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Abstract: This work focuses on the capabilities and limitations of the Advanced Satellite SAR
(Synthetic Aperture Radar) Interferometry (A-DInSAR) in wooded and mountainous regions, with
the aim to get insights on the performances for studying slow-moving landslides. The considered
critical issues are related to the SAR acquisition geometries (angle of incidence of the satellite line of
sight, ascending and descending geometries) and to the physical and morphological features of the
slopes (land use, aspect and slope angles), which influence the measuring points coverage. 26 areas
in Lombardy Region (Italy), affected by known slope instability phenomena, have been analyzed
through A-DInSAR technique, using COSMO-SkyMed images. The results allowed to outline
general considerations about the effectiveness of A-DInSAR analysis of a single dataset (descending
or ascending dataset), selected accordingly to the aspect of the slopes. Moreover, we aimed to
quantitatively describe the capability to update the state of activity of several previously mapped
landslides using satellite SAR Interferometry results. Although in a wooded and mountainous
region, where the chances of retrieving radar targets for satellite SAR analysis are generally low,
the A-DInSAR results have allowed to detect landslides’ reactivations or new landslides and to update
the inventory for about 70% of the investigated areas.

Keywords: satellite SAR interferometry; geohazards; landslide state of activity; landslide inventory;
satellite acquisition geometry

1. Introduction

Identifying and mapping landslides is essential to reduce their social and economic impact,
as landslides represent one of the major causes of damages to structures and infrastructure and of life
losses [1–4], in many hilly and mountainous areas all over the world.

Landslide inventories and information about the state of activity are the main tools to plan
strategically the security and the expansion of urbanized areas and to prevent the damages. Mapping
and studying landslides at large scale is therefore crucial for land use planning, but it can represent
a goal hard to achieve through traditional “on-site” methods, due to the extension of regional areas
of interest and the difficult accessibility. In this regard, remote sensing methods provide an effective
solution to this problem, thanks to the capability to analyze wide areas at a low cost. Among these
techniques, satellite SAR (Synthetic Aperture Radar) Interferometry (InSAR) is one of the most used
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remote sensing technologies for landslides mapping and for assessing slope stability, without installing
instrumentation [5–21].

Different types of landslide mapping can be performed, such as landslide inventory, which
represents a picture of an area at a given moment [22], landslide typology and landslide state
of activity maps which requires hypothesis also about the temporal evolution of the processes [23].
Traditional landslide mapping procedure is generally affected by uncertainties and sometimes subjective
information related to the surveyor expertise.

The evaluation of the state of activity, the style of activity and the intensity of a landslide [24];
i.e., destructiveness of a landslide, in terms of kinetic energy, volume, movement velocity or total
displacement, etc.) represent usually complex tasks, due to the lack of a single standardized procedure
for the quantification of these parameter [25,26].

Satellite InSAR has proven to be a reliable methodology for detecting ground deformation with
sub-centimetric accuracy, and currently it is exploited by using multi-images processing approaches:
The so-called Advanced Differential Synthetic Aperture Radar Interferometry, A-DInSAR, as for example
the Persistent Scatterers Interferometry (PSI) [27–29]. A-DInSAR analysis represents a valuable tool
for the updating of landslide inventories, and several attempts to assess the state of activity by using
PSI results have been performed in the last decade [9,30,31]. Furthermore, several methodologies that
integrate field surveys and conventional thematic data (e.g., topographic, geological, land use maps, and
optical images) with Persistent Scatterer Interferometry (PSI) analyses have been designed [5,7,9,18,31–35].
Such techniques can detect geomorphologic phenomena not emerging from conventional field surveys
and allow to modify landslide boundaries and to assess the landslide velocity and, therefore, evaluate
the state of activity. Moreover, one of the key features of A-DInSAR is the ability to provide quantitative
results about past ground displacements, providing the possibility to perform historical analyses, thanks
to the data archives collected by the space agencies.

The increasing number of space missions, characterized by high performances in terms of both
spatial and temporal resolution, are allowing the spread of monitoring services that control the
evolution in time of the instability phenomena of interest. For the above-mentioned reasons, nowadays,
the amount and availability of multi-temporal images are experiencing a fast increase, and the free
access data policy adopted for missions like Sentinel (by European Space Agency, ESA) allows to take
advantage of A-DInSAR technique at low cost. The satellites of new generation, with short revisit
times, can be used for continuous and systematic tracking of ground deformation phenomena. In this
regard, an example of innovative continuous monitoring of landslides at regional scale by means PSI
data has been provided by Raspini et al. [32], with the transition from static satellite analysis, based on
the analysis of archive images, to dynamic monitoring of ground displacement.

Despite the effectiveness and the low cost of A-DInSAR technique for landslide mapping and
monitoring, which have been demonstrated and consolidated over the last 20 years, this methodology
is not a routine analysis yet and it is not exploited as a standard practice by government authorities in
charge of land management.

One of the reasons could lie in the complexity of the A-DInSAR analysis, and in the presence of
some limitations typical of this technique that need to be addressed, as the interaction between the
SAR acquisition geometries (ascending or descending) and the physical and morphological features
of the slopes. This critical issue can directly affect the results both qualitatively and quantitatively:
The measuring points coverage (number of PSs) is indeed strictly correlated with the slope orientation,
which can be favorably oriented or not with respect to the satellite’s Line of Sight (LOS).

