the
training data should be representative of the actual proportions of these classes [36].

4.2. Spatial Assessment

Spatial autocorrelation inflated estimates of predictive accuracy regardless of the modelling
approach or classification scheme for both grain size and coarse substrate models, hindering the
ability to determine whether the models could successfully extrapolate grain size classes at unsampled
locations. Similar to LOO CV, many common model validation techniques (e.g., sample partitioning,
k-fold CV) have no spatial component. For this study, non-spatial techniques failed to correctly
estimate the model’s ability to extrapolate. If LOO CV were used in isolation to evaluate the categorical
simplified Folk predictions for example, the percent correctly classified and κ values (85.50%; 0.52)
would suggest the model is highly accurate and reliable. In reality though, it fails to extrapolate beyond
the sphere of spatial autocorrelation influence, with predictions no better than random.

The SR-LOO CV for the coarse substrate model suggested not only that spatial autocorrelation
inflated estimates of accuracy but also that Random Forest was spatially overfitting, hindering
extrapolation. This is an important issue for severely autocorrelated datasets that is not necessarily
solved by other spatial validation approaches that allow for proximal training samples such as S-LOO
CV or spatial blocking. Though SR-LOO CV shows promise for reducing overfitting and providing
non-biased estimates of accuracy, we note that the computational effort may not always be realistic.
One hundred random samples of each spatially-buffered leave-one-out sample set (n = 324) yielded
32,400 sub-samples and corresponding Random Forest models for one SR-LOO CV run. Furthermore,
the “embarrassingly parallel” qualities of Random Forest were leveraged to implement SR-LOO CV
here, which is not characteristic of most other modelling methods. Simpler alternatives could involve
aggregating sample transects to a single point and adjusting the raster resolution, yet this may be less
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attractive if a high resolution is desired. How such methods compare with the SR-LOO CV remains to
be explored.

4.3. Spatial Prediction

It is important to distinguish between interpolating a well-sampled area and extrapolating to
unsampled locations [67]. Though it is becoming standard practice to report predictive accuracy, it is
less common to differentiate between these predictive spatial qualities, which are partly determined
by sample distribution and intensity. Again, if interpolation is the goal, with somewhat uniform and
well-distributed sampling, then standard non-spatial model evaluation methods may be appropriate
(e.g., LOO CV, k-fold CV, partitioning). If samples are clustered, with parts of the study area unsampled,
then it is necessary to evaluate for extrapolation, which may require a spatially explicit approach, as was
the case here. This also may affect the appropriateness of categorical and quantitative approaches – if
extrapolating to a potentially new sedimentary environment is the goal and if there is confidence in the
modelled relationships between sediment and explanatory variables, then a quantitative approach may
be useful for identifying unsampled or rare sediment classes. Here, we found that the flexibility of the
threshold of occurrence using a categorical Random Forest approach resulted in superior extrapolative
performance compared to a quantitative approach for a binary classification scheme. Given a set of
classification requirements (e.g., regional compatibility) and a desire to maximize predictive accuracy
of predetermined classes, it may be desirable to test both approaches where feasible – our results do
not suggest the consistent superiority of one method over the other.

Recently there have been calls for greater transparency in reporting map quality, including
uncertainty and error, to determine whether thematic maps are fit for purpose (e.g., [70,71]).
This becomes especially important when providing maps as tools for management, where end-users
may lack the technical understanding to critically evaluate a map [72]. The spatial component of
distribution modelling is a potential source of data error [71] that is commonly neglected [52], yet which
can be exacerbated due to marine sampling constraints. Here we have demonstrated the necessity
of spatially explicit analysis for comparing the error and predictions between two seabed sediment
mapping approaches and the potential pitfalls of neglecting to do so. Though many approaches
have been tested and compared in the seabed mapping literature, these qualities are often ignored.
The SR-LOO CV approach used here to model the presence of coarse substrates is similar to the variable
scale selection procedure used by Holland et al. [68] but uses “embarrassingly parallel” Random Forests
so that no samples are fully omitted. This is the first application of the approach in this context to our
knowledge. Though the SR-LOO CV method was well-suited to modelling video transect data in this
study, we acknowledge several other useful strategies [67] and tools [73] that are worth considering to
address spatial sampling bias. Geostatistical methods may also be a preferable alternative for handling
spatially dependent data depending on the modelling goals. The focus of this study was on modelling
seabed sediments but the findings are relevant to other similar benthic distribution models including
those of species and biotopes.

5. Conclusions

Neither categorical nor quantitative Random Forests performed consistently better between the
classification schemes tested but the mapped predictions and the qualities of the models differed
substantially, ultimately informing on the suitability of these methods. The ability of the quantitative
approach to predict rare and unsampled classes may be an important quality depending on sample
distribution and mapping goals, yet we found the probabilistic threshold qualities of the categorical
approach with a binary scheme (i.e., “muddy/sandy”) made it more suitable for extrapolation in this
study. Extrapolation was a necessary quality for these models because sample sites were clustered,
with some areas not sampled.

