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Abstract: Ultrasonography is becoming the favored hemodynamic monitoring utensil of emergen-
tologists, anesthesiologists and intensivists. While the roles of ultrasound grow and evolve, many
clinical applications of ultrasound stem from qualitative, image-based protocols, especially for diag-
nosing and managing circulatory failure. Often, these algorithms imply or suggest treatment. For
example, intravenous fluids are opted for or against based upon ultrasonographic signs of preload
and estimation of the left ventricular ejection fraction. Though appealing, image-based algorithms
skirt some foundational tenets of cardiac physiology; namely, (1) the relationship between cardiac
filling and stroke volume varies considerably in the critically ill, (2) the correlation between cardiac
filling and total vascular volume is poor and (3) the ejection fraction is not purely an appraisal
of cardiac function but rather a measure of coupling between the ventricle and the arterial load.
Therefore, management decisions could be enhanced by quantitative approaches, enabled by Doppler
ultrasonography. Both fluid ‘responsiveness’ and ‘tolerance’ are evaluated by Doppler ultrasound,
but the physiological relationship between these constructs is nebulous. Accordingly, it is argued
that the link between them is founded upon the Frank–Starling–Sarnoff relationship and that this
framework helps direct future ultrasound protocols, explains seemingly discordant findings and
steers new routes of enquiry.

Keywords: point-of-care ultrasound; Doppler ultrasound; fluid responsiveness; fluid tolerance;
Starling curve; hemodynamics; physiology; review

1. Introduction

All happy circulations are alike; each unhappy circulation is unhappy in its own way.
That is to say, the circulation in its normal, untroubled state maintains constant blood flow
and pressure to ensure adequate tissue oxygen delivery. On the other hand, hemodynamic
discontent arises from a myriad of insults; when extreme, the circulation cannot suffi-
ciently maintain tissue oxygen supply, which heralds the presence of clinical shock [1]. The
most frequent cause of shock is sepsis, when infection triggers life-threatening organ
dysfunction [2,3]. Though highly mortal [4], early recognition and therapy is associated
with reduced risk of death in sepsis and septic shock [5]. Despite advancements and
regularly updated, international treatment guidelines [6], the optimal therapeutic approach
is controversial [7,8]—especially with regards to intravenous (IV) fluids [9,10].

Early IV fluid resuscitation has been emphasized in all iterations of the Surviving
Sepsis Campaign guidelines [6]. Accordingly, when confronted with signs of tissue hypop-
erfusion, such as confusion, low urine output, tachycardia, hypotension, etc., clinicians
often reach first for IV fluids. Fundamentally, the rationale is to engage the Frank–Starling
mechanism of the heart—augmenting volume to the heart improves volume from the
heart [11]. In turn, increased arterial blood volume raises mean arterial blood pressure (as
a function of vascular impedance); increased arterial pressure then acts as an energy source
for perfusing tissue beds, depending on their local metabolic needs [12,13].
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However, overzealous IV fluid resuscitation is associated with poor patient outcome
and attempts are being made to clarify patient subsets at particular risk [14–18]. Initially,
the invasive monitoring of cardiac filling pressures guided IV fluid administration, but the
central venous pressure (CVP) and pulmonary artery occlusion pressure (Ppao) neither
definitely describe a patient’s volume status, nor how stroke volume (SV) will respond
to additional preload [19]. Countering the shortcomings of invasive monitoring in the
intensive care unit (ICU), critical care echocardiography (CCE) has become the 21st century
monitoring paradigm [20].

The goal, herein, is to concisely review the concepts of ‘basic’ versus ‘advanced’
CCE, as well as fluid ‘responsiveness’, ‘tolerance’ and Doppler ultrasound. Thereafter,
the Frank–Starling–Sarnoff relationship is used to link these concepts, explain common
physiological misconceptions, encourage hemodynamic investigation based upon first
principles and introduce new technology that may enable novel lines of research. To begin
this cursory review, MEDLINE and Google Scholar were searched, using the terms “point-
of-care ultrasound”, or “critical care echocardiography”, or “Doppler ultrasonography”,
or “shock”, from 2015 until present day. Case reports, pediatric studies and lung-focused
publications were excluded, leaving 35 publications for review—these were considered
along with their bibliographies.