Colombo et al. [36] presented a model to predict PSs density, discarding those areas affected by
layover and shadow effects and considering the land use. Notti et al. [14,35], proposed a predictive
model to improve the use of Persistent Scatterers (PSs) techniques in the landslides study, introducing the
RC-index that allows to forecast the potential PSs distribution, calculating the effects due to topography
and land use. Cascini et al. [7] discussed and implemented the approach of a priori DInSAR landslide
visibility mapping.
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In this regard, this work aims to highlight how the physical and geometrical characteristics of the
study area can influence the A-DInSAR results through a several cases studies in Lombardy Region
(Italy). We analyzed 26 Areas of Interest (AOIs) affected by slope instability phenomena, that were
indicated by the regional authority for environmental protection (Lombardy Regional Agency for
Environmental Protection) in the framework of a project involving an A-DInSAR study [37]. These
different case studies provided the opportunity to compare the results for each AOI and relate them to
the morphological characteristics of the AOIs, in order to draw general considerations.

Moreover, the A-DInSAR analysis has been used to verify and possibly update the state of
activity of the known landslides. These latter have been mapped in the Italian Landslide Inventory
IFFI produced by the Italian Institute for Environmental Protection and Research [38–40]. The IFFI
inventory provides a large amount of data performed on a reference scale of 1:10,000, employing aerial
photointerpretation, field surveys, and local databases, but it needs to be integrated, validated and
updated in order to support effectively the risk mitigation strategies. The version of the catalogue that
has been used, is the IFFI of 2007, which preceded the time period investigated through satellite data.

2. General Setting of the Study Areas

In this work, we studied 26 areas in Lombardy Region of Italy (AOIs; Figure 1) subjected to slope
instability phenomena, and representing critical zones involving known landslides, mapped in the
Italian Landslide Inventory (the so called IFFI inventory) [39]. The 26 AOIs have been indicated by the
regional authority for environmental protection in accordance with the land management needs of the
Lombardy Region.
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22 AOIs occur in the Alpine chain and are located on the tectonic unit of Southern Alps (a),
while 4 AOIs are located in the southernmost part of Lombardy the Oltrepò Pavese area (b), in the
Apennine domain.

(a) The Southern Alps (Figure 2) of Lombardy Region consist of a minor, shallower
(non-metamorphic) and younger (Neogene) thrust-and-fold belt displaced to south (Adria-verging),
which developed within the Alpine hinterland of the Adriatic upper plate, far from the oceanic
suture [41]. The Southern Alps are characterized by an Early Permian-Palaeogene succession of marine
sediments since the Early Triassic [42], with a prevalence of carbonates (limestones, dolomites, and
marls) and turbiditic sequences that outcrop in the Prealpine margin. The types of landslide that
mainly occur in this sector are the translational slides [22] and debris flows. The area between the
Pre-Alps and the Po Plain is characterized by widespread glacial, alluvial and fluvio-glacial deposits,
which are affected generally by minor instability phenomena such as superficial sliding and collapses
along the main escarpments [43].

(b) The Oltrepò Pavese, in Southern Lombardy, corresponds to the northwestern sector of the
Apennines (Figure 2), characterized by a complex geological and structural setting [5]. The most
widespread lithologies are clay-rich sedimentary formations of Cretaceous-Pliocene age [44]. The elevation
ranges between 200 m and 1725 m a.s.l., and the slopes are in general slightly inclined (slope angles <20◦);
steeper slopes correspond to rock outcrops (limestone in the southern part and sandstone in the central
part). The northern sector of the Oltrepò Pavese belongs to the Po River Plain, characterized by fluvial
terraces and piedmont alluvial fans [5]. The geomorphological setting and the landscape evolution are
essentially controlled by mass movements. Earth-slides and debris flows [22] occur frequently where the
marine sediments and the marly-arenaceous deposits of the Appenine Units crops out [5].
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In the most recent version of the IFFI database (Regione Lombardia, 2012) [40] the number of
landslides mapped in the Lombardy region is 148.373, which correspond to anarea of over 4000 km2.
The greater density of the phenomena is found in the area of the Oltrepò Pavese and in the northernmost
part of the region (Alta Valtellina and Valmalenco; Carelli, 2007, [43]). The frequency of landslides
types in Lombardy are summarized in the histogram of Figure 3.

The most frequent type of landslide (about 37%) of Lombardy is earth or debris flow, involving
superficial deposits, that are very common in the Alps and in the Pre-Alps slopes and torrent
channels [40], and are often triggered by heavy rainfalls. The rock falls are also very widespread in
the Lombard Alps, where steep and fractured cliffs occur, and represent about the 28% of the region’s
landslides, while the earth and debris slumps and slides (both rotational and translational movements)
represent the 20.6%. The areas subject to widespread shallow landslides are almost 6% of the total
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landslides in the region. Toppling and collapses (3.1% of occurring landslides) usually occur on rock
slopes involving limited portions of territory [40].

Geosciences 2019, 9, x FOR PEER REVIEW 5 of 23 

 

 

Figure 3. Landslides type in Lombardy Region (Italy). Data from Regione Lombardia, [40] in the 
framework of IFFI project. 

The most frequent type of landslide (about 37%) of Lombardy is earth or debris flow, involving 
superficial deposits, that are very common in the Alps and in the Pre-Alps slopes and torrent channels 
[40], and are often triggered by heavy rainfalls. The rock falls are also very widespread in the 
Lombard Alps, where steep and fractured cliffs occur, and represent about the 28% of the region's 
landslides, while the earth and debris slumps and slides (both rotational and translational 
movements) represent the 20.6%. The areas subject to widespread shallow landslides are almost 6% 
of the total landslides in the region. Toppling and collapses (3.1% of occurring landslides) usually 
occur on rock slopes involving limited portions of territory [40].  

As regards the state of activity of landslides in Lombardy Region, 61% of the phenomena 
assessed on a morphological basis, are active/reactivated/suspended. About the 34% of the landslides 
are quiescent, 2.5% are not determined (category: Undefined), and the remaining part (1.6%) is 
inactive. Only 0.2% of the surveyed landslides has been stabilized [40]. 

Some specific information about the AOIs has been extracted from the available thematic maps 
and databases, such as the geological map of Lombardy (scale 1:250,000), the land use map of the 
region (from CORINE Land Cover project), the SRTM (Shuttle Radar Terrain Model) with 30 × 30 m 
resolution, and the Italian Landslide Inventory IFFI [39,40]. This latter provides a standardize 
database with information about the landslide phenomena. 

2.1. AOIs Description 

The 26 AOIs studied in this work through satellite SAR interferometry, represent a very 
heterogeneous sample of zones with different settings: The AOIs have indeed different shape and 
size and differ in terms of land use and number of mapped landslides, thus providing a statistically 
sounding dataset. In fact, according to IFFI inventory, some AOIs include only few mapped 
landslides (or only one landslide), while others AOIs include several instability phenomena, with 
different state of activity. In Figure 4, three very different examples of AOIs are showed: ID_2 
(Popoia) includes only one active landslide and a large part of the area is not affected by previously 
mapped instability phenomena; ID_5 (Paisco Loveno) includes a big landslide that covers almost the 
whole extent of the AOIs; ID_20 (Gandellino) includes many different landslides IFFI polygons, 
showing different state of activity. 

Figure 3. Landslides type in Lombardy Region (Italy). Data from Regione Lombardia, [40] in the
framework of IFFI project.

As regards the state of activity of landslides in Lombardy Region, 61% of the phenomena assessed
on a morphological basis, are active/reactivated/suspended. About the 34% of the landslides are
quiescent, 2.5% are not determined (category: Undefined), and the remaining part (1.6%) is inactive.
Only 0.2% of the surveyed landslides has been stabilized [40].

Some specific information about the AOIs has been extracted from the available thematic maps
and databases, such as the geological map of Lombardy (scale 1:250,000), the land use map of the
region (from CORINE Land Cover project), the SRTM (Shuttle Radar Terrain Model) with 30 × 30 m
resolution, and the Italian Landslide Inventory IFFI [39,40]. This latter provides a standardize database
with information about the landslide phenomena.

AOIs Description

The 26 AOIs studied in this work through satellite SAR interferometry, represent a very heterogeneous
sample of zones with different settings: The AOIs have indeed different shape and size and differ in terms
of land use and number of mapped landslides, thus providing a statistically sounding dataset. In fact,
according to IFFI inventory, some AOIs include only few mapped landslides (or only one landslide),
while others AOIs include several instability phenomena, with different state of activity. In Figure 4,
three very different examples of AOIs are showed: ID_2 (Popoia) includes only one active landslide
and a large part of the area is not affected by previously mapped instability phenomena; ID_5 (Paisco
Loveno) includes a big landslide that covers almost the whole extent of the AOIs; ID_20 (Gandellino)
includes many different landslides IFFI polygons, showing different state of activity.

Although they are very common in Lombardy region, rock falls were not selected for this study,
because, generally, are not suitable to be analyzed through satellite radar interferometry. The instability
phenomena affecting the 26 AOIs of this study, are represented mainly by rotational/translational slides
and by deep-seated gravitational slope deformations (DSGSD), that correspond respectively to about
the 48% and the 33% of the case studies. The debris flows correspond to the 10% of landslides mapped
at AOIs, while the other types of landslide represent the remaining cases (9%).
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Figure 4. Areas of interest (AOIs): Three examples that show different situations as regards the presence
of mapped landslides and their state of activity, reported by IFFI catalog [38].

Moreover, according to IFFI inventory, it is possible to observe how much territory of each AOIs
is affected by slope instability. Only 7 AOIs are totally inscribed in one IFFI landslide polygon (i.e.,
about the 100% of the AOI surface is affected by a mapped landslide), but the 54% of the AOIs has
about the 40% of its area affected by a landslide (Figure 5).
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As regard the land use, the studied AOIs are mainly characterized by forests or grasslands; both
bedrock and talus are present in the highest parts of the mountains. As shown in Figure 6, the forest
represents about the 60% of the total area extent (which correspond to the sum of all AOIs areas), while
the urbanized zones are poorly represented in the AOIs territories.
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3. Materials and Methods

Over the last two decades, classical Differential SAR interferometry (DInSAR) analyses, performed
by coupling SAR images to generate differential interferograms have been largely adopted as a tool to
investigate ground deformation processes.

This technique exploits the information contained in the phase of the signal of two complex SAR
images acquired in different times over the same area, used to form the so-called interferogram [46].

The differential interferogram is formed by subtracting the topographic contributions from the
interferometric phase, by using a reference DEM (Digital Elevation Model), thus allowing retrieval of
the phase component related to displacement.

The deformation is highlighted by the presence of the so-called “interferometric fringes”. The color
cycle of one fringe (from red to blue) corresponds to a displacement of half of the wavelength. Thus,
considering the characteristics of the Envisat and COSMO-SkyMed satellites, one fringe corresponds
to a displacement of about 2.8 cm and 1.5 cm respectively, in the Line of Sight (LOS) direction.

However, some limitations affect DInSAR, such as artifacts due to the atmosphere phase screen
(APS), the presence of residual topographic contributions, and decorrelation effects (both temporal and
geometrical), which can prevent the observation of displacement information or reduce the accuracy of
the results.

Advanced DInSAR (A-DInSAR) techniques represent an effective solution to reduce some
of the limitations of standard DInSAR analysis [27,47–50]. All A-DInSAR approaches are basically
characterized by the exploitation of large, multi-temporal data-stacks to generate several interferograms,
thus achieving higher redundancy of interferometric results. One of the most known approaches is
the so-called Persistent Scatterers Interferometry (PSI), which is based on the information achieved
by pixels of the SAR images characterized by high coherence over long time intervals [27,47,48,50].
Generally, man-made structures, such as buildings, bridges, dams, railways, or pylons, or natural
elements, such as outcropping rocks or homogeneous terrain areas, can represent good Persistent
Scatterers (PSs).

Standard PSI is based on the generation of interferograms using a common master SAR image.
Point-like scattering pixels remain coherent for the whole observation period of time and are not affected
by temporal and geometrical decorrelation effects. The interferograms are generated using image
pairs characterized by long temporal and normal baselines. Using this principle, almost all images
that constitute a given stack can be used to perform multi-temporal A-DInSAR analyses. A collection
of images that can be processed together in an A-DInSAR analysis is called an interferometric stack.
In order to retrieve the time series of displacement, a minimum number of 15–20 images collected with
the same acquisition geometry is required [46], however, the larger the number of available scenes the
better the quality of the average velocity estimation and of the time series of displacement.

The general limitations of satellite SAR interferometry are well known in literature [28,51] and
are related to methodology of SAR image processing, to the characteristics of space born sensors
(geometry of acquisitions, used wavelength, revisiting time) as well as topography and the land use.
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In fact, the terrain elevation results in geometric distortions in the SAR images [52], and this affects the
ground resolution cell. Foreshortening effect cause a “compression” in the slopes that are facing the
radar sensor. The so-called layover occurs for the slopes that are inclined away from the sensor with
an angle slope higher than the incidence angle of the LOS, i.e., the sensor firstly receives the signal
reflected by the top and then the signal coming from the bottom of the slope. Finally, shadow effects
occur when an object on the ground prevents the radar signal to reach other ground scatterers and no
measurements are possible on those areas. Therefore, the best geometry to detect PSs in mountainous
areas is where the slope is parallel to the satellite LOS, e.g., Notti et al. [14].

As regards the limitations of the A-DInSAR due to the land use, this technique is not suitable
over highly vegetated areas, or water bodies, as only radar targets that do not change their reflective
signature over time can be analyzed.

The A-DInSAR analyses have been performed using 181 COSMO-SkyMed (Italian Space Agency,
ASI) images for the time span from 2010 to 2014. The main characteristics of the data and the footprints
of the COSMO-SkyMed images are showed in Figure 7.
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The time span 2003–2009 is covered by an Envisat (European Space Agency, ESA) data stack.
These data were processed in the framework of the Not-Ordinary Plan of Remote Sensing project
(promoted by the Italian Ministry of the Environment and for Protection of the Land and Sea) and are
available online at the Italian National Geoportal webpage [53]. The use of this source of information
in addition to the COSMO-SkyMed data, allowed to exploit a greater number of A-DInSAR results and
to get more reliable statistic results. Historical Envisat data were processed with the PSI technique [48],
and in the framework of this study, these results have been consulted on the Geoportal webpage.
COSMO-SkyMed stacks were processed with the multi-temporal A-DInSAR interferometric processing,
including PSI [47,54] for the aims of this work.For one of the AOIs (ID_13) no satellite data were
available, and for ID_12 and ID_20 only Envisat data were present.

In Figure 8, a flowchart showing the different main steps and aims of the study is represented.
The used methodology belongs to a comprehensive A-DInSAR study and can be resumed as follows:
(i) The pre-processing phase, (ii) the processing and (iii) the post-processing analysis.
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Figure 8. Methodology and the main steps of this work: (i) Pre-processing phase, (ii) the processing
and (iii) the post-processing analysis. The last two boxes in grey represent the validation phase, that is
out the scope of this work.

(i) The pre-processing phase focused on the prediction of PSs distribution, by observing the
physical characteristics of the AOIs, such as the land use, the aspect and the slope angles of the
mountain and hilly regions where the 26 AOIs are located. This step lead to the selection of the most
favorable dataset (ascending or descending) respect to the investigated slopes.

(ii) The A-DInSAR processing phase allows to generate velocity maps and time series of displacement
of radar targets (measurement points or PSs). Processing is aimed to reduce the effects of spatial
and temporal decorrelation, thus increasing the number of reliable measurement points. Moreover,
the performed workflow has been adapted to the specific cases, the characteristics of the AOIs and the
evolution of observed processes. A reference point (zero deformation points) was selected for each AOIs,
considering the phase stability of the PS candidates.

The main features and of the Envisat and COSMO-SkyMed data and results are resumed in Table 1.
The Envisat and COSMO-SkyMed radar targets are detected with different amounts, distribution and
density. This is mainly due to the different characteristic of the sensors: Envisat had medium spatial
resolution (~25 m) sensor, operating in C band (wavelength = 5.6 cm), while COSMO-SkyMed satellites
are equipped with high-resolution (~3 m) sensors, operating in X-band (wavelength = 3.1 cm). Sensors
with short wavelengths (X-band) can detect smaller scatterers and provides a higher spatial resolution
and increases the PS density.

(iii) The post-processing step consisted in the comparison in GIS environment of the A-DInSAR
results with the IFFI landslide inventory, in order to update the landslide inventory and in particular
the state of activity of the landslides that occur within the AOIs.
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Table 1. SAR data used in this work and general processing results.

Satellite Envisat COSMO-SkyMed

Sensor’s band C-band X-band
Acquisition geometry Asc. + Desc. Asc. + Desc.

Look angle (◦) 23 34
Time span 2003–2009 2010–2014

No of images - 181
No of PSs for Asc. (sum of AOIs) 417 6753
No of PSs for Desc. (sum of AOIs) 873 5545
Mean PS density for Asc. (PS/km2) 27.3 526.1
Mean PS density for Desc. (PS/km2) 46.1 525.8

Velocity range for Asc. (max; min) (mm/yr) −5.10; 0.24 −10.77; 0.34
Velocity range for Desc. (max; min) (mm/yr) −12.91; 0.61 −7.35; 3.06

4. Results

The outputs of this work result from the different steps belonging to a comprehensive A-DInSAR
study: (i) The pre-processing phase, (ii) the A-DInSAR processing, and (iii) the post-processing analysis.

(i) Pre-processing phase. As stated before, A-DInSAR allows to select PSs over objects like buildings,
infrastructures, or rocks, that provide a stable electromagnetic response to the satellite radar signal,
during the whole monitoring period. As shown in Figure 6, the land use is in general not favorable
for detecting persistent scatterers, as vegetated areas represent about the 90% of the territory, while the
urbanized zones are poorly represented in the AOIs territories.

The aspect and slope maps have been extracted from a DEM (Digital Elevation Model) in a GIS
(Geographic Information System) environment and the values were classified according to the classes
shown in Figure 9. As regards the aspect, most AOIs look towards the western quadrant (7 AOIs are
faced to SSW-SW and 8 AOIs are oriented about towards W). As regard the slope, the 65% of the AOIs
are characterized by angles between 18◦ and 32◦, while 6 AOIs are gently inclined (slope lower than
18◦) and only 3 are located on very inclined slopes (>32◦).
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(ii) A-DInSAR processing. For the aim of this work, A-DInSAR processing provided two main
results: the number (and therefore the density) of radar reflectors (PSs) and the mean LOS velocity
values of each radar reflectors.

The PSs coverage for Envisat and COSMO-SkyMed satellites is described in Table 1 where the
number of PSs is showed as the total sum for all the investigated AOIs. In Table 2, the number of
PSs and the related density (PSs/Km2) are showed for each AOIs. These values are significantly
higher for the COSMO-SkyMed data, mainly due to the better resolution described in the previous
paragraph. In general, the higher the PSs number, the more reliable the results are. An arbitrary
minimum threshold of 10 PSs has been set, in order to discard the cases (highlighted in red in Table 2)
where very few PSs have been detected. Below this threshold, the results will not be considered as
reliable and will not be used in the following work steps.

Table 2. Number of PSs and PSs density (PSs/Km2) resulting from A-DInSAR analysis for each AOIs.
Red values indicate N. of PSs <10. The last two columns summarize the aspect and slope classes
described in Figure 9 for each AOIs.

AOIS ENVISAT (2003–2009) COSMO-SkyMed (2010–2014)
ASPECT (◦) SLOPE

(◦)ID Name N. of PSs
(Desc.)

PSs/Km2

(Desc.)
N. of PSs

(Asc.)
PSs/Km2

(Asc.)
N. of PSs

(Desc.)
PSs/Km2

(Desc.)
N. of PSs

(Asc.)
PSs/Km2

(Asc.)

ID_1 ACQUEBUONE 90 33.43 / / / / 848 314.96 0–22.5 N–NNE 18–25
ID_2 POPOIA 27 48.66 20 36.05 / / 375 675.88 202.5–225 SSW–SW 18–25
ID_3 VAL VEDETTA 4 7.17 / / / / 15 26.88 292–315.5 WNW–NW 25–32
ID_4 GIUBEZZA 4 5.20 49 62.02 / / 938 1187.20 112.5–135 ESE–SE 11–18

ID_5 PAISCO
LOVENO / / 25 34.60 / / 505 698.97 157.5–180 SSE–S 18–25

ID_6 GRUMELLO / / 13 12.21 / / 250 234.72 157.5–181 SSE–S 25–32
ID_7 TROBIOLO 12 19.33 1 1.61 / / 420 676.49 292.5–315 WNW–NW 32–39
ID_8 ZINVILL / / 20 27.64 / / 561 775.38 112.5–135 ESE–SE 32–39
ID_9 DOSSENA 78 136.62 31 54.30 / / 945 1655.24 202.5–225 SSW–SW 18–25
ID_10 PAGAFONE 143 98.96 58 40.14 / / 1481 1024.85 202.5–225 SSW–SW 11–18
ID_11 CATASCO 40 45.09 83 93.56 1362 1535.27 / / 157.5–180 SSE–S 18–25

ID_12 SAN
NAZZARO 78 157.12 16 32.23 / / / / 202.5–225 SSW–SW 25–32

ID_13 BEDOLESSO / / / / / / / / 0–22.5 N–NNE 25–32
ID_14 CORTENOVA 28 21.56 / / 987 760.10 77 59.30 225–247.5 SW–WSW 18–25
ID_15 GARAVINA 16 20.59 6 7.72 91 117.12 102 131.28 0–22.5 N–NNE 25–32

ID_16 TORRIONI Di
R. 14 34.32 / / 239 585.96 / / 202.5–225 SW–WSW 46–53

ID_17 RONCO 3 17.86 / / 24 222.88 5 16.43 0–22.5 N–NNE 18–25

ID_18 SASSO DEL
PEC. 3 1.10 35 12.81 163 59.65 355 129.92 67.5–90 ENE–E 11–18

ID_19 GERO
BARCONE 65 72.31 15 16.69 990 1101.33 644 716.42 202.5–225 SSW–SW 25–32

ID_20 GANDELLINO 38 27.38 / / / / / / 247.5–270 WSW–W 25–32
ID_21 SORIASCO 25 77.48 13 40.29 228 706.59 / / 202.5–225 SSW–SW 4–11
ID_22 RUINELLO 51 23.29 29 13.24 511 233.38 / / 112.5–135 ESE–SE 4–11
ID_23 VIGNOLA 4 17.37 / / 23 214.86 / / 202.5–225 SSW–SW 18–25
ID_24 POGGIO FER. 11 25.21 1 2.80 116 324.96 / / 270–292.5 W–WNW 11–18
ID_25 RONCAGLIA 29 18.17 2 1.25 / / 102 63.91 292.5–315 WNW–NW 18–25
ID_26 NOCENO 22 34.71 / / 284 448.11 / / 225–247.5 SW–WSW 25–32

The mean deformation rates in millimeter per year for each AOIs and the related standard
deviation values are reported in Table 3. Given the sensitivity of the sensor and the standard deviation
analysis of the velocity values for the stable areas, the velocities among −1.5 and 1.5 mm/yr have been
considered as not moving. As stated in the previous paragraph, the perimeter of each AOI doesn’t
correspond entirely to a landslide but can also include stable zones. For this reason, the mean velocity
values of Table 3 have been calculated in subsets of PSs selected on zones that showed deformation
(i.e., velocity < −1.5 or > 1.5).

The velocity values have been considered reliable when are retrieved on a PSs number >10.
The cases below this threshold, have not be considered for the interpretation of results and are
represented with a red x in Table 3.

Some examples regarding the spatial distribution of A-DInSAR results derived from COSMO-SkyMed
and Envisat sensors are shown in Figure 10, where three AOIs and their maps of displacement are
represented. The PSs characterized by negative velocity values (in red colors) are moving away from the
sensor, while PSs with positive velocities (in blue) are moving towards the sensor. The PSs with velocity
among −1.5 and 1.5 mm/yr (green color) have been considered as stable.
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Table 3. Summary and statistics of the A-DInSAR results with respective reference years, and the related updating of landslide inventory (IFFI, 2007). State of activity
categories of the IFFI inventory: (A) activated, reactivated, suspended; (Un) undefined; (Q) quiescent. Vlos DESC: Velocity (LOS direction) of the descending dataset;
Vlos ASC: Velocity (LOS direction) of the ascending dataset; σ (Vlos): standard deviation of the velocity values. Red x: not reliable velocity values, i.e., values
calculated on a N◦ PS ≤10; slash: satellite data not available. Green: possibility to update the inventory; yellow: reliable data but insufficient information to update the
inventory; red: data not available or failure to update inventory.

AOIs Literature Information Envisat (2003-2009) COSMO-SkyMed (2010-2014) Landslide Inventory Updating State of
Activity

UpdatingID Name Area
(km2)

% Area
Affected by
Landslide

Sate of
Activity

(IFFI)

VLOS
Desc.

(mm/yr)

σ (VLOS
Desc.)

VLOS
Asc.

(mm/yr)

σ

(VLOS
Asc.)

VLOS
Desc.

(mm/yr)

σ

(VLOS
Desc.)

VLOS
Asc.

(mm/yr)
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BARCONE 0.90 81.1 Un. 0.36 0.52 −0.24 0.35 −0.22 0.59 0.09 0.63 yes no no yes

ID_20 GANDELLINO 1.40 67.9 Un. −5.04 2.62 / / / / / / yes yes no no

ID_21 SORIASCO 0.32 20.6 Q −0.53 0.96 −0.28 0.71 −0.23 0.74 / / yes no no yes

ID_22 RUINELLO 2.20 63.6 Q −0.31 1.33 −1.73 1.62 3.06 0.43 / / yes yes yes yes

ID_23 VIGNOLA 0.11 65.5 Q x x / / −0.72 0.75 / / yes no no no

ID_24 POGGIO FER. 0.36 50.0 A −3.68 4.12 x x −7.35 0.46 / / yes yes yes yes

ID_25 RONCAGLIA 1.60 100.0 Un. −12.91 4.55 x x / / -2.50 0.58 yes no no no

ID_26 NOCENO 0.63 15.9 Un. −0.41 1.62 / / −2.77 0.40 / / yes yes no yes
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Figure 10. Examples of A-DInSAR results for Envisat and COSMO-SkyMed datasets; (a,b) Envisat
descending and COSMO-SkyMed descending respectively, for the AOI ID_14; (c,d) Envisat descending
and COSMO-SkyMed ascending respectively, for the AOIs ID_1 and ID_25. The PS mean velocity
values are measured along the satellite LOS. The Envisat data are form the Italian Ministry of the
Environment and for Protection of the Land and Sea [53].

(iii) Post-processing analysis. The landslide inventory can be updated through three different
specific information deduced by A-DInSAR results interpretation, that are: (1) A reliable velocity value
of the landslide for the analyzed time span; (2) the redefinition of the landslide boundary; (3) the
detection of new deformation phenomena. For each AOIs, the possibility to retrieve this information
is summarized in the last 4 columns of the Table 3. The colors of velocity and of the state of activity
columns are described in the discussion.

5. Discussion

The results of this work provide the opportunity to verify how the satellite SAR acquisition
geometry and the morphological characteristics of the AOIs (land use, slope angle, slope dip orientation)
affect the PSs coverage and the performance of A-DInSAR technique, by using 26 case studies (AOIs)
in Lombardy region. Moreover, this work allows to consider the success rate of A-DInSAR analysis
for updating landslide inventory in such mountainous region, with a limited set of available satellite
SAR data.

As only relatively slow landslides (<100 mm/yr) can be detected and monitored effectively by PSI
analysis, the AOIs of Lombardy Region have been selected in zones affected by rotational/translational
slides and by deep-seated gravitational slope deformations (DSGSD). In general, for the other type of
landslides (i.e., rock fall) the PSI data maybe in some cases considered as precursor of rupture [31],
but usually are not suitable for analyze fast processes.

The land use strongly influences the detection of stable reflectors (rocks and debris, buildings
or other infrastructures, like pylons, railways, etc.), and in our study this represented and important
limitation for all the case studies (more than 80% of the territory of interest is covered by Forest Land:



Geosciences 2019, 9, 364 14 of 20

60.6% and Grassland: 22.4%). For this reason, in fact, in some cases only a few PSs have been identified
and this was not considered enough to assess the velocity of the deformation phenomena (if any).

The other typical limitations of satellite SAR interferometry are the geometric distortion effects
(layover, foreshortening and shadow effects) that depend upon the slope angle and the slope dip
orientation and can prevent the PSs being detected [6,32]. In this regard, we compared the results of
Envisat and COSMO-SkyMed, for both ascending and descending acquisition modes and then we
analyzed them in relation with the morphology or physical characteristics of the AOIs. Frist of all,
we observe that COSMO-SkyMed allows to identify more PSs on the ground with respect to Envisat
(it is possible to compare the results of the two datasets in Table 2, where the number and the density
of PSs for both Envisat and COSMO-SkyMed are shown). Beside the role played by the different
spatial resolutions of the two sensors, also the incidence angle of the satellite LOS can influence the
effectiveness of the technique. In fact, the use of a high incidence angle (e.g., 34◦) of COSMO-SkyMed,
reduces layover and foreshortening with a little increase in the shadowing effect, and can better detect
movements with a significant horizontal component (in particular in E-W direction).

In Table 2, the number of PSs for each AOIs is compared with the aspect and the slope. It is worth
to note that the AOIs with aspect about north and south are characterized by a limited number of PSs,
for all the data-stacks.

Moreover, in general, the satellite acquisition geometry is not favorably oriented to retrieve
measurement in north-south direction, both for ascending and descending modes, as SAR satellites
have a quasi-polar orbit and a right looking. In fact, SAR sensor can only measure deformation
along the LOS direction: Only the component of the movement projected along the LOS can be
measured. The slopes with aspect towards north or south can’t be projected along the LOS as are
approximately parallel.

For the same reason, ascending geometry is favorable for analyzing slopes with aspect towards
west, obtaining many measurement points, whereas the ascending geometry works better for slopes
facing to the east [33]. For the AOIs analyzed with both ascending and descending datasets, has been
possible to verify the effectiveness of both acquisition geometries, according to the AOI’s aspect.
The comparison of the two results has been possible for 19 cases: 14 couples of geometries for Envisat
and 5 for COSMO-SkyMed (as showed in Table 4). The general rule of SAR acquisition geometry can
be confirmed in most cases: 16 AOIs among 19 (in green in Table 4), i.e., about the 84% of the cases
analyzed with ascending and descending.

This is highlighted in the histograms of Figure 11, where the number of PSs of COSMO-SkyMed
and Envisat data-stacks is showed with the aspect for each AOIs. In the horizontal axis, the AOIs
are ordered according to the aspect direction, from north in a clockwise direction (east and west are
ideally indicated in the histogram). As stated before, generally for aspect facing east (left side of
the histograms) the results of descending dataset allow to retrieve a larger number of PSs, and for
aspect facing west (right side of the histograms), the results of ascending dataset allow to retrieve
a larger number of PSs. The results that don’t confirm this general outcome (i.e., the cases in which
were collected more PSs by the theoretically unfavorable acquisition geometry) are highlighted by
black ellipsis in the histograms, the same cases indicated in red in Table 4 and correspond to one
case of the COSMO SkyMed dataset (ID_17), and two cases of the Envisat dataset (ID_15 and ID_22).
This could be due to typical characteristics of the study areas, as slope and aspect are not uniform in
a natural slope, determining peculiar settings, roughness and counterslopes. Therefore, many PSs can
be retrieved in some small sectors of the AOI with peculiar condition of slope and aspect [7], which
can assume favorable orientation. Moreover, a very low slope angle (topography almost flat) can
practically eliminate the influence of the aspect.

Several predictive models to improve the use of Persistent Scatterers (PSs) techniques for landslides
study and to forecast the potential PSs distribution have been proposed in the past years [7,12,30,34,35,51,55].
The natural roughness, the variability of the slope topography and orientation and the big number of
features that can affect the radar signal response in a hilly and mountainous region, as for example the
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occurrence of vegetated areas or the roughness caused by man-made structures, make it difficult to apply
predictive model reliably. In general, the use of both descending and ascending geometries, can prevent
problems of lack of measurement points in slopes and in complex and steep ground morphologies, and
is useful to retrieve the real displacement vector of a landslide. However, a preliminary study of a large
number of landslides can benefit of a single-geometry A-DInSAR study: The pre-processing analysis
of the aspect setting, can guide the selection of the better oriented satellite geometry, ensuring a greater
amount of measurement points. In this study, indeed, we observe that the expected favorable geometry
(i.e., ascending for slopes facing east and descending for slopes facing west) provided a more reliable result
in about the 84% of the case studies.

Table 4. Comparison of the A-DInSAR results for the AOIs analyzed with both ascending and
descending datasets. Green color indicates the cases in which the descending geometry retrieves
a larger number of PSs on slopes with aspect towards west, and cases in which the ascending geometry
retrieves a larger number of PSs on slopes with aspect towards east. Red color indicates the cases where
the comparison of results doesn’t confirm this general trend about SAR acquisition geometries.

AOIs Envisat (2003–2009) Aspect (◦) Slope (◦)

ID Name No PSs
(desc)

PSs density
(PS/km2)

N◦PSs
(asc)

PSs density
(PS/km2)

ID_2 POPOIA 27 48.66 20 36.05 202.5–225 SSW-SW 18–25

ID_4 GIUBEZZA 4 5.20 49 62.02 112.5–135 ESE-SE 11–18

ID_7 TROBIOLO 12 19.33 1 1.61 292.5–315 WNW-NW 32–39

ID_9 DOSSENA 78 136.62 31 54.30 202.5–225 SSW-SW 18–25

ID_10 PAGAFONE 143 98.96 58 40.14 202.5–225 SSW-SW 11–18

ID_11 CATASCO 40 45.09 83 93.56 157.5–180 SSE-S 18–25

ID_12 SAN
NAZZARO 78 157.12 16 32.23 202.5–225 SSW-SW 25–32

ID_15 GARAVINA 16 20.59 6 7.72 0–22.5 N-NNE 25–32

ID_18 SASSO DEL
PEC. 3 1.10 35 12.81 67.5–90 ENE-E 11–18

ID_19 GERO
BARCONE 65 72.31 15 16.69 202.5–225 SSW-SW 25–32

ID_21 SORIASCO 25 77.48 13 40.29 202.5–225 SSW-SW 4–11

ID_22 RUINELLO 51 23.29 29 13.24 112.5-135 ESE-SE 4-11

ID_24 POGGIO FER. 9 25.21 1 2.80 270-292.5 W-WNW 11-18

ID_25 RONCAGLIA 29 18.17 2 1.25 292.5-315 WNW-NW 18-25

AOIs COSMO-SkyMed (2010–2014) Aspect (◦) Slope (◦)

ID Name N◦ PSs
(desc)

PSs density
(PS/km2)

N◦PSs
(asc)

PSs density
(PS/km2)

ID_14 CORTENOVA 987 760.10 77 59.30 225–247.5 SW-WSW 18–25

ID_15 GARAVINA 91 117.12 102 131.28 0–22.5 N-NNE 25–32

ID_17 RONCO 24 222.88 5 46.43 0–22.5 N-NNE 18–25

ID_18 SASSO DEL
PEC. 163 59.65 355 129.92 67.5–90 ENE-E 11–18

ID_19 GERO
BARCONE 990 1101.33 644 716.42 202.5–225 SSW-SW 25–32
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As confirmed in several works, A-DInSAR analysis can be used for landslide inventories updating
and can be integrated with field surveys and conventional thematic data for a correct results application
and interpretation. In this work, the A-DInSAR outputs allowed to observe several zones affected
by active landslides, and therefore to validate and update the landslide inventory. Several landslides
considered as active, reactivated or suspended have been confirmed to be affected by deformation
while, in other cases, new deformation phenomena have been detected. An example is showed in
Figure 12: The velocity values of some PSs of ID_1 are up to −10 mm/yr (red color), showing that the
landslide is probably active during the time span of COSMO-SkyMed data. Moreover, the landslide
perimeter could be re-drawn according to the PSs velocity.
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Based on similar considerations for each area of study, this work had the purpose of detailing and
quantifying the new data provided by A-DInSAR analysis. Compared to other works of literature
such as [33], we specify which kind of information can be updated on each AOIs: the velocity value,
the landslide perimeters, the detection of new landslides. As introduced in the previous paragraph,
this information is summarized in the last 4 columns of the Table 3, and the “velocity” and the “state
of activity” are highlighted with colors in order to show the effectiveness and the quality of the
results, and in particular: Green correspond to reliable values, with possibility to update the landslide
inventory; yellow represents reliable data, but the retrieved information is not robust enough to update
the inventory; red indicates that the satellite data was not available or that the results can’t update
the inventory. In most of the cases, when a reliable velocity value is obtained but it is indicated in
yellow in the column of “velocity”, it means that the retrieved velocity measurements are not optimally
distributed in the area of interest. This is commonly due to the land use of these AOIs, characterized by
forest or grassland, where PSs are concentrated only on small urbanized areas on the edges of the AOIs
or on isolated buildings. Therefore, the A-DInSAR technique worked in principle but cannot be used
for studying the landslides of interest. Consequently, the velocity values in yellow not allow to update
the state of activity of the landslide inventory and this is indicated in red in the last column of Table 3.

The landslides perimeters can be updated and modified thanks to the A-DInSAR results.
In particular, this is possible when some moving PSs lay over the same slope, outside and near
the perimeter of the previously mapped landslides. An example can be represented by some red
PSs in the middle of AOI ID_1 (Figure 12): Here, the previously mapped IFFI polygons could be
reviewed following the A-DInSAR results, thus including also the area where the red PSs just outside
the landslide boundary are located.

The “possible new landslides” are considered in this work, as deformation zones that lay inside
the AOIs boundaries, but that are not included in a previously mapped landslide of IFFI catalogue.
In addition, these new detected deformation zones, are not so near, nor in the same slope of the
previously mapped landslides and should not lead to a modification of the perimeter, but rather to
hypothesize a new landslide.

The retrieved velocity values are technically reliable for all the case studies, except for ID_13 (for
which there was no satellite data available). The perimeters of the landslides can be updated for 12
AOIs and 9 new landslides can be inferred. In conclusion, A-DInSAR results can update the state of
activity of the previously mapped landslide on 18 cases among 26 (i.e., about 69%), providing new
qualitative and quantitative data.

6. Conclusions

This work focused on the capabilities of the A-DInSAR technique and on the optimization of its
performances for studying slow-moving landslides, considering some limitations that typically affect
wooded and mountainous region.

On a sample of 26 areas of interest in Lombardy Region (Italy), analyzed through A-DInSAR
technique, the following conclusions have been drawn:

• A-DInSAR analysis in single acquisition geometry, can work properly if the favorable geometry
among descending or ascending is chosen with respect to the slope orientation the aspect of the
study areas. The single geometry analysis can be successfully applied for the preliminary study of
a large number of landslides, or a wide area of interest. About the 16% of information may however
be lost, due to the surface irregularity and roughness of the natural slopes. The topographical
complexity of the slopes makes the models of prediction of PSs coverage unreliable and the simple
rule that ascending acquisition geometry is suitable for E-facing slopes, while descending mode is
used for W-facing slopes is not always verified. For detailed studies, indeed, it is recommended to
use both SAR acquisition geometries;

• A-DInSAR outputs can update the state of activity of the previously mapped landslides in about
almost 70% of the analyzed areas of interest. In particular, these results provide new qualitative
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and quantitative data on the landslides, as well as precise information about the velocity of the
process, and can redraw the landslide perimeters or detect not previously mapped landslides.
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