There was evidence that the proximity of transect video observations caused both inflated estimates
of accuracy and overfitting in the Random Forest models of coarse substrate. We conclude therefore
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that it should not be taken for granted that Random Forest will not overfit amidst autocorrelated data
and spatially explicit methods may be necessary to ensure spatial independence, regardless of the
modelling algorithm used. This is especially relevant for seabed mapping given the prevalence of
transect data in this field.

From the results of this study we recommend that seabed map producers be specific about their
predictive goals – especially whether the models are required to extrapolate to new environments and
locations or whether they will “fill in the gaps” between sample sites (i.e., interpolate). This distinction
can determine the appropriateness of modelling approaches and evaluation methods. We found it
necessary to use spatially explicit strategies to evaluate whether the models in this study were able to
extrapolate and that modelling highly autocorrelated data required both model fitting and testing in a
spatially independent context.
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Appendix A

Multibeam Echosounder Data Processing

Bathymetry data were imported to Qimera version 1.7; erroneous values were removed manually
or using conservative spline filters. The data were corrected for tides using the Arctic9 tide model [74].
Data acquired in each survey year and system were processed separately, exported as a 10 m floating
point geoTIFF grid and mosaicked in ESRI ArcGIS Pro v.2.1 to a single raster (Figure 4).

Uncalibrated MBES backscatter data from each survey year and system were processed using the
Fledermaus Geocoder Toolbox (FMGT) and exported separately as floating point geoTIFF grid files.
Focal statistics were used in ESRI ArcGIS Pro to smooth the data over a 5 x 5-cell neighborhood to
reduce noise. The use of multisource backscatter datasets presents several difficulties as relative dB
values partially depend on the acquisition parameters of individual MBES systems (e.g., operating
frequency; [75]). If each survey has been adequately ground-truthed, disparate datasets can be analyzed
separately and their results combined [76]. Here, some of the datasets had few or no ground truth
samples. We therefore adopted a normalization approach by which separate datasets were harmonized
using a “bulk shift” methodology [56,77]. This standardizes each survey using the most extensive as
reference, operating under the assumption that relative backscatter strength is a function of substrate
properties and is relatively stable throughout a given survey. All surveys were thus mosaicked to a
single raster at 10 m resolution and a low pass filter was applied to smooth out remaining data noise
(Figure 5).
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Appendix B

Variable Scale Selection

For the quantitative models, we calculated Spearman’s correlation coefficient for each scale of
each predictor variable with grain size composition (ALRsm and ALRgm) to test for non-parametric
monotonic relationships. We attempted to determine up to two appropriate scales (i.e., “intrinsic
scales”; [78]) for each predictor by identifying local peaks in the plot of correlation versus variable scale.
Because calculating correlation coefficients between a multi-level categorical response (viz., grain size
classes) and quantitative predictors is not as straightforward, we used univariate multinomial logistic
regressions to test the ability of each predictor at each scale to explain the grain size sediment class.
The residual deviance of the univariate models was plotted against variable scale and up to two local
minima were identified in each graph as intrinsic scales. All correlation scores and multinomial logistic
regressions were calculated in R using the cor() and multinom() functions within the “stats” and “nnet”
packages [79,80].

We tested whether selected scales of a given variable were correlated with each other and removed
the weakest variable (based on relationship with the response) if Spearman’s ρ ≥ 0.70 between
predictors [60–62]. We then tested the correlation between all remaining scales of all variables and
removed weaker variables in cases where Spearman’s ρ ≥ 0.70.

Appendix C

Variogram Analysis

Variograms were calculated for measurements of each grain size fraction and the presence of
coarse sediments. The following model fits were obtained from the ArcGIS Geostatistical Wizard.Geosciences 2019, 9, x FOR PEER REVIEW 27 of 35 
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Appendix D

Error Matrices

Because the leave-one-out cross-validations (including spatial leave-one-out) produce a prediction
for each sample point in the dataset, error matrices can be calculated between observed and predicted
sediment classes for each sample. Note a slight difference in observed grain size classes caused
by the complete absence of gravel from some samples. Quantitative samples were transformed to
additive log-ratios, which do not allow zero values. The following tables (A1–A14) correspond to
those discussed and compared in results Section 3.4 (“Grain Size Model Evaluation and Comparison”).
Error matrices were also calculated to estimate the predictive performance of the categorical grain
size and coarse substrate models after optimizing the threshold of occurrence to maximize the sum of
sensitivity + specificity. Tables A13 and A14 correspond to results Section 3.6 (“Combined Map and
Model Tuning”).

Table A1. Categorical Folk LOO CV error matrix.

Observed

(g)mS (g)sM gmS gS M mS sM

Predicted

(g)mS 10 4 0 0 0 2 2
(g)sM 9 43 1 0 1 0 29
gmS 0 0 0 0 0 0 0
gS 0 0 0 2 0 0 0
M 0 0 0 0 0 0 0
mS 1 0 0 0 0 4 2
sM 5 30 2 0 0 3 39
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Table A2. Categorical Folk S-LOO CV error matrix.

