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Abstract: In this study, soil and aquatic sediments were sampled in the Aetoliko Lagoon and its
catchment area, which is exclusively dominated by olive orchards. For the first time in Greece, soil
as well as sediments samples of one coherent protected aquatic ecosystem were directly compared.
In order to determine the influence that the usage of copper-based fungicides have on the lagoon
sediments and on the soils of the surrounding area, twenty five (25) soil samples from different
olive orchards that are bordering the water body and ten (10) sediment samples from the bottom
of the lagoon were taken. The samples were analyzed for total copper content (total digestion) and
extractable copper (diethylenetriaminepenta acetic acid, DTPA, extraction method). Furthermore,
soil/sedimentological and geochemical analyses such as pH, grain size, total organic carbon, total
sulfur, total nitrogen, and calcium carbonate content were carried out. The results show that the total
copper in soils ranges from 58.37 to 671.33 mg kg−1. In addition the DTPA-extractable copper in soils
has an average value of 45.00 mg kg−1. The average value of total copper in soils (286.24 mg kg−1)
is higher than the threshold value for the Cu concentration (100 mg kg−1) set by the EU countries.
Total copper content in the lagoon sediments is lower than in soils and varies between 43.85 mg
kg−1 and 71.87 mg kg−1. The DTPA-extractable copper in sediments is in low ranges from 0.14 to
0.60 mg kg−1. On average, the total copper value for the lagoon sediments (55.93 mg kg−1) exceeds
the Toxicity Screening Value (25.20 mg kg−1) for Cu in freshwater sediments. From the present study,
it is clear that, although the copper in soils of the surrounding lagoon area exceeds the threshold limit
for ecological risk, the lagoon sediments are influenced in a smaller degree. Our study can be used as
a valuable reference and baseline for future studies on the environmental monitoring of the Aetoliko
lagoon, as well as for studies in similar ecosystems.
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1. Introduction

The artificial entry and accumulation of copper in the environment can possibly influence the
geochemical characteristics of soils and sediments in a negative way because copper works as a pollutant
in high concentrations [1]. The olive tree and therefore olive orchards have been shaping cultural
landscapes in many parts of Greece for thousands of years and play a vital role in the country’s culture.
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Even today it is still of crucial relevance to many families as a source of food and income. Nowadays,
there are more than 530,000 Greek farms that produce olives on an average cultivation area of 1.6 ha [2].
The importance of today’s olive products (table olives and olive oil) for the Greek economy, especially
for export, is still high. Olives accounted for 6.5% of all agricultural products in Greece and for 1.3%
of the total Greek exports in 2012 [3]. The economic factor of olive farming has become even more
important in recent years. In the course of the economic crisis and the following recession, olive and
food exports in general increased. Food exports rose by 22.63% from 2008 to 2014 [3].

The basics of olive cultivation have not been changed very much in all this time, but certain
agricultural advancements that have been discovered over the course of time had eventually made
their way into the Greek olive production. There are three different agronomic management techniques
in olive farming: Low-input traditional plantations, intensified traditional plantations, and intensive
modern plantations [4]. Sparsely planted, old trees that were occasionally planted together with other
fruit trees, growing in rather mountainous areas, are described in the low-input fraction. Their fields
are rarely fertilized, irrigated, or treated with herbicides. Intensified traditional plantations normally
contain younger trees planted in higher densities. The use of herbicides and fungicides is common and
the yields are higher than in low-input traditional plantations [4].

The application of copper based fungicides like copper hydroxide and copper sulphate is common
in modern olive production [5]. Residues of the fungicide accumulate in the soil or are washed off

by rain or are misapplied by spray drift and thus transferred to other sites and enter waterways
where they mainly act as pollutants [1]. Copper based fungicides are used worldwide to protect crop
production from fungal diseases, and as a result, much of this trace element accumulates in the soils
and/or transferred to water bodies and sediments [6,7]. Copper content in uncontaminated soils varies
between 2 and 40 mg kg−1. Contaminated soils can show concentrations of more than 1000 mg kg−1 [8].
The guideline value on the basis of ecological risk is set at 150 mg kg−1 [9,10]. Greece devotes 60% of its
cultivated agricultural land to something more than 127 million olive trees cultivation and contributes
to the 0.6% of the national gross product. In the Western Greece region, the cultivated land with olive
trees is about 82,883.88 ha, and in the prefecture of Aitoloakarnania, about 25,000 ha [11].

The objectives of the present study are to determine the total and bioavailable Cu contents in the
soils around the Aetoliko lagoon and the bottom sediments of the lagoon in order to delineate whether
there is a critical accumulation of this element both in the terrestrial and in the aquatic environment.
By analyzing the data, the present study aims to increase the knowledge about the effects of the use of
copper-based fungicides in agriculture, and furthermore, find out more about the relationship between
the use of copper-based fungicides on olive trees and the soil quality in the treated plantations. The
copper content of aquatic sediment samples of the neighboring Aetoliko lagoon was determined to
examine whether the extensive use of the fungicides can be traced in the bottom sediment of this
special water body and whether the artificially accumulated copper concentration of the soil can cause
problems on the protected aquatic ecosystem.