2. Basic Critical Care Echocardiography and Its Caveats

Pioneering work in CCE began in the late 20th century [21], forming the foundation
for many of the contemporary protocols that are often designated by catchy mnemonics;
for example, RUSH (rapid ultrasound in shock) [22], FAST (fast assessment in shock and
trauma) [23], ACES (abdominal and cardiac ultrasound in shock) [24], EASy (echocardio-
graphy assessment using subcostal view only) [25] are described. Virtually all of these
approaches are employed to help diagnose the underlying mechanism of shock and, by
extension, direct therapy. As described by Repessé and colleagues [20], most of these proto-
cols classify as ‘basic CCE’ because they are usually morphological, rather than functional,
assessments. In other words, they rely largely upon image-based evaluation, with less
emphasis on quantifiable ultrasound measures (Figure 1).
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Figure 1. Basic ultrasonographic approach to shock. RA and LA are right and left atria; RV and LV
are right and left ventricles. These are simplifications, obstructive shock may be due to pericardial
effusion or tension pneumothorax in addition to pulmonary emboli or severe acute respiratory
distress syndrome (ARDS). Additionally, shock is often multifactorial; e.g., a patient with septic shock
from pneumonia complicated by severe ARDS may have all 4 etiologies occurring in concert.



Med. Sci. 2022, 10, 12 3 of 14

Each of the aforementioned protocols typically begin with a qualitative appraisal of
the inferior vena cava (IVC) and gross approximation of the left ventricular ejection fraction
(LVEF) as important steps to narrow shock etiology (Figure 1). Certainly, structured, quali-
tative, image-based CCE is useful in the differential diagnosis of circulatory failure [26,27],
but extending morphological findings to specific therapy, such as IV fluids, should give the
clinician pause [28]. Basic CCE generally ignores the following fundamental concepts in
cardiac physiology:

(1.) the relationship between cardiac filling and stroke volume (i.e., the Frank–Starling
mechanism) varies significantly, especially in the critically ill;

(2.) the relationship between cardiac filling and total vascular volume (i.e., volume status)
is poor;

(3.) the LVEF is not purely a gauge of cardiac function but rather a measure of energetic
coupling between the ventricle and the arterial load.

Considering the aforementioned, while it is tempting to infer that inspiratory IVC
collapse and/or a normal ejection fraction necessarily indicate IV fluids in circulatory
failure, these assumptions can be wrong. Inspiratory IVC collapse has multiple co-varying
determinants, including changing pleural, abdominal and central venous pressures [29–32].
Assuming that the pleural and abdominal pressures change consistently (within a patient
and between patients) then the primary hemodynamic determinant of IVC collapse is the
right atrial pressure or CVP [33]. As elaborated below, the CVP does not reliably speak to
how the heart will respond to additional IV fluid [34]. Furthermore, the CVP cannot define
total vascular volume (i.e., volume status) [35]. Thus, IVC variation as a surrogate for CVP
is not a definitive guidepost for IV fluid [36].

With respect to the LVEF, because it conveys the interaction between ventricular
function and arterial load, in a patient with depressed inotropy (e.g., septic cardiomyopathy)
and proportionally diminished arterial load (e.g., septic vasodilation), the observed LVEF
can be remarkably preserved [37–39]. Such a patient may not tolerate additional IV fluids,
despite normal-appearing ventricular behavior. Further, LVEF ignores LV relaxation (i.e.,
lusitropy), which can also be deranged in sepsis [40,41]. With impaired LV lusitropy,
the shape of the diastolic pressure–volume relationship is such that incremental volume
significantly augments filling pressure [42]. In these patients, preload risks pulmonary
edema, with little SV benefit [43].

While basic CCE offers rapid, morphological evaluations suitable for narrowing
the differential diagnosis of circulatory failure, using basic CCE for specific therapeutic
direction (e.g., IV fluids) has caveats. To better weigh the risks and benefits of IV fluids,
Doppler ultrasound may be deployed.

3. Doppler Ultrasound

An eponym for the Austrian physicist—Christian Doppler—who first described the
effect, Doppler ultrasound is ordinarily added to conventional, gray-scale, brightness
mode (i.e., B-mode) ultrasound [44]. B-mode is the familiar, imaged-forming ultrasound
that establishes basic CCE, described above. Doppler ultrasound, on the other hand,
takes two general forms—color and spectral. Either of these may be added to B-mode
to generate duplex or triplex ultrasound, depending on the number of components in
the final examination. Color Doppler affords qualitative information on the presence,
location and direction of blood flow. By convention, blood moving away from or towards
the transducer is blue or red, respectively; differences in velocity are graded by color
saturations—increasingly turquoise away from and yellow towards the transducer.

Spectral Doppler quantifies tissue velocity via the Doppler equation. Most commonly,
the tissue of interest is blood; however, other moving tissue, such as cardiac muscle, may
also be targeted [40]. Spectral Doppler measures tissue velocity in centimeters per second
(cm/s) versus time (Figure 2). The area under this velocity–time curve (i.e., the velocity
time integral) is distance, in centimeters (cm). If the distance travelled by blood (i.e., in
cm) is multiplied by the cross-sectional area of the vessel in which the blood moves (i.e.,
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in cm2), the result is volume (i.e., cm3); at the left ventricular outflow tract (LVOT), this
calculation confers SV(Figure 2) [45,46]. Quantifiable change in SV is a powerful tool when
making therapeutic decisions, especially with respect to IV fluids [47].
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Figure 2. Doppler ultrasound of the left ventricular outflow tract; 4 cardiac cycles obtained via
transesophageal echocardiography. The dotted trace is the maximal velocity and the area under that
trace is the velocity time integral (VTI).

Though beyond the scope of this brief introduction, spectral Doppler is obtained by
two fundamentally different methods—continuous wave (CW) and pulse wave (PW) [48].
As the name implies, CW Doppler continuously transmits and receives reflected ultrasound
waves, making it ideal for capturing all populations of moving red blood cells within an
insonation volume. Its continuity also precludes sampling ambiguity, that is, there are no
velocity measurement ‘gaps’ over time. The key draw back to CW Doppler is that it lacks
anatomical resolution; it cannot be directed to a specific depth within the body. Conversely,
PW Doppler has excellent depth resolution; a fixed depth is localized as a function of time
between the pulses. The drawbacks to PW Doppler are the converse of CW. PW does not
capture the entire population of moving red cells and there is velocity sampling ambiguity
(i.e., aliasing) because of the ‘gaps’ inherent to pulsing ultrasound waves. Fundamentally,
this is analogous to Heisenberg’s uncertainty principle—for a moving object, there is a
trade-off between certainty of location and velocity.

4. Advanced Critical Care Echocardiography with Spectral Doppler Ultrasound

Advanced CCE is at the core of functional hemodynamic monitoring (FHM) [20]. FHM
is founded upon measuring the slope of the cardiac function curve [49]. As considered in
more detail below, measuring only cardiac filling pressure (e.g., CVP or Ppao) does not
sufficiently predict how the heart will respond to additional preload [50–53]. Physiologi-
cally, this is because measuring only the x-axis of the Frank–Starling–Sarnoff relationship
(i.e., filling pressure or volume) is agnostic to the y-axis (i.e., SV); accordingly, the slope
(∆y/∆x) cannot be known (Figure 3). Because the clinical question being asked is how
the y-axis (i.e., SV) will change in response to IV fluids, some measure of SV, or surrogate,
must be obtained. As described above, spectral Doppler ultrasound helps achieve this
goal. Accordingly, the addition of Doppler to CCE offers the clinician both functional and
morphological evaluations and is, thus, classified as ‘advanced CCE’ [20].

4.1. Fluid Responsiveness

There are a number of mechanisms by which Doppler ultrasound illuminates the
slope of the cardiac function curve (Figure 3). Fundamentally, these techniques employ
arterial Doppler ultrasound, as either a direct measure—or a surrogate for—changing
SV (i.e., ∆y), in response to preload variation (i.e., ∆x). With this, the advanced critical
care echocardiographer surmises the slope (∆y/∆x). One general approach measures SV
variation in response to cyclical preload changes generated by mechanical ventilation [54].
When the heart is operating on the ascending section (i.e., large ∆y/∆x) of its function
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curve, there is relatively great SV variation during the respiratory cycle; the heart is said
to be ‘preload dependent’. Accordingly, when SV varies significantly during mechanical
ventilation, the clinician is more confident that additional preload will augment SV. On the
other hand, when the heart operates on its flat segment (i.e., small ∆y/∆x), there is less
SV variation during the respiratory cycle and the heart is labeled ‘preload independent’.
When this is observed, the likelihood that SV rises with further IV fluids is small [55]. Both
respiratory variation in peak aortic Doppler velocity [56] and velocity time integral [57]
predict SV response to IV fluids. Importantly, however, there are a number of caveats
when using respiratory variation in SV to infer the slope of the cardiac function curve.
These caveats include the following: active respiratory effort by the patient, relatively small
tidal volume, significant changes in pulmonary (e.g., ARDS) or thoracic (e.g., obesity, open
thorax) compliance, arrhythmia (e.g., atrial fibrillation), elevated right ventricular afterload
and high heart rate to respiratory rate [50].
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details. The graph is split into quadrants highlighting 4 physiological states where changing preload
(∆x, fluid tolerance) compares with changing stroke volume (∆y, fluid responsiveness ). Doppler
surrogates for preload may be right-heart based (e.g., systemic vein Doppler velocimetry, VExUS) or
left-heart based (e.g., pulmonary vein Doppler velocimetry, E/e’ ratio, etc.).

Because SV variation elicited by the respiratory cycle is sensitive to single-beat ir-
regularities, as well as non-standardized pleural pressure change, uniform, provocative
maneuvers that span multiple cardiac cycles address some of these limitations. For instance,
ventilator occlusion tests modify preload via a 15-s hold at end-expiration or with an ad-
ditional hold at end-inspiration [58–60]. These maneuvers increase and decrease preload,
respectively, which when combined with the Doppler assessment of SV, test the slope of
the cardiac function curve. Finally, preload can be increased via a mini fluid challenge or
passive leg raise with simultaneous Doppler SV assessment [61–65], informing the clinician
about the heart’s ability to respond to IV fluids.
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In its purest sense, Doppler evaluation of the cardiac function curve necessitates
calculation of the SV change (i.e., ∆y), which can be done using the LVOT velocity time
integral [63,65], though distal arteries have been studied as SV surrogates, including the
descending aorta [64], carotid [66–68] and femoral arteries [50]. Regardless of which artery
is interrogated, each of the techniques described above quantify only the y-axis of the Frank–
Starling–Sarnoff relationship, while the x-axis (i.e., changing preload, ∆x) is assumed and
unmeasured. Arguably, however, emphasizing only ∆y favors resuscitation strategies
where IV fluid is held, only when SV ceases to increase, instead of when preload (∆x)
intensifies. Consequently, IV fluid provision, agnostic to cardiac filling, imperils venous
congestion. Therefore, there is renewed interest in gauging preload with Doppler ultra-
sound, such that the hemodynamic risk of additional IV fluid is appraised independently
of SV behavior. This emerging application of advanced CCE might be categorized under
the more general term ‘fluid tolerance’, as described next.

4.2. Fluid Tolerance

Though not specified above, fluid responsiveness is defined by an increase in stroke
volume (or cardiac output) of 10–15%, with the provision of IV fluids [69]. Whereas fