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Abstract: Digital elevation model (DEM) has been frequently used for the reduction and management
of flood risk. Various classification methods have been developed to extract DEM from point clouds.
However, the accuracy and computational efficiency need to be improved. The objectives of this
study were as follows: (1) to determine the suitability of a new method to produce DEM from
unmanned aerial vehicle (UAV) and light detection and ranging (LiDAR) data, using a raw point
cloud classification and ground point filtering based on deep learning and neural networks (NN); (2)
to test the convenience of rebalancing datasets for point cloud classification; (3) to evaluate the effect
of the land cover class on the algorithm performance and the elevation accuracy; and (4) to assess the
usability of the LiDAR and UAV structure from motion (SfM) DEM in flood risk mapping. In this paper,
a new method of raw point cloud classification and ground point filtering based on deep learning
using NN is proposed and tested on LiDAR and UAV data. The NN was trained on approximately
6 million points from which local and global geometric features and intensity data were extracted.
Pixel-by-pixel accuracy assessment and visual inspection confirmed that filtering point clouds based
on deep learning using NN is an appropriate technique for ground classification and producing DEM,
as for the test and validation areas, both ground and non-ground classes achieved high recall (>0.70)
and high precision values (>0.85), which showed that the two classes were well handled by the model.
The type of method used for balancing the original dataset did not have a significant influence in
the algorithm accuracy, and it was suggested not to use any of them unless the distribution of the
generated and real data set will remain the same. Furthermore, the comparisons between true data
and LiDAR and a UAV structure from motion (UAV SfM) point clouds were analyzed, as well as the
derived DEM. The root mean square error (RMSE) and the mean average error (MAE) of the DEM
were 0.25 m and 0.05 m, respectively, for LiDAR data, and 0.59 m and –0.28 m, respectively, for UAV
data. For all land cover classes, the UAV DEM overestimated the elevation, whereas the LIDAR DEM
underestimated it. The accuracy was not significantly different in the LiDAR DEM for the different
vegetation classes, while for the UAV DEM, the RMSE increased with the height of the vegetation class.
The comparison of the inundation areas derived from true LiDAR and UAV data for different water
levels showed that in all cases, the largest differences were obtained for the lowest water level tested,
while they performed best for very high water levels. Overall, the approach presented in this work
produced DEM from LiDAR and UAV data with the required accuracy for flood mapping according
to European Flood Directive standards. Although LiDAR is the recommended technology for point
cloud acquisition, a suitable alternative is also UAV SfM in hilly areas.

Keywords: DEM; NN; deep learning; classification; LIDAR; UAV; SfM; point cloud

Geosciences 2019, 9, 323; doi:10.3390/geosciences9070323 www.mdpi.com/journal/geosciences

http://www.mdpi.com/journal/geosciences
http://www.mdpi.com
https://orcid.org/0000-0003-1698-0800
https://orcid.org/0000-0002-1530-3309
http://dx.doi.org/10.3390/geosciences9070323
http://www.mdpi.com/journal/geosciences
https://www.mdpi.com/2076-3263/9/7/323?type=check_update&version=3


Geosciences 2019, 9, 323 2 of 21

1. Introduction

Flooding is the most catastrophic natural phenomena causing extensive damage on human life,
the environment, and infrastructure. Climate change and urbanization have increased the frequency of
floods. Since 1995, floods have accounted for 43% of all natural disasters, affecting 2.3 billion people [1].
Although it cannot be prevented, through the right measures, it is possible to reduce and manage
risks. Flood risk means the combination of the probability of a flood event and of the potential adverse
consequences associated with a flood event [2]. The EU Flood Directive [2] requires Member States
to assess flood risk, create flood risk maps, and establish flood risk management plans focused on
prevention, protection, and preparedness.

1.1. Data Sources to Obtain Digital Elevation Models (DEMs) for Flood Modelling

Flood modeling techniques are mostly based on the digital elevation model (DEM), and thus the
reliability and accuracy of flood simulations results such as inundation, extent, flow velocity, flow
depth, flow patterns, and so on, are highly dependent on the accuracy and resolution of the DEM
data [3,4]. According to the Handbook for flood modeling in Europe [5], the minimum requirements
are 10 m × 10 m horizontal and minimum 0.5 m vertical resolution, specifying that plans 1:10,000 can
be used for DEM generation (accuracy of 1 m). In Serbia, the accuracy requirements were defined
according to the terrain type. Two main categories were defined: dominant flat terrain and hilly areas.
In addition to terrain type, specifications, cost, material, time, and limits of technology need to be
considered. According to the practice and experience, the vertical accuracy is usually 10 cm [6] for flat
terrain and 50 cm for hilly areas [7].

Although there are several publicly available digital elevation models (DEM), such as Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM) with 30 m, they do not meet
the accuracy requirements for flood risk assessment in low-lying areas; therefore, more accurate data
sets need to be used [8].

To overcome the insufficient accuracy of some of the existing DEMs, new platforms and sensors
have been used in this field to gather data to produce suitable DEMs. Light detection and ranging
(LiDAR) has become a widely used method because it can rapidly collect three-dimensional information
over large areas with high horizontal resolution and high vertical accuracy. LiDAR has become one
of the most used data sources in flood modeling [9,10], however, there are some limitations, such as
high instrument and survey costs, especially for small study areas [11]; large data size; cumbersome
classification of data; long computational time; and limited availability.

The rapid development of unmanned aerial vehicles (UAVs) provided a low-cost platform for
different sensors such as visible and infrared sensors, spectrum analyzers, and LiDAR reflectors that
can capture a variety of data. The advantage of UAVs, in comparison with traditional data acquisition
approaches, is the ability to quickly produce high quality and high frequency data with lower cost.
In addition, UAVs bring a substantial improvement in the flexibility of the data acquisition and the
design of fully controlled campaigns.

Furthermore, the development of the structure from motion (SfM) algorithm, complementing
multi-view stereo (MVS) photogrammetry, has provided a cost-effective alternative method of rapidly
acquiring high resolution 3D topographic data and very high resolution orthophoto mosaics from a set
of UAV based conventional digital photographs. [12,13].

Regarding flood risk modeling and mapping, derived UAVs are recognized as reliable data sources
to produce DEMs and orthophoto mosaics [14–17]. In this field, several approaches have been tested
to extract DEMs from the UAV point clouds, as the examples below show. Gebrehiwot et al. [14]
investigated a deep learning approach to extract the flooded areas from high-resolution UAV imagery,
achieving an overall accuracy of 95% for flood imagery segmentation when using neural networks
(NN). Hashemi-Beni et al. [15] investigated the quality of UAV based DEM for spatial flood assessment
mapping and evaluation for the extent of a flood event, obtaining that the difference between the
produced DEM and the integrated LiDAR and USGS stream level elevations was less than 30 cm.
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Along the same lines, Govedarica et al. [17] presented the possibility of using UAV DEMs in flood risk
assessment in low-lying areas, obtaining a root mean square error (RMSE) of 60 cm compared with
LiDAR data. Schumann et al. [16] claim that the SfM DEM should yield nearly identical performances
when used for flood mapping and prediction as those typically obtained from LiDAR with a trivial
bias of 1.6 cm and root mean standard deviation (RMSD) of 39 cm between bare-earth terrain models.

1.2. DEM Generation from Point Clouds

The previous examples show that applications of point cloud in flood modeling are built around
the generation of a DEM. The DEM refers to a bare-earth surface created through the interpolation of
ground points. The accuracy of produced DEM is affected by (i) accuracy and density of original point
cloud, (ii) performance of algorithm for ground point classification, (iii) the algorithm for interpolation,
and the (iv) DEM resolution [18]. Although high point cloud densities of LiDAR and UAV SfM data
provide more detailed topographic information, a massive amount of information is demanding
for processing and storing. Reduction of point cloud density decreases the data acquisition and
data processing costs, but can affect the accuracy of the generated model. Alas, the author of [19]
reported a 50% reduction of LiDAR point density without big deteriorations in the visual and statistical
characteristics of the generated DEMs. The results in [20] showed that data with 50% reduction
provided compatible surface estimation, but significantly reduced half of the processing time and
storage space. In addition, Thomas et al. [21] obtained 0.02 m mean absolute difference in elevation
between the 1 m LiDAR DEM generated based on point cloud with an average point density of 40.2
and the DEM obtained from a 2 points per m2 point cloud. On another hand, accurate DEM can only be
obtained if the raw point cloud is classified in order to distinguish between objects on the ground and
the ground itself. The point cloud is represented as a set of 3D points, where each point Pi is a vector of
its coordinates (xi, yi, zi). Depending on the device used for data acquisition, additional features are
available such as intensity, return number, number of returns, or color. Several filtering algorithms
have been proposed. They are based on geometrical features of 3D ground points that differ them
from non-ground, such as lowest elevation in local neighborhoods, surface slope is generally lower
between ground points, the elevation difference between neighboring ground points is lower than
the difference to non-ground points, and the ground surfaces are locally smooth and homogeneous.
Rashidi and Rastiveis [22] utilized the slope between points and the elevation information in a local
window to detect non ground points. Axelsson [23] used the progressive TIN (triangulated irregular
network) method, starting from the lowest points in the neighborhoods with a predetermined size. The
progressive TIN and physical simulation methods tested provided the highest accuracy for the forested
area and flat area, respectively. Although filtering provided satisfactory results, they needed a lot of
human involvement in the process. With the rapid emergence of deep learning techniques, different
types of frameworks have been developed and applied to classification tasks. Generally, point clouds
can be classified using voxel-based, point-based, or projection-based approaches. Hu and Yuan [24]
proposed a ground point extraction from an Airborne Laser Scanning (ALS) point cloud using deep
convolution networks. In their research, for every point with spatial context, the neighboring points
within a window are extracted and transformed into an image. After that, the point classification
is treated as the image classification. The model, trained with 17 million labeled points, provided
high accuracy. Rizaldy et al. [25] used a fully convolutional network based approach to classify an
ALS point cloud into ground, building, and vegetation with an average error of 5.21%. The original
point cloud was converted into images by calculating each pixel value based on the features of the
lowest point. In addition, the difference between the lowest point in the corresponding pixel and the
lowest point in a 20 × 20 m horizontal window centered on the point. Sofman et al. [26] classified
the environment into four classes: roads, grass, trees, and buildings, using artificial neural network
(ANN). They fed the network with projected data points that contained the point position, color
measurement, and laser reflectance power measurements to a grid cell size of 0.3 m2. The highest
and lowest accuracy obtained was for buildings (93.87%) and grass class, respectively (66.73%).



Geosciences 2019, 9, 323 4 of 21

Although the projection based methods provide high accuracy, they require large computational
power to train the classifier, and the prediction time can also be restrictive. Qi et al. [27] showed the
potential of a convolutional neural network (CNN) fed by raw point coordinates, corresponding color
information, and normalized positions for indoor point cloud classification. Heckel et al. [28] described
the point-based semantic classification of a Terrestrial Laser Scanning (TLS) point cloud based on
downsampling of the point cloud with a voxel-gridded filter, and then computed 3D features based
on eigenvalues and corresponding eigenvectors of the covariance tensor from fixed set of k nearest
neighbors. Becker et al. [29] combined the geometrical feature introduced in the work of [28] and color
features to feed a machine learning algorithm.

The objectives of this study are as follows: (1) to determine the suitability of presented approach
of raw point cloud classification and ground point filtering based on deep learning and NN; (2) to test
the convenience of using rebalanced datasets for point cloud classification; (3) to evaluate the effect
of the land cover class on the algorithm performance and the elevation accuracy; and (4) to access
usability of the LiDAR and UAV SfM DEM in flood risk mapping.

2. Study Area and Data

Four study areas were defined, two for calibration and two for validation. They are located in
the Srem and Kolubara District, western Serbia. The validation area (Figure 1A,B) was located at
the confluence of the Bosut and Sava Rivers, Municipality of Sremska Mitrovica, Republic of Serbia.
Validation area (A) is located at river banks and has high terrain discontinuity. It is covered by water
bodies (4.3%), buildings (2.5%), low vegetation (70.4%), medium vegetation (2.3%), high vegetation
(7.6%), roads (2.1%), and embankment (2.7%). Validation area (B) is covered by high mixed vegetation
(4.3%), agricultural fields and grassland (65.1%), urban areas (8.1%), roads (2.3%), embankment (1%),
and bushes (1.4%). Both validation areas are mainly flat, because the highest DEM accuracy for flood
modeling needs to be provided in flat areas. On the other hand, different land cover classes were
chosen to compare the algorithm performance in different environmental scenarios.

Figure 1. Study area location. Four study sites (A, B, C, D). The coordinate reference system is
WGS84/UTM34 34N EPSG 32634.
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This study used LiDAR and UAV data, which were collected over the areas shown in Figure 1.
LIDAR data was collected over the areas A, B, C, and D, (Figure 1) and UAV data over the areas A and
B. LiDAR data were used to calibrate the algorithm to obtain the DEM, as well as to test the influence
of using balanced/imbalanced data when calibrating it. Once the algorithm was tested and validated,
it was applied to the UAV data. The following paragraphs describe both LiDAR and UAV data sets.

Calibration (training) sample points were selected from a large number of point clouds with
different terrain complexities. The training area in Figure 1C represents the steep terrain covered by
dense vegetation, while area (D) represents the flat terrain covered by mostly agricultural fields and
built up areas. Table 1 summarizes the data used in this study.

Table 1. Light detection and ranging (LiDAR) data used in the study.

Area Type Number of Points Ground [%] Non Ground [%]

A Validation 2,804,726 23.2 76.7
B Validation 4,419,520 17.8 82.2

C Algorithm
calibration 3,801,412 8.1 91.9

D Algorithm
calibration 1,811,545 23.6 76.4

The LiDAR data were captured on 1 December 2017 with an average point spacing of 5.4 cm.
The flying height, during the capturing of the LiDAR data, was approximately 200 m above ground
level. The aircraft speed was 45 kn. Maximum scan angle was set to 60◦. The list of instruments used
for LiDAR data acquisition is presented in Table 2.

Table 2. Instrument mapping list used for LiDAR point cloud acquisition.

Type Title 2

LiDAR LMS-Q680i-Full Waveform Analysis with settable frequency up to 400,000 Hz,
with field of view of 60◦, and a divergence of 0.5 mrad beam; Class 3R

Navigation system
IGI CCNS5 + Aerocontrol (positioning and navigation unit data storage);
Inertial Measurement Unit (IMU) IIf (inertial unit—400 HZ); GPS a 2 HZ

(Novatel antenna 12-channel L1/L2).
Camera n.1 Metric Camera Digicam-H39 (39 Mpixels)

Thermal Camera Variocam thermal sensor system with a detector of 1024 × 768 pixels and the
spectral range from 7.5 to 14 µm.

The UAV survey was conducted in April 2018 using a WingtraOne drone fitted with a 42 MP
Sony RX1RII camera (Table 3). The GCPs are required in order to register the results into a reference
coordinate system (WGS84/UTM34, EPSG: 32634). Thirteen GCPs were distributed over the study area.
The GCP consists of visible targets (1 m × 1 m red crosses). The GCPs were surveyed using a RTK GPS
receiver and GNNS permanent network of Serbia (AGROS). The average point density of UAV point
cloud is 160 points per square meter.

Table 3. Unmanned aerial vehicle (UAV) data survey details.

Image Resolution
[MP]

Number of
GCP

Attitude of Image
Capture [m]

Forward
Overlap [%]

Side Overlap
[%]

Ground
Resolution
[cm pix−1]

42 13 150 70 70 2.7
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3. Methods

LiDAR data were used to calibrate the algorithm to obtain the DEM, as well as to test the influence
of using balanced/imbalanced data when calibrating it. Once the algorithm was tested, it was applied
to the UAV data. Therefore, the following workflow was applied (Figure 2):

(1) LiDAR point cloud: calculation of the contextual information for each point by considering the
spatial arrangement of all points inside the local neighborhood,

(2) LiDAR point cloud: feature extraction,
(3) LiDAR point cloud: calibration and supervised classification (ground and non-ground points)

using the deep back propagation neural network (BPNN)
(4) Accuracy assessment of the LiDAR point cloud classification
(5) Application to the UAV data

1. Create the UAV point clouds (from overlapping images and using the SfM algorithm)
2. UAV point cloud: feature extraction (the same as (2))
3. UAV point cloud: calibration and supervised classification (ground and non-ground points)

using the deep back propagation neural network (BPNN) (the same as (3))
4. Accuracy assessment of the UAV point cloud classification (the same as (4))

(6) Accuracy assessment of the LiDAR and UAV derived DEMs
(7) Flood risk assessment using the created DEM.

Figure 2. Workflow. Note: the same steps for light detection and ranging (LiDAR) and unmanned
aerial vehicle (UAV) data are shaded with dark blue color. SfM, structure from motion, DEM, digital
elevation model.
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The next paragraphs explain each step in more detail.

3.1. Point Cloud Generation using SfM Algorithm (UAV Data)

The SfM algorithm was applied to the set of UAV images acquired from multiple viewpoints
to reconstruct the 3D geometry of objects and surfaces, and to transform them into a point cloud.
The workflow consisted of three main steps, described below.

In the first step, SfM used scale invariant feature transforms (SIFT) to detect and describe local
features (key points) that are invariant to image scaling, orientation, affine distortion, and changes
in illumination conditions, and can be matched across multiple images using the RANdom SAmple
Consensus (RANSAC) method [13]. Because we used the customer grade digital camera, which does
not carry a GPS and IMU sensor that can collect data with sufficient accuracy, the intrinsic orientation
parameters are neither known nor stable. To overcome these problems, the bundle block adjustment
of matching key points was applied to compute the extrinsic camera (position and orientation) of
each camera exposure station [30]. Also, the bundle adjustment simultaneously estimated the 3D
coordinates for a sparse, unscaled point cloud and intrinsic camera parameters (focal length and two
radial distortion parameters).

In the second step, the initial value of camera parameters and 3D point cloud were optimized by
minimizing of a non-linear cost function that reflects the measurement and re-projection errors [11].
The GCP points, established before the survey, were used to georeference the SfM derived from the point
cloud using the seven parameter Helmert transformation. For the seven parameter transformation,
a minimum of three GCP need to be used. In this case, 13 GCP were used. As a third and final step, the
multi-view stereo (MVS) image matching algorithm used the output of the bundle adjustment to build
a dense 3D point cloud.

3.2. Neighborhood Search and Feature Extraction (UAV and LIDAR Point Clouds)

Two approaches can be used to define the local 3D neighborhood of a given 3D point X ∈ R3:
geometric search and k-nearest-neighbor search. The most commonly used method is the spherical
neighbored definition, where the local neighborhood is formed by all points in a sphere defined by a
fixed radius. Geometric search can be based on a cylindrical neighborhood definition, where the local
neighborhood is formed by all 3D points whose 2D projection onto the ground plane is within a fixed
radius circle [31]. In the k-nearest neighbor search, the local neighbors are the fixed k nearest neighbors
from the query point. All those methods are defined by one parameter, which is represented by either a
radius or several nearest neighbors and can be derived based on prior knowledge about data. Because
of a significant impact on local neighborhood and feature extraction, it is expected that the different
neighborhood types and different parameters can have a significant influence on the classification
result. Weinmann et al. [32] analyzed the behavior of standard 2D and 3D geometric features for
different neighborhood types. Derived features were used to evaluate three classifiers for a different
classification task. In that work, the results showed that the spherical neighborhood with a radius of
1 m provided high classification accuracy for each classifier. Therefore, in this research, we utilized
the spherical neighborhood. After that, the neighborhood search, performed for each 3D point, was
described as follows: for a given point cloud P = {X1, . . . , Xn} in a three-dimensional Euclidean vector
space, those points X ∈ P that are located in the sphere defined with a center in query point Xi and
fixed radius represent local neighborhood of point Xi. A kd-tree, binary tree based on a hierarchical
subdivision of space by splitting hyperplanes that are orthogonal to the coordinate axes [33], is widely
used for nearest neighbor search in computer sciences. The ckd-tree, defined as in the work of [34],
finds 3D neighbors for 15,000 points 20% faster than kd-tree, and thus is used in this study.

Thus, in this work, the neighborhood search was performed using ckd-tree implemented in the
Python programing language. The spherical neighborhood definition with radius of 1 m was set,
and for each query point Xi, minimum, maximum, and mean height in the local neighborhood was
extracted. Then, difference values between the height of query point zi and zmax, zmean and zmin, as well
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as the height range, were calculated for each point. In addition to geometric features, the intensity
value was also used. The intensity for LiDAR data was defined as the return strength of the laser pulse,
while the intensity of UAV data is calculated from red green blue (RGB) colors of the point according
to the following expression: IntensityUAV = 0.21×Red + 0.72×Green + 0.07× Blue.

3.3. Classification of the UAV and LIDAR Point Clouds Using a Back Propagation Neural Network (BPNN)

Each point of the point cloud was classified as ground or non-ground using the back propagation
neural network algorithm. For the main characteristics of BPNN, see the work of [35]. The task of
classification was to predict label y for a given input x. The input consisted of eight layers (obtained in
step 3.2.): three global geometric features (Xi, Yi, Zi), four extracted features from local neighbored
(Zi-Zmin, Zi-Zmax, Zi-Zmean, Zmax-Zmin), and intensity. During the forward-passing, given input
features x and a network with weights W, bias b and hyperbolic tangent (tanh)activation function the
output of each layer h are defined as in Equation (1).

h =
D∑

d=1

WT
d × xd + b (1)

Next, a loss was calculated as the negative log-likelihood between the prediction and the true
label. The closer the prediction to the true label for each sample, the smaller the loss would be. The loss
function was minimized by adjusting all of the parameters in the network using back-propagation.
The learning was performed by adam, a stochastic gradient-based optimizer proposed by the authors
of [36]. The selected activation function and optimizer provided the highest accuracy among tested
combination, that is, sigmoid, rectified linear unit (relu), tanh, adam and stochastic gradient descent
(sgd). The maximum number of epochs was set to 400, the learning ratio was 0.0001. The output
consisted of labeled points, with the labels corresponding to the classes defined in training set
(i.e., ground and non-ground).

The calibration data sets (C and D) were split into 70% for training and 30% for testing. A total of
5,612,957 labeled points were used to train the neural network in this study. The validation, training,
and testing ground truths were labeled using automatic filtering implemented in TerraScan software
and post manual editing.

Although point clouds offer large point counts in absolute terms, they contain large class imbalance.
A dataset is imbalanced if the classes are not approximately equally represented. This is because
of the natural ground and non-ground imbalance presented in both urban and rural environments,
as well as in steep and flat terrain. The largest imbalance was noticed in area C covered by dense
vegetation and objects (Table 1). The class imbalance can compromise the process of NN learning,
because the model tends to focus on the prevalent class and ignore the rare events [37]. Therefore, and
in order to compare the results of using imbalanced and balanced data sets to obtain ground points
and DEM, in addition to the initially imbalanced C and D point clouds, three balanced data sets per
point cloud were created using different re-balancing methods. The first data set (BU) was balanced by
randomly removing data from the non-ground class (i.e., under sampling the non-ground class), so
that its ratio approaches the ground class ratio; this strategy reduced the original data set by 75%, so
that the final BU data set consisted of 1,403,696 points. The second balanced data set was obtained by
oversampling (BO), where the representatives of the least represented class were replicated, creating
additional 4,209,261 points (reaching a total number of 9,822,218 points in the BO dataset). As the data
are just replicated, oversampling can lead to over-fit to small data samples; therefore, the combination
of undersampling and oversampling was also tested (BOU). This third method was applied to balance
the dataset, and in this case, the number points of ground class increased by 300% (4,211,088 points
created), while the non-ground class was reduced by 50%. In all the balanced datasets, the class ratio
(ground, non-ground) was 50%. Once the three balanced datasets were created, all four data sets were
standardized using the StandardScaler function [38].
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The proposed approach was implemented in the Jupyter Notebook environment and Python
programming language by using numpy, laspy, scipy, and sklearn libraries.

3.4. Accuracy Assessment

3.4.1. Point Cloud Classification

To determine the accuracy of the point cloud classification, overall accuracy, the most common
metric for classifier evaluation, can be used to assess the overall effectiveness of the algorithm by
estimating the probability of the true value of the class label. However, imbalance validation datasets
can lead to wrong conclusions because one class is overrepresented and the other underrepresented,
and thus the omission and commission errors (and the overall accuracy (OA)) are affected. Thus,
precision, recall, and F1-score were calculated to provide a comprehensive assessment of the proposed
approach. Precision computes the percent of points classified as ground that are really ground, while
recall represents the fraction of correctly labeled ground points. In a perfect model, the precision
and recall will be equal to one. The F1-score represents the harmonic mean of precision and recall in
Equation (4) [39].

precision =
tp

tp + f p
, (2)

recall =
tp

tp + f n
, (3)

where tp, fp, and fn are true positive, false positive, and false negative, respectively.

F1 =
2× recall× precision

recall× precision
(4)

According to Equation (4), the F1-score will be null whenever the precision or recall is equal to
null, while the value of the F1-score will increase proportionally to the increase of precision and recall.
The higher value of F1-score indicates that the model performs better on the positive class [40].

In this paper, the overall accuracy, precision, recall, and F1-score were calculated for the two
validation sets (A and B) (Table 1); for the imbalanced (original) dataset; and for the three rebalanced
datasets (BU, BO, BOU), obtained in an analogous way to the BU, BO, and BOU datasets described for
training and testing in Section 3.3.

3.4.2. Point Cloud and DEM Accuracy

The accuracy of UAV and LiDAR based point cloud was assessed by comparing the results
with the true data (datasets A and B). Two methods were applied: DEM of difference (DoD) and
cloud-to-cloud (C2C) method

DEM of difference (DoD) is the most common method of point cloud comparison. The classified
LiDAR and UAV ground points were gridded to generate DEMs with a spatial resolution of 0.25 m
and then differenced on a pixel-by-pixel basis, allowing the estimation of vertical uncertainty and the
detection of change. Also, the root mean square error (RMSE) and the mean average error (MAE) of
elevation measurements were computed by extracting the DoDs in 36,600 randomly created check
points across the entire A and B study areas. The number of check points was defined in order to
provide density of 1 point per m2.

As gridding a point cloud and generating a DEM involves an interpolation error, direct cloud to
cloud differences were calculated using the C2C tool implemented in open source CloudComparer
software [41]. This method also allows for assessing the spatial variability of cloud accuracy. For each
point of the second point cloud, the closest point can be defined in the first point cloud based on
different performing algorithms [42]. The output of applying this method is a point cloud that contains
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information about the absolute distance for each point along the three axes (X, Y, Z). On the basis of the
absolute distance, mean absolute distance (MAD) and standard deviation (SD) were calculated.

3.5. Flood Risk Assessment

In order to assess the usability of the proposed approach and the UAV SfM point cloud for flood
risk assessment, the inundation area was simulated by selecting the grid cell of the DEM that was lower
than the projected water level and that was connected to an adjacent flooded grid cell or open water,
which will thus indicate inundation [5,43,44]. Flood risk assessment was calculated at 12 different
vertical levels. The vertical distance between levels was set to 0.5 m.

4. Results

4.1. Point Cloud Classification

The results of the accuracy assessment for ground class extraction from the LiDAR point clouds
using deep learning based on backpropagation neural network are displayed in Table 4. The algorithm
showed a stable performance among the different data sets. As a measure of classification accuracy, the
F1-score is considered to show strong agreement when it is close to 1, while values close to 0 indicate a
poor agreement. Therefore, all data sets (original, BU, BO, BOU) provided ground point classifications
with a strong agreement with the true data, as indicated by the low number of false positives and
false negatives. The lowest F1-score in the testing phase was obtained for the ground class in the
imbalanced data set, as only 71% of the ground points were correctly classified by the algorithm (recall:
0.71), while for the balanced datasets, the recall values were between 0.86 and 0.93.

Table 4. Results of the accuracy assessment for the LiDAR datasets and the proposed classification
method. BU (data set balanced by undersampling of non-ground class), BO (data set balanced
by oversampling of ground class), BOU (data set balanced by oversampling of ground class and
undersampling of non-ground class).

Precision Recall F1-score OA [%]

Test

BU
Non-ground 0.90 0.89 0.89 89.53

Ground 0.89 0.90 0.90

BO Non-ground 0.92 0.86 0.89 89.77
Ground 0.88 0.93 0.90

BOU Non-ground 0.90 0.92 0.91 89.68
Ground 0.88 0.86 0.87

Imbalanced
Non-ground 0.92 0.98 0.96 93.37

Ground 0.89 0.71 0.79

Validation

BU Non-ground 0.99 0.56 0.72 64.80
Ground 0.37 0.97 0.52

BO Non-ground 0.95 0.51 0.66 60.81
Ground 0.36 0.93 0.52

BOU Non-ground 0.93 0.58 0.71 64.52
Ground 0.38 0.85 0.53

Imbalanced Non-ground 0.93 0.97 0.95 92.20
Ground 0.86 0.72 0.78

For the validation, all the balanced datasets showed low precision (<0.4) and high recall (>0.8)
for the ground point class, and high precision (>0.9) and low recall (<0.5) for the non-ground points.
According to these values, in the balanced data sets, the algorithm produced a low number of false
negatives, but high number of false positives. As a result, the balanced data sets produced a significantly
lower F1-score for ground class in the validation phase, compared with the testing phase (0.90 vs. 0.53).
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The imbalanced data set provided stable metrics values between the validation and testing phase
(0.78 vs. 0.79 F1-score for the ground class).

Taking into account the results presented in Table 4 and as discussed in Section 5, the classified
imbalanced LiDAR point cloud gathered on the validation areas (Figure 1A,B) was used for the next
sections (production of DEM, accuracy assessment, and flood risk assessment). Thus, the imbalanced
UAV point clouds from study sites A and B were used for DEM production, accuracy, and flood
risk assessment.

4.2. Spatial Variability of UAV and LiDAR DEM Accuracy

The DoD method was used to calculate total elevation discrepancies between the ground truth
and LiDAR and UAV DEM. We used the residuals to estimate the MAE and RMSE. As MAE is a
measure of DEM accuracy and is used to identify the overall bias in the data, the results showed that
the classified LiDAR data tended to underestimate the elevation by an average of 5 cm (Table 5), while
the UAV data overestimated the elevation by an average of 28 cm (Table 5).

Table 5. Accuracy of LiDAR and UAV digital elevation model (DEM) per land cover/land use
classes (root mean square error (RMSE) and mean average error (MAE)) using the DEM of difference
(DoD) method.

LiDAR UAV

RMSE [m] MAE [m] RMSE [m] MAE [m]

All classes 0.25 0.05 0.59 −0.28
Water 0.37 0.09 1.70 −1.11

High vegetation 0.20 0.03 1.00 −0.39
Medium vegetation 0.19 0.04 0.51 −0.26

Low vegetation 0.19 0.04 0.23 −0.21
Bare land 0.20 0.03 0.25 −0.18

Built up areas 0.27 0.06 0.28 −0.27

In addition, the examination of individual cross sections at different locations across the study area
was done in order to better understand the influence of land use/land cover classes in DEM accuracy.
The results of the comparison are presented in Figure 3. In the case of the LiDAR DEM, the profiles
were coincident or within a few centimeters of the true data (Figure 3a,b,d). The largest distance was
noticed in the river bed (Figure 3c). For the UAV DEM, elevation differences in the river bed and area
covered by dense vegetation (Figure 3b,c) were the largest, while the smallest elevation difference was
obtained for bare land (Figure 3d).
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Figure 3. Comparison true data and LiDAR and UAV data using the proposed classification method. The green points represent the non-ground class, while the
orange points represent the ground class. Profiles were created over different land cover classes ((a) built up areas; (b) dense vegetation; (c) water; (d) bare earth) based
on DEM with a spatial resolution of 25 cm. The red, blue, and green lines represent the true, LiDAR, and UAV data, respectively.
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4.3. Accuracy of UAV and LiDAR Point Clouds (C2C Method)

The distance between the reference (true point cloud) and target (LiDAR and UAV) point clouds
was calculated using the C2C tool. The spatial distribution of the results of the C2C comparison along
the Z axis for the LiDAR and UAV point clouds are shown in Figure 4. The MAD and the SD along the
Z axis between the true point cloud and the LiDAR point cloud were significantly lower than when
the UAV point cloud was compared (i.e., 0.002 m vs. 0.113 m, and 0.03 m vs. 0.392 m, respectively).
The range of absolute distances for LIDAR was –1.28 to 4.18 m, smaller than for the UAV point cloud
(–5.12 to 3.87 m).

Figure 4. Visual comparison of cloud-to-cloud (C2C) absolute distance along the Z axis. Left column
represents the distance between LiDAR and true data ((a,c) represents maximum positive difference,
(b) maximum negative distance), while the right column represents distance between UAV and true
data ((d) maximum positive distance, (e,f) illustrate relationship between spatial variability of distance
and land cover class i.e., grass and shrubs respectively).

In order to better understand those results, the number of points in different ranges of absolute
error along the Z axis were computed (Table 6). Although the distance between true and LiDAR point
clouds varied significantly, the C2C distance for 99.72% of the points was smaller than 5 cm, while for
the UAV point clouds, the C2C distance was between 0.5 and –0.5 m for 87.21% of the points (Table 6).
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Table 6. Distribution of points based on cloud-to-cloud (C2C) distance for LiDAR and UAV point clouds.

Absolute Distance
along Z axis [m]

Number of Points
Lidar Percent Lidar [%] Number of Points

UAV Percent UAV [%]

–5.12 to –4 0 0 2129 0.0282
–4 to –3 0 0 1610 0.0213
–3 to –2 0 0 11,462 0.1517
–2 to –1 8 0.0005 19,712 0.2608

–1 to –0.5 52 0.0036 275,648 3.6471
–0.25 to –0.5 292 0.0203 680,829 9.0079
–0.1 to –0.25 600 0.0418 789,888 10.4509
–0.1 to –0.05 1330 0.0925 440,820 5.8324
–0.05 to –0.01 14,105 0.9816 242,428 3.2075

–0.01 to 0 1,303,374 90.7021 0 0
0 to 0.01 67,085 4.6685 360,129 4.7648

0.01 to 0.05 43,076 2.9976 274,241 3.6284
0.05 to 0.1 5367 0.3735 400,257 5.2957
0.1 to 0.25 1056 0.0734 2,119,942 28.0486
0.25 to 0.5 279 0.0194 1,283,580 16.9828

0.5 to 1 176 0.0122 580,283 6.9696
1 to 2 47 0.0032 128,656 1.5211
2 to 3 109 0.0076 12,980 0.1585
3 to 4 26 0.0018 1778 0.0226

4 to 4.18 1 0.0002 0 0

Although the distance between true and LiDAR point clouds varied significantly, the C2C distance
for 99.72% of the points was smaller than 5 cm (Table 6).

4.4. Flood Risk Assessment

The visual comparison of the inundation areas derived from true, LiDAR, and UAV data for
different water levels is presented in Figure 5. These results show that the true and LiDAR data
followed a similar pattern. The largest difference was obtained for the lowest water level. However,
a strong pattern between true and UAV data was not obtained. The model performed the best for very
high water levels, while the largest difference was achieved for the lowest water level. The relationship
between the detected inundation area and water level is presented in Figure 6.

Figure 5. Cont.
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Figure 5. Visual comparison of detected inundation area based on the water level and true, LiDAR,
and UAV data.

Figure 6. Relationship between the detected inundation area for different data sources and water levels.
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5. Discussion

5.1. Convenience of using Imbalanced or Balanced Datasets for Point Cloud Classification

Regarding the convenience of using balanced or imbalanced point could datasets for ground/non
ground classifications, the comparison among the four LiDAR data set (Table 4) showed that the
imbalanced data set was more accurate for ground point classification than the balanced ones in the
validation phase.

On one hand, the results of the classification of the balanced data sets showed a strong agreement
with true data for both classes in the testing phase (Table 4). In addition, the results showed that
the method used for balancing the dataset (BU, BO, BOU) does not have significant influence in the
algorithm accuracy (i.e., all the F1-scores were between 0.87 and 0.90). On another hand, and taking
the BU dataset as an example of the three balancing methods, the F1-score strongly decreased in the
validation phase when using the balanced data sets (ground: 0.90 vs 0.52; non ground: 0.89 vs 0.72).
The values of recall and precision showed that the model is capable to detect ground points almost
perfectly (recall: 0.97), but it also tends to misclassify the non-ground class as ground (precision: 0.37),
producing a moderate F1 score (0.52).

To explain those results, it should be noted that during the test phase, for the balanced data sets, the
artificially rebalanced training and test sets were used, producing high accuracies in the classification.
Nevertheless, during the validation phase, the balanced training set was used for training the classifier,
while the imbalanced (the real point cloud) validation set was used to test the classifier. Therefore,
the training and validation sets had different distributions because of the bias introduced during
rebalancing. It is well known that rebalancing modifies the prior training set and, consequently, biases
the posteriori probability of a classifier [44]. The classifier trained this way tends to move the optimal
separation boundary toward the majority class [45], so that more non ground points are classified
into the ground class. This produced high recall and low precision for the balanced data set in the
validation phase (Table 4). Additionally, oversampling can lead to over-fit to small data samples, while
downsampling due to information loss [43] could reduce the classifier performance.

For the imbalanced data set, the performance of developed approach remained stable in both the
testing and validation phase (Table 4). The high value of precision, recall, and F1-score indicated an
almost perfect classification of the non-ground class. As a result of imbalance distribution and highly
overlapping classes, the number of ground points correctly classified decreased [46], producing a lower
F1-score (non ground: 0.95 vs ground: 0.78). The recall and precision value indicated that the model is
highly trustable (precision: 0.86), correctly detecting 72% of the ground points. The values attained for
the ground class were similar to the ones reported by Rizaldy et al. [25], who reached an average total
error of 5.21%, with low type I (4.28%) and type II (14.28%) errors, meaning that more non-ground
points were mislabeled. The higher type II error was explained by the number of non-ground data
points in both samples being considerably lower than the number of ground points. Therefore, the
validation recall value in the imbalanced data set could be explained in this case by the lower number
of ground points. Heckel et al. [28] reached an overall classification accuracy of 95–98% and a mean
F1-score of 0.70–0.74, which is similar to the results obtained in this study. However, the algorithm
presented in this paper provided an almost complete ground classification (recall: 0.99, precision: 0.98,
F1: 0.98), probably because of the low class overlapping, as linear separable classes are not sensitive to
any amount of imbalance [46,47]. Because of the high degree of complexity of our data, the approach
presented in this paper is more sensitive to imbalanced data sets then the approach shown in the work
of [28]. The benefit of rebalancing is strongly dependent on the nature of the classification task and
should be used only if the distribution of the generated and real data set will remain same.

5.2. Effect of the Land Cover Class on the Algorithm Performance and Elevation Accuracy

In relation to the accuracy in elevation, the LiDAR DEM had an RMSE of 0.25 m and an MAE of
0.05 m, while the UAV DEM had values of 0.59 m and –0.28 m, respectively (Table 5). In the work
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of [24], total classification error of LiDAR ground class was 2.9% over 40 various complex terrains,
while RMSE ranged from 0.05 to 0.28 m. When the effect of the land cover/land use class in the accuracy
of the DEM was analyzed (Table 5), it showed that the largest differences between both DEMs were
obtained in the area covered by water bodies (RMSE of 0.37 m and 1.70 m for LiDAR and UAV DEM,
respectively). The errors associated with this land cover were probably because of the fact that the
training data did not include water bodies.

The second largest error for the UAV DEM was obtained for the high vegetation class (RMSE 1.00
m), with an average underestimation of 0.39 m, while the smallest ones were, in both cases, obtained
for the low vegetation class (RMSE of 0.19 m and 0.23 m for LiDAR and UAV DEM, respectively). The
RMSE for the vegetation classes was not significantly different in the LiDAR DEM, while for UAV
DEM, the RMSE increased with the height of the vegetation class (Table 5). Along the same lines, the
DoD examination of cross sections (Figure 3) and the results of the C2C comparison (Figure 4) also
showed the increase of RMSE and MAE for UAV DEM with the increase of vegetation height. Those
findings are in line with results presented in the work of [48]. In general, and for all land cover classes,
the UAV DEM overestimated the elevation (MAE < 0), while the LIDAR DEM tended to underestimate
it (MAE > 0).

5.3. Suitability of the Proposed Method to Produce DEM from UAV and LiDAR Data

In addition to the aspects discussed in the previous sections, and in order to determine the overall
suitability of the proposed method to produce DEM for UAV and LiDAR data, the advantages and the
shortcomings of this classification method are discussed below, taking into account the DEM accuracy.

The MAD and SD for the UAV point cloud (0.11 m and 0.39 m, respectively) were significantly
higher than for the LiDAR data (0.002 m and 0.03 m, respectively). Those results are in line with the
findings presented in the work of [19] and with results obtained comparing both point clouds using
the DoD method (previous section).

Regarding the spatial variability of UAV and LiDAR DEM accuracy (Table 6), on the one hand, the
large positive absolute distance along the Z axis between the LIDAR DEM and the true data (Table 6)
was the result of the misclassification between the ground class and the points representing vegetation.
The misclassification of some parts of the trees that were located near to the elevated embankment and
the terrain break lines at the river banks produced the highest C2C distance (Figure 4a,c). Rizaldy et
al. [25] reported a similar problem with the misclassification of non-ground points in the area where
the ground surface is connected to the elevated bridge, because the boundary between the ground
and the bridge is fuzzy owing to the gradual inclination of the road surface. As tree parts classified as
ground were located at the same height as embankment, a similar explanation could be applied. On
the other hand, large negative distances were noticed at the terrain brake lines near to water bodies
(Table 4, Figure 4b, and Figure 5). This is not surprising because the training data set did not include
this type of terrain and water bodies. Also, water absorbs most often the laser pulse causing dropouts,
which could influence algorithm performance.

For the case of the UAV point cloud, the distances between true and compared data along the Z
axis were between –5.12 and 4 m (Table 6). The location of the largest negative values (errors) in the
UAV point cloud was the same as for those obtained for the LiDAR point cloud, although the distance
values were much larger for the UAV points (Table 6). The same happened for the large positive values
(Figure 4d). Nevertheless, the number of points with a distance larger than ±1 m accounted for just
2.16% of the total amount of points, which did not have a significant effect on the MAD and SD values.
UAV equipped with a passive sensor (like in this case) does not have the ability to penetrate vegetation
and, therefore, the accuracy of the UAV DEM is strongly affected by the land cover class (Table 6,
Figure 4e,f). As the survey was conducted in April, when the vegetation was already in the growing
season, most UAV points were within a distance of 0.25 m from the true data (Table 6), which could be
close to the height of the vegetation at that time. Additionally, the 3D model creation using SfM is
based on static scenes, and as trees and water are prone to movement, it represents a problem for the
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key point matching algorithm, causing dropouts, inaccurate elevation representation, and lack of data
(Figure 4d).

The main advantage of the proposed method (raw point cloud classification and ground point
filtering based on deep learning and NN) is the ability to classify raw point clouds without parameter
settings and point to image conversion. Therefore, it is more efficient regarding computational cost
and it is easier to use. The quality and size of training samples are crucially important for successful
classification [49]. The algorithm will label the ground points of different terrain complexity with high
accuracy if training data contain sufficient representatives of various terrain types and include all land
covers. In the future, the geometric features based on the local structure tensor and more efficient
neighbor finding algorithm should be tested.

5.4. Usability of the LiDAR and UAV SfM DEM in Flood Risk Mapping

The visual comparison of inundation areas showed a similar pattern between true and LiDAR
DEM. On another hand, the UAV DEM tended to overestimate the terrain elevation (Table 5) and thus
underestimated the inundation area (Figure 5) for all tested water levels (Figure 6). For both data
sets, the largest differences too place for the lowest water level. This is expected as results of the C2C
comparison (Figure 4), DoD (Table 5), and visual inspection suggest that the largest errors were related
to water bodies. This was expected because of existing ground point classification error in the water
bodies. For high water levels, all data sets performed similarly.

Taking into account the requested accuracy for flood inundation mapping according to European
Union Flood Directive [5], the developed algorithm and both data sets (LiDAR and UAV) can be used
for flood inundation maps generation. However, the requests of the Serbian law are satisfied by LiDAR
data for all terrain types, while the DEM derived from UAV data can be used only for hilly areas. If the
UAV data are gathered during the winter season, with a lower vegetation cover, this hindrance might
be overcome.

6. Conclusions

NN and deep learning based methods have significant potential and can be used for automated
point cloud classification and rapid DEM generation for flood risk mapping. In this paper, we presented
and verified a method of point cloud classification and ground point filtering based on deep learning
using NN. Filtering acquired point clouds based on deep learning using NN rapidly improved the
process of ground classification of LiDAR and UAV data, producing DEM with the required accuracy
for flood mapping according to European Flood Directive standards.

One of the advantages of using the approach presented in this paper is that users can feed the
classifier with raw point clouds, avoiding data pre-processing. This is one of main advantages because
it reduces the computational time and computer power, which is one of the biggest limitations when
dealing with dense point clouds. Another advantage is that the process is fully automatized, so that it
is straightforward for users to input the raw point cloud and create the digital elevation model. In
addition, all the steps of the approach we present here for LiDAR data are implemented in Jupiter
Notebook using Python programming language and free libraries, so it can be implemented free of
charge on any computer.

The accuracy assessment of algorithm performance on balanced and imbalanced data sets showed
that effectiveness of the rebalancing method depends heavily on the nature of the classification task,
and can be used only if it provides same the artificially generated data as the same distribution real data.

The verification of the algorithm was done on LIDAR and UAV SfM point clouds and derived
DEMs. On the one hand, the accuracy assessment of classified LiDAR point cloud showed that 99.72%
of the points had differences smaller than 5 cm with the true data. On the other hand, differences with
the UAV classified point cloud were much higher, with 87.21% of the points within a distance between
0.5 m and –0.5 m of the true data.
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As minimum requirements for flood modeling in Europe are 10 m× 10 m horizontal and minimum
0.5 m vertical resolution, the results of the accuracy assessment of the UAV SfM point clouds and
derived DEM confirmed that UAV SfM provides a derived DEM with a resolution and accuracy that
are suitable for flood risk management. This DEM has some restrictions, and the essential remark
is that the accuracy and precision of the SfM generated point cloud and DEM depend heavily on
the characteristics of the surface, land cover, and model of acquisition. LiDAR is, therefore, the
recommended technology for point cloud acquisition, but UAV SfM is also a suitable alternative for
hilly areas.
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