2. Study Area

The present study focuses on the Aetoliko lagoon in Western Greece (Figure 1a–c). The area
around the lagoon is covered by olive trees, and copper-based products (copper hydroxide 50%) are
usually used to protect the olive orchards against fungi and related diseases such as the peacock spot
Cycloconium (Spilocea oleaginum) and Gloeosporium olivarum with a rate of 2.6 kg m−3 of water,
using 1.5–3 L of spray water per hectare. Usually, spray applications with fungicides are repeated
2–5 times from autumn to spring, after bloom period, pruning, or frost. The Aetoliko Lagoon is
inseparably combined with the ecosystem of the Messolonghi, Klisova, and Aetoliko Lagoons complex.
This delicate ecosystem consists of brackish wetlands, coastal salt marshes, dunes, and riparian forests.
The lagoons are protected by the Ramsar Convention and are nature protection areas in the sense of
the Natura 2000 network of the European Union [12]. The Aetoliko Lagoon is a unique landlocked
lagoon with tectonic origin, hypoxic/anoxic conditions, and suffers from ecological problems [13–15].
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The lagoon has attracted researcher’s interest over the past 70 years [15–19]. The geological formations
of the surrounding lagoon area can be distinguished to the Pliocene to Holocene clastic sediments
and to the rocky basement that consists of Triassic limestone with evaporites and Eocene limestone
(Figure 1c). Furthermore, the geological evolution, depositional environments, and physicochemical
conditions of the lagoon were studied by many researchers [15,20–22].
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Figure 1. (a) General map of Greece and the location of the Aetoliko lagoon; (b) topographic map of the
surrounding area of Aetoliko lagoon and the wetlands of Mesolonghi, Aetoliko, and Klisova lagoons
complex; and (c) simplified geological map of the studied area.

3. Materials and Methods

3.1. Sampling the Olive Orchards Soil and Lagoon Sediments

A total number of 35 samples were collected, 25 top soil samples (coding A1-A25) were taken
from olive orchards around the Aetoliko lagoon and 10 samples (coding T1-T10) from the lagoon’s
bottom sediments (Figure 2). The soil samples were taken using an auger to a depth of 20 cm from
different orchards and to be at least 200 m apart from each other to have a clear distinction. From
each sampling location four different subsamples, at about 1.5 m from the tree trunk were taken, and
well mixed and homogenized according to LUCAS topsoil survey methodology [23]. When choosing
the sampling sites on land, close attention was paid to stay within the small strip of land between
the lagoon and a system of drainage canals that surround the water body in order to assure that the
sample area is relatively hydrologically homogenous. The surface layer (approximately 5 cm) of the
bottom lagoon sediment samples were taken using a van Veen grab operated from a small boat, and
geographically covering the entire lagoon (Figure 2).

3.2. Analytical Procedure

Soil and sediments classification based on grain size analysis, was made using a Malvern
Mastersizer 2000 and fractions of sand/silt/clay were calculated [24]. The USDA soil classification
ternary diagram was used to define the texture of the soils and the sediments classification [25].
Total organic carbon (TOC) was determined using the Wakley-Black titration method, as validated
and described elsewhere [26,27]. Total carbon (TC), total nitrogen (TN), and total sulfur (TS) were
analyzed by a CHNS-O EA 1108 Elemental Analyzer and Calcium Carbonate content (CaCO3)
was measured using a FOG II Digital soil calcimeter [28–31] based on modified methods reported
by other researchers [32,33]. The copper concentrations were calculated after: (a) Total digestion
method—where total copper was done with the hydrofluoric acid digestion bomb technique [34] and
(b) diethylenetriaminepenta acetic acid—DTPA extraction method for bioavailable copper [35]:
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For the total digestion approximately 1 ± 0.1 g of dried and powdered sample was digested with
2.35 mL of HNO3 65%, 7 mL of HCl 37% and 2 mL HF 40% in a microwave digestion system (Berghof
speedwave MWS-3+). The temperature program was as follows: 5 min for temperature 145 ◦C, 10 min
for temperature 170 ◦C and 15 min for temperature 170 ◦C. The resulting solutions were cooled for
30 min and diluted to 10 mL with distilled water.Geosciences 2019, 9, x FOR PEER REVIEW 4 of 18 
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Figure 2. Overview of the spatial distribution of the samples points. Green dots stand for soil sample
points in the orchards and blue points are bottom sediment lagoon samples.

The used DTPA extractant solution consisted of 0.005 M DTPA, 0.01 M calcium chloride (CaCl2) and
0.1 M TEA [triethanolamine, (HOCH2CH2)3N)]. For this purpose 1.97 g of DTPA, 1.47 g CaCl2.2H2O
and 14.92 g TEA were dissolved separately in distilled water and then combined. The pH was adjusted
to 7.3 using concentrated HCl and the volume made up to 1 L with distilled water. The DTPA extraction
of the metals was carried out by shaking 10 g of each soil/sediment sample with 40 mL of DTPA
extracting solution for 2 h at 200 rpm on a shaker table. After that, the slurry was centrifuged for 10 min
and filtered on Whatman No. 2 filter paper and filled into test tubes for further analysis. All reagents
used for both total digestion and DTPA extraction methods were of analytical grade.

The extracted solutions were analyzed by ICP-OES (Thermo Scientific iCAP 6000). The operating
conditions were: Nebulizer Gas flow rates: 0.5 l/min; Auxiliary Gas Flow: 0.5 L/min; Plasma Gas
Flow: 15 L/min; Pump rate: 45 rpm; ICP RF Power: 1100 W. Aliquots of an ICP multi-element
standard solution (100 mg/L Merck) containing the analyzed elements, was used in the preparation of
calibration solutions. Working standard solutions were prepared by dilution of the stock standard
solutions to the desired concentration in 1% HNO3. The ranges of the calibration curves (6 points)
were selected to match the expected concentrations for all the elements of the sample studied by
ICP-OES. The correlation coefficient r obtained for all cases was 0.9999. The detection limits (LOD)
were calculated as the concentrations of an element that gave the standard deviation of a series of ten
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consecutive measurements of blank solutions. Soil samples from BIPEA’s proficiency testing scheme
A15 were used to ascertain the accuracy of the measurements, and it was found better than ±5%.

For the pH determination of the soil samples, we applied the soil suspension method using 0.01 M
calcium chloride (CaCl2) [36]. A specified amount of the dried samples was sieved (<2 mm) and
afterwards mixed the CaCl2 solution. The suspension was then shaken for five minutes and left to
settle for at least two hours. In a final step, the pH-value was determined with a HACH-LANGE
HQ40D pH-meter.

4. Results

4.1. Soil and Lagoon Sediment Characteristics

The grain size analysis of all 25 soil samples reveals fluctuations between the sampling stations.
The soil of the olive tree orchards consists of very poorly sorted reddish brown to weakly red loam
to sandy loam (15 samples silt loam, eight samples sandy loam, and two samples loam) (Table 1).
The sand class portion is relatively low, ranging between 4.91% to 20.58%, with a mean value of 10.30%.
Grain sizes mean values range from 2.64 to 6.59 Φ and sorting values ranges between 2.0 and 3.39 Φ
characterizing the material as very poorly sorted (Table 1). Skewness indicates a coarse skewed to
symmetrical distribution whereas the kurtosis shows a platykurtic to mesokurtic distribution. The TOC
values ranges from 0.34 to 4.04% with a mean value of 2.58%, TN and TC mean values are between
0.54 and 4.59% respectively (Table 1). Calcium carbonate concentrations in the orchard samples are
relatively low, were in most cases below 3% with a maximum value of 41.50%, while in 13 out of
25 samples, no CaCO3 was detected. The pH-values in the orchard soils range from 4.85 (A 21) to 7.59
(A 16). There is no clear pattern observable in a spatial distribution. However, the samples A23, A24,
and A25 show relatively low pH values compared to the other samples and are moderately acid. The
highest numbers are found in the samples A15 to A 20. Sulfur was not found in soil samples. These
soils are classified as slightly or moderately alkaline [37].

The main lithological type of the lagoon bottom sediments is mud and sandy silt, characterized
by relatively uniform distributions. The sand class portion is relatively low, ranging between 5.96
to 15.57% (Table 2). The mean grain size of Aetoliko lagoon sediments ranges from 3.90 Φ to 6.14 Φ
with an average of 5.44 Φ. Total organic carbon content was also higher in the aquatic sediments with
a mean value just over 2.5%. The average of the total nitrogen content in the sediment samples was
significantly higher compared to the samples from the orchards (mean 0.54%). Sulfur was only found
in the bottom sediment samples at values from 0.94% (T8) to 2.08% (T4).
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Table 1. Sedimentological and geochemical analyses of the Aetoliko olive orchard soil sample.

Sampling
Stations

Coordinates Grain Size Analysis Statistical Parameters (Φ)
TC (%) TOC (%) TN (%) CaCO3 (%) pH Cu-DTPA

(mg/Kg)
Cu-Total
(mg/Kg)Longitude Latitude Sand Silt Clay Mean Sorting Skewness Kurtosis

A1 38◦27.085 21◦21.809 12.04 77.68 10.29 5.90 2.00 0.18 1.02 5.24 2.83 0.74 2.40 7.25 24.60 422.50
A2 38◦27.868 21◦21.362 32.57 57.99 9.44 5.24 2.49 0.10 0.83 5.01 3.09 0.63 0.00 5.48 22.45 463.44
A3 38◦27.982 21◦21.248 31.59 58.87 9.53 5.27 2.50 0.06 0.86 3.60 2.80 0.55 0.00 6.35 101.50 220.38
A4 38◦28.059 21◦21.059 25.89 64.06 10.04 5.49 2.48 −0.01 0.92 3.84 2.87 0.49 0.00 5.94 72.05 197.04
A5 38◦28.244 21◦20.845 22.61 66.62 10.77 5.73 2.34 0.02 0.87 3.84 2.96 0.53 1.20 6.54 49.86 205.63
A6 38◦28.405 21◦20.770 13.53 73.81 12.66 6.14 2.26 0.04 1.06 1.61 0.34 0.25 7.10 7.38 6.52 58.37
A7 38◦28.774 21◦20.787 22.98 64.36 12.66 5.72 2.73 −0.08 1.03 3.89 2.98 0.54 0.00 6.67 73.36 275.50
A8 38◦28.905 21◦20.780 19.18 65.25 15.57 6.07 2.76 −0.10 1.08 5.10 3.30 0.75 0.00 6.22 171.20 567.04
A9 38◦28.997 21◦20.616 35.11 55.62 9.28 5.02 2.66 0.07 0.90 3.01 2.27 0.48 0.00 6.36 65.83 242.35

A10 38◦29.177 21◦20.276 54.18 39.85 5.96 3.90 2.69 0.24 1.01 2.88 2.13 0.41 0.00 6.26 46.52 165.31
A11 38◦29.365 21◦20.135 54.38 37.12 8.50 3.92 3.10 0.27 0.84 4.40 2.83 0.53 0.50 6.73 72.22 267.60
A12 38◦29.468 21◦19.926 33.46 57.53 9.01 4.95 2.82 −0.04 0.95 6.97 4.04 0.87 1.30 6.88 107.60 514.46
A13 38◦29.713 21◦19.607 58.25 34.63 7.12 3.50 3.10 0.29 0.84 6.50 3.59 0.72 2.70 7.07 47.19 228.39
A14 38◦30.037 21◦18.714 28.83 58.03 13.14 5.42 2.91 −0.03 0.95 2.16 1.59 0.39 0.00 6.38 13.18 95.65
A15 38◦29.884 21◦18.598 51.15 40.20 8.65 3.89 3.24 0.16 0.79 6.09 3.12 0.71 1.90 7.31 48.41 339.78
A16 38◦29.633 21◦18.219 52.35 40.34 7.31 3.81 2.98 0.19 0.86 3.19 0.66 0.36 11.60 7.59 9.19 77.67
A17 38◦29.435 21◦17.983 23.23 62.98 13.78 5.76 2.86 −0.04 1.11 8.91 2.50 0.52 41.50 7.41 13.32 138.37
A18 38◦29.155 21◦17.939 33.46 56.40 10.13 5.06 2.95 −0.06 0.96 7.41 2.24 0.51 31.50 7.53 15.80 174.28
A19 38◦28.816 21◦18.004 13.31 68.58 18.11 6.59 2.75 −0.14 1.38 5.71 3.39 0.60 8.20 7.43 60.70 671.33
A20 38◦28.710 21◦18.173 51.27 38.64 10.09 3.93 3.39 0.20 0.70 8.63 3.22 0.64 0.00 7.38 6.68 131.24
A21 38◦28.083 21◦18.332 12.64 66.78 20.58 6.44 2.45 0.11 0.81 3.94 2.58 0.52 0.00 4.85 10.81 198.20
A22 38◦27.327 21◦20.035 63.72 28.76 7.52 3.37 3.01 0.50 0.86 4.00 3.40 0.52 2.30 6.80 18.78 349.40
A23 38◦27.303 21◦19.660 59.02 34.70 6.28 3.56 2.60 0.32 1.06 3.46 2.32 0.46 0.00 5.70 44.54 647.61
A24 38◦27.448 21◦19.699 73.65 21.44 4.91 2.64 2.54 0.50 1.20 2.63 1.90 0.39 0.00 5.85 17.35 353.73
A25 38◦27.414 21◦19.426 63.57 30.24 6.19 3.25 2.82 0.36 1.00 2.62 1.56 0.38 0.00 5.59 5.25 150.68

Min 12.04 21.44 4.91 2.64 2.00 −0.14 0.70 1.61 0.34 0.25 0.00 4.85 5.25 58.37
Max 73.65 77.68 20.58 6.59 3.39 0.50 1.38 8.91 4.04 0.87 41.50 7.59 171.20 671.33
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Table 2. Sedimentological and geochemical analyses of the Aetoliko lagoon sediment samples.