Observed

(g)mS (g)sM gmS gS M mS sM

Predicted

(g)mS 0 1 0 2 0 0 2
(g)sM 18 46 0 0 0 7 23
gmS 0 0 0 0 0 0 0
gS 0 0 0 0 0 0 0
M 0 0 0 0 0 0 0
mS 0 1 0 0 0 0 0
sM 7 29 3 0 1 2 46

Table A3. Quantitative Folk LOO CV error matrix.

Observed

(g)mS (g)sM gmS gS mS sM

Predicted

(g)mS 4 3 0 0 0 0
(g)sM 16 56 2 0 4 37
gmS 2 0 0 2 0 0
gS 0 0 0 0 0 0
mS 2 0 0 0 2 0
sM 1 19 1 0 0 18

Table A4. Quantitative Folk S-LOO CV error matrix.

Observed

(g)mS (g)sM gmS gS mS sM

Predicted

(g)mS 0 1 0 2 0 0
(g)sM 21 66 3 0 6 39
gmS 1 0 0 0 0 0
gS 0 0 0 0 0 0
mS 0 0 0 0 0 0
sM 3 11 0 0 0 16

Table A5. Categorical simplified Folk LOO CV error matrix.

Observed

gmS gS M mS sM

Predicted

gmS 0 0 0 0 0
gS 0 2 0 0 0
M 0 0 0 0 0
mS 0 0 0 18 7
sM 3 0 1 16 142

Table A6. Categorical simplified Folk S-LOO CV error matrix.

Observed

gmS gS M mS sM

Predicted

gmS 0 0 0 0 0
gS 0 0 0 0 0
M 0 0 0 0 0
mS 0 2 0 1 2
sM 3 0 1 33 147
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Table A7. Quantitative simplified Folk LOO CV error matrix.

Observed

gmS gS mS sM

Predicted

gmS 0 2 2 0
gS 0 0 0 0
mS 0 0 8 3
sM 3 0 21 130

Table A8. Quantitative simplified Folk S-LOO CV error matrix.

Observed

gmS gS mS sM

Predicted

gmS 0 0 1 0
gS 0 0 0 0
mS 0 2 0 1
sM 3 0 30 132

Table A9. Categorical muddy/sandy LOO CV error matrix.

Predicted

Observed

Muddy Sandy

Muddy 142 19
Sandy 8 20

Table A10. Categorical muddy/sandy S-LOO CV error matrix.

Predicted

Observed

Muddy Sandy

Muddy 145 36
Sandy 5 3

Table A11. Quantitative muddy/sandy LOO CV error matrix.

Predicted

Observed

Muddy Sandy

Muddy 131 24
Sandy 2 12

Table A12. Quantitative muddy/sandy S-LOO CV error matrix.

Predicted

Observed

Muddy Sandy

Muddy 132 33
Sandy 1 3

Table A13. Categorical muddy/sandy S-LOO CV error matrix with threshold of occurrence set to 0.18.

Observed

Predicted
Present Absent

Present 30 47
Absent 9 103
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Table A14. Coarse substrate SR-LOO CV error matrix with threshold of occurrence set to 0.27.

Observed

Predicted
Present Absent

Present 44 57
Absent 15 176

Appendix E

Continuous Quantitative Model Performance

The predictive performance of continuous quantitative model predictions was estimated using:
1. Pearson’s and Spearman’s coefficients to determine the strength of linear and non-linear

correlation between predicted the observed values;
2. mean absolute error (MAE) to determine, on average, the error in predicted percentages of

mud, sand and gravel; and
3. the percent variance explained (%VE), to quantify the accuracy of the model standardized to

the variance of the observed grain size fraction values.
Nearly all continuous quantitative predictions of sediment grain size seemed accurate using

leave-one-out cross-validation (LOO CV) yet were less accurate using spatial (buffered) leave-one-out
cross-validation S-LOO CV (Table A15). The LOO CV %VE suggested that the relative error of these
predictions was less than the variance in the observed values but S-LOO CV %VE values were lower and
negative, indicating a high amount of error relative to the measurements of each size class. Similarly,
the non-relative error between predicted and observed values (i.e., the MAE) was higher in S-LOO CV
predictions than LOO. With the exception of gravel predictions, all Pearson and Spearman correlation
scores were lower in S-LOO predictions than LOO C

Table A15. Accuracies of unclassified quantitative grain size predictions using spatial and
non-spatial cross-validations.

LOO CV S-LOO CV (1500 m)

Mud

%VE 60.96 −6.42
MAE (%) 8.28 13.51
Pearson 0.78 0.13

Spearman 0.68 0.06

Sand

%VE 60.05 −10.99
MAE (%) 8.01 12.91
Pearson 0.78 0.06

Spearman 0.67 0.03

Gravel

%VE 29.66 −2.06
MAE (%) 1.13 1.58
Pearson 0.61 0.13

Spearman 0.40 0.32
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