Sampling
Stations

Coordinates Grain Size Analysis (%) Statistical Parameters (Φ)
TC (%) TOC (%) TN (%) TS (%) CaCO3 (%)

Cu-DTPA
(mg/Kg)

Cu-Total
(mg/Kg)Longitude Latitude Sand Silt Clay Mean Sorting Skewness Kurtosis

T1 38.451329◦ 21.363612◦ 10.29 77.68 12.04 5.90 2.00 0.18 1.02 5.24 4.51 0.77 1.73 2.40 0.23 45.96
T2 38.464482◦ 21.356034◦ 9.44 57.99 32.57 5.24 2.49 0.10 0.83 5.01 4.87 0.90 1.93 0.00 0.28 54.20
T3 38.466344◦ 21.354113◦ 9.53 58.87 31.59 5.27 2.50 0.06 0.86 3.60 4.72 0.80 1.81 0.00 0.21 51.80
T4 38.467748◦ 21.350825◦ 10.04 64.06 25.89 5.49 2.48 −0.01 0.92 3.84 4.05 0.60 2.08 0.00 0.49 53.35
T5 38.470667◦ 21.347412◦ 10.77 66.62 22.61 5.73 2.34 0.02 0.87 3.84 3.90 0.66 1.58 1.20 0.43 61.61
T6 38.473452◦ 21.346091◦ 12.66 73.81 13.53 6.14 2.26 0.04 1.06 1.61 3.71 0.70 1.65 7.10 0.14 43.85
T7 38.479552◦ 21.346429◦ 12.66 64.36 22.98 5.72 2.73 −0.08 1.03 3.89 2.42 0.55 1.16 0.00 0.60 71.87
T8 38.481763◦ 21.346259◦ 15.57 65.25 19.18 6.07 2.76 −0.10 1.08 5.10 2.78 0.62 0.94 0.00 0.31 49.17
T9 38.483272◦ 21.343522◦ 9.28 55.62 35.11 5.02 2.66 0.07 0.90 3.01 4.18 0.75 1.13 0.00 0.35 64.30

T10 38.486290◦ 21.337759◦ 5.96 39.85 54.18 3.90 2.69 0.24 1.01 2.88 3.98 0.78 1.15 0.00 0.36 63.15

Min 5.96 39.85 12.04 3.90 2.00 −0.10 0.83 1.61 2.42 0.55 0.94 0.00 0.14 43.85
Max 15.57 77.68 54.18 6.14 2.76 0.24 1.08 5.24 4.87 0.90 2.08 7.10 0.60 71.87

Average 10.62 62.41 26.97 5.45 2.49 0.05 0.96 3.80 3.91 0.71 1.52 1.07 0.34 55.93
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4.2. Total and Bioavailable Copper Concentration

The lowest values in total copper content in the orchard samples were found in samples A6 and A16.
The mean values of total copper content are 286.24 mg kg−1 and 45.00 mg kg−1 for DTPA-extractable
copper in the orchard samples. The smallest amounts of total copper in the lagoonal sediment samples
were measured in T1 and T6. In addition, samples T1, T3, and T6 show low values of Cu DTPA in
the lagoon sediments. The concentrations of total copper found in the orchard samples are in general
much higher than those for the samples from the bottom of the lagoon (Figure 3). The comparison
between the total copper content of the orchard soil samples and the lagoon samples show that most
soil samples have significantly higher values. The only exceptions are samples A6, A16, and to a lesser
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Figure 3. Total copper content of all samples.

The bioavailable copper content in the lagoon is generally very low. Sample points T1 and T6
show the lowest content of bioavailable copper. The bottom sediment samples taken at T2 and T3 also
show a relatively low concentration of bioavailable copper. Figure 4 shows a map of the distribution
of the bioavailable copper concentration at the area of the Aetoliko lagoon as a fraction of the total
copper content. The biggest shares of bioavailable copper of the total copper content were found in the
orchard soil samples taken at the Eastern shore of the lagoon. The fractions of the bioavailable copper
of the total copper are in the range of 3.48% (A25) and 46.06% (A3) for the orchard samples.
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4.3. Statistical Analysis of Soils and Sediments Data

Correlation matrices (Pearson) of all examined chemical parameters, copper content and grain size
of the 25 soil and the 10 sediment samples were calculated using the OriginPro 9.0 scientific graphing
and data analysis software (Tables A1 and A2, Appendix A). The strongest positive correlation (r =

0.87) in the soil sample results is found between the TN and the TOC content. Both total and DTPA Cu
show a positive correlation with TOC and TN (r = 0.56 for Cu total and TOC, r = 0.55 for total Cu and
TN, r = 0.51 for Cu DTPA and TOC, r = 0.52 for Cu DTPA and TN).

A positive but relatively weaker correlation can be observed at the values for the total copper
content and the bioavailable copper content (r = 0.49). To examine whether the grain size might play
a role in the accumulation of any of the chemical parameters or affect the copper content in the samples
the corresponding numbers were also added to the statistical analysis. The overall weak correlations
with huge spans of the 95% confidence intervals show no potential relation of grain size and any of the
studied parameters. These findings of no statistical correlation between soil grain size and copper
concentration confirm results of other researchers [38]. They found that copper movement in soils is
limited and independent of the type of soil due to copper’s strong affiliation with soil colloids [38].
Organic carbon and total copper content show a positive correlation (r = 0.56). This confirms that
organic matter is one of the materials that are responsible for retaining copper in the soil [39].

The correlation of the Cu values from the bottom sediment samples show that there is a stronger
positive correlation (r = 0.79) between the total Cu and the DTPA Cu values. This reveals that the
majority of the Cu content in sediments is related to the copper used for the olive trees treatment in the
studied area. The strong correlation between TN and TOC is also found in the sediment samples and
is consistent with the results of other researchers [15]. There is a negative correlation of Cu DTPA, TOC
and TN (r = −0.53 and r = −0.64 respectively). Weak, but also negative correlations are found between
total Cu, TOC, and TN (r = −0.35 and r = −0.26, respectively).
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5. Discussion

In the study area, farmers keep their olive trees healthy and manage pathogens with strategically
timed disease control programs by the application of copper sprays to protect the foliage and fruit
from infection. Successful disease control depends on even distribution and good retention of the
copper over all of the plant surfaces before the disease develops. Copper is not a systemic chemical
and cannot be carried internally through the plant to kill the pathogen. Thus, farmers apply copper
sprays to protect the trees 2–4 times per year with a high-pressure sprayer in good working order
mixing the correct concentration, and getting good coverage.

In an extensive study, the mean values for total copper content and DTPA-extractable copper
content for agricultural soils calculated from Western Greece and other Greek regions like Fthiotida and
several regions on the Peloponnesus peninsula, Samos or Voiotia [40]. The mean values for Western
Greece are 105 mg kg−1 (total copper) and 30.2 mg kg−1 (DTPA-extractable copper). The respective
numbers for the whole country are 138.28 mg kg−1 and 30.65 mg kg−1 [40].

Countries in Europe have defined risk levels with different concentrations of Cu, which have
been widely accepted and applied internationally for agricultural soils [9,10,41,42]. Based on these
guidelines, the threshold value for Cu in soils is 100 mg kg−1, the lower value defined on the basis of
ecological risks is 150 mg kg−1 and the higher value is 200 mg kg−1. In addition, the Toxicity Screening
Value (TSV) for copper in freshwater sediments is 25.2 mg kg−1, while the TSV for Cu in marine
estuarine sediments is 28.7 mg kg−1 [43].

The present study shows that the copper content in the orchard soils reached a critical point.
The highest concentration of total copper in the analyzed samples was 671.33 mg kg−1 and only five
samples do not exceed the 150 mg kg−1 limit for ecological risk [9,10]. All samples show a higher
copper concentration than untreated soils. The lowest total copper content was measured in samples
A6 and A16. These samples were taken in an orchard with very young trees compared to the other
orchards sampled in this study. The age of the plantation was estimated with 5 to 15 years. That
means the soil could not come in contact with the fungicide for a long period and younger trees have
a smaller crown and therefore less fungicide has to be used with each application of the fungicide.
Apart from the soil sample points A6 and A16, no other copper content values can be explained as
easily. The variations can be a result of different farmers using different products of fungicide with
lower or higher copper concentration or simply apply less fungicide. Two other factors play a role in
the copper concentration in the soil. One is the respective age of the olive trees. After a certain point it
is hard to tell how old a tree is if it is not a very young tree. Older plantations have been treated more
often with fungicides during the years. The other factor is the time when the treatment of the trees
started. It is possible that treatment in one place started only 30 years ago when the plantation already
existed for 100 years and other farmers started treatment some 50 years ago with trees of 60 years
of age.

The mean values of 286.24 mg kg−1 total copper content and 45.00 mg kg−1 DTPA-extractable
copper content in our study are higher than the 105 mg kg−1 and 30.2 mg kg−1, respectively, reported
for Western Greece soil samples [40]. These numbers suggest that the influence of copper-based
fungicide use in soils is higher in the Aetoliko region than in the rest of Western Greece. The majority
of the samples show total Cu concentration in soils is above the threshold, the lower and the higher
ecological risk value [9,10]. In contrast, the concentration for extractable copper for soils is well below
these values (Figure 5a).
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Figure 5. (a) Total and DTPA Cu values for the Aetoliko olive orchard soil samples in relation with
the threshold, the higher ecological risk and the mean value reported for Western Greece and (b) total
and DTPA Cu values for the Aetoliko lagoon sediment samples in relation to the Sediment Quality
Guideline values of US EPA.

In the lagoon sediments, the samples from the locations T1 and T6 show the lowest copper content.
These two points are in the center of the lagoon at its deepest point. However, the lowest total Cu
values for the lagoon sediments (43.85 mg kg−1) exceeds the TSV for copper in freshwater sediments
(25.2 mg kg−1) [43]. Taking into consideration the Sediment Quality Guideline of US EPA [44], the
majority of the lagoon sediments are characterized, moderated to heavily polluted because total Cu
concentrations exceeds the limit of 50 mg kg−1 [45], however the DTPA Cu values are well below the
unpolluted to moderated polluted boundary (Figure 5b).
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This means that due to copper’s characteristic to accumulate in soils there is a potential that
a substantial amount of copper contaminated material makes its way into the lagoon with normal
surface runoff, accelerated through heavy rainfall events, or as windblown dust during dry seasons.

The pH-value of the soil plays an important role for the availability of copper, especially when it
is under the critical value of pH 5 [46]. With a pH value of 4.85, only sample A21 was in that critical
range. This is a factor that should be monitored closely as soil pH-levels play an important role of
copper accumulation on plants.

The major processes regulating the provenance of copper in soils and sediments in the studied
area are: (a) Accumulation of copper ions in soils during the application of copper based fungicides,
(b) consumption of copper ions by plants and organisms, (c) leaching of copper ions from plants and
soils, (d) input of copper ions in the lagoon water body, and (e) accumulation of copper substances in
the bottom sediments (Figure 6).

Geosciences 2019, 9, x FOR PEER REVIEW 5 of 18 

 

soils, (d) input of copper ions in the lagoon water body, and (e) accumulation of copper substances 

in the bottom sediments (Figure 6). 

 

Figure 6. Schematic representation of the major geochemical processes of copper ions in the studied area. 

In soils, copper is subject to sorption onto colloid compounds, interaction with humic substances 

and organic matter, precipitation, adsorption on clays and carbonate minerals etc. In our study, the 

positive correlation of both total Cu and extractable Cu with TOC and TN in soils shows this 

association of copper ions with the organic fraction of the samples analyzed. This is further supported 

by the negative association of total Cu and DTPA Cu in the samples with the carbonate phases and 

the very weak positive loadings with the clay fraction of the soils. The adsorption of Cu2+ ions onto 

organic matter can be described by the following equation: 

Cu2+ + OM = Cu2+ ≡ OM (1) 

However, another portion of copper ions can be associated with other soil substances like FeOx, 

MnOx, and AlOx and/or can be leached from soils by the rainfall [47,48]. This association is affected 

by the pH of the soils, because H+ and OH‐ influence the surface potential and surface charge of oxides 

[49]. The above substances enter the lagoon mainly by runoff and the Cu2+ ions are participating in 

bio‐geochemical processes within the water column and the sediments. 

The correlation analysis of the lagoon sediment samples reveals that there is an opposite 

geochemical behavior of total Cu and extractable Cu than in the soils. In the lagoon sediments, both 

total Cu and DTPA Cu show a negative correlation with TOC and TN. Additionally, total Cu shows 

positive correlation with the clay fraction while DTPA Cu shows only a weak positive association 

with clays. 

On average, total Cu in soils is 286.24 mg kg−1, which is about 5‐times higher than the average of 

55.93 mg kg−1 in the lagoon sediments. This indicates that the majority of the copper in the study area 

has not been accumulating in the lagoon bottom sediment so far. This conclusion is consistent with 

the anoxic conditions below 10–11 m in the lagoon environment and the increase of dissolved copper 

in the water column of the lagoon [15,16]. Anoxic conditions do not facilitate the precipitation of 

Figure 6. Schematic representation of the major geochemical processes of copper ions in the studied area.

In soils, copper is subject to sorption onto colloid compounds, interaction with humic substances
and organic matter, precipitation, adsorption on clays and carbonate minerals etc. In our study, the
positive correlation of both total Cu and extractable Cu with TOC and TN in soils shows this association
of copper ions with the organic fraction of the samples analyzed. This is further supported by the
negative association of total Cu and DTPA Cu in the samples with the carbonate phases and the very
weak positive loadings with the clay fraction of the soils. The adsorption of Cu2+ ions onto organic
matter can be described by the following equation:

Cu2+ + OM = Cu2+
≡ OM (1)

However, another portion of copper ions can be associated with other soil substances like FeOx,
MnOx, and AlOx and/or can be leached from soils by the rainfall [47,48]. This association is affected
by the pH of the soils, because H+ and OH− influence the surface potential and surface charge of



Geosciences 2019, 9, 267 13 of 17

oxides [49]. The above substances enter the lagoon mainly by runoff and the Cu2+ ions are participating
in bio-geochemical processes within the water column and the sediments.

The correlation analysis of the lagoon sediment samples reveals that there is an opposite
geochemical behavior of total Cu and extractable Cu than in the soils. In the lagoon sediments,
both total Cu and DTPA Cu show a negative correlation with TOC and TN. Additionally, total Cu
shows positive correlation with the clay fraction while DTPA Cu shows only a weak positive association
with clays.

On average, total Cu in soils is 286.24 mg kg−1, which is about 5-times higher than the average
of 55.93 mg kg−1 in the lagoon sediments. This indicates that the majority of the copper in the study
area has not been accumulating in the lagoon bottom sediment so far. This conclusion is consistent
with the anoxic conditions below 10–11 m in the lagoon environment and the increase of dissolved
copper in the water column of the lagoon [15,16]. Anoxic conditions do not facilitate the precipitation
of copper solid phases and thus cupric ions remain in solution. Additionally, the pH profiles of the
uppermost 10 m of the lagoon water body can explain the selective adsorption of Cu2+ ions onto the
clays surface [15]. Under alkaline conditions, the OH− ions influence the surface charge and potential
of clay minerals resulting in a negative surface charge, thus facilitating Cu2+ adsorption. A general
equation for the adsorption of Cu2+ ions onto the clay minerals [Clay ≡ (Al, Si)OOH] surface can be
introduced. This process is well documented by the studies of many researchers [49–54]:

Clay ≡ (Al, Si)OOH + OH− + Cu2+ = Clay ≡ (Al, Si)OOCu+ (surface) + H2O (2)

This equation is consistent with the positive association of total Cu with clays in the sediments
analyzed, however precipitation of copper sulphide solid phases cannot be excluded [16].

The results of the grain size analysis show (with the exception of STA1) that the grain sizes of the
bottom sediment of the Aetoliko lagoon are distributed relatively homogeneously [15]. This pattern
can be found in all parameters for the samples taken from the lagoon. Both total and bioavailable
copper as well as total nitrogen, total carbon, and total sulfur content do not differ much between the
different sediment samples.

6. Conclusions

The total amount of copper that can be found in the soils of the olive orchards surrounding the
Aetoliko lagoon is high and exceeds in most cases the critical limit as set by the European Union. This
inherits the requirements for unwanted consequences for plant, animal and human life. The high
values of copper in the soil are due to the application of copper-based fungicides. These fungicides
also influence soil quality. The total Cu values in the Aetoliko lagoon sediments are lower than the
total copper values in soils. However, the average value of total Cu in sediments is higher than the
Toxicity Screening Values for copper in freshwater and marine or estuarine sediments. The geochemical
behavior of Cu in soils is related with the organic fraction of the orchard samples. However, total
copper in the lagoon bottom sediments is associated with the clay fraction of the studied samples.

A better picture of the whole impact of the added copper on this particular lagoon environment
can, lastly, only be evaluated if further studies can be carried out that take additional factors into
account. These studies can be focused on e.g., water quality with special regard to the copper content.
In addition to that the collaboration and exact data of the local farmers would be of great importance.
Otherwise there is no exact information about the used amount of fungicide on the respective orchards
and the time span of the usage of the products in question. Further research on that matter and
especially on alternatives to copper-based fungicides is highly recommended.
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Appendix A

Table A1. Correlation matrix (Pearson) of the Aetoliko olive orchard soils data.

Sand Silt Clay TC TOC TN CaCO3 pH Cu-DTPA Cu-Total

Sand 1 −0.99045 * −0.81793 * −0.1005 −0.0717 −0.17978 −0.18977 −0.09099 −0.22792 −0.05966
Silt 1 0.73081 * 0.07875 0.05386 0.1795 0.18238 0.11357 0.23607 0.04824

Clay 1 0.16897 0.13022 0.14105 0.17852 −0.02343 0.14335 0.09406
TC 1 0.59605 * 0.67265 * 0.5263 * 0.47702 * 0.06207 0.16341

TOC 1 0.86597 * −0.17336 −0.0062 0.51283 * 0.55847 *
TN 1 −0.10629 0.16641 0.52482 * 0.54797 *

CaCO3 1 0.50533 * −0.28592 −0.23362
pH 1 −0.0839 −0.14546

Cu-DTPA 1 0.48889 *
Cu-Total 1

* Correlation is significant at the 0.05 level.

Table A2. Correlation matrix (Pearson) of the Aetoliko lagoon sediments data.

Sand Silt Clay TC TOC TN TS CaCO3 Cu-DTPA Cu-Total

Sand 1 0.65887 * −0.76889 * 0.22134 −0.66149 * −0.59118 −0.25112 0.2644 0.02156 −0.28028
Silt 1 −0.98758 * 0.21212 −0.12936 −0.3155 0.31642 0.57585 −0.20466 −0.5398

Clay 1 −0.22653 0.24812 0.39165 −0.21649 −0.54468 0.16945 0.51735
TC 1 0.05311 0.07932 0.08571 −0.52268 0.14493 −0.1055

TOC 1 0.83865 * 0.67199 * −8.36 × 10−4 −0.5327 −0.35097
TN 1 0.31596 −0.00878 −0.64473 * −0.26396
TS 1 0.19281 −0.22402 −0.4549

CaCO3 1 −0.55568 −0.56165
Cu-DTPA 1 0.79088 *
Cu-Total 1

* Correlation is significant at the 0.05 level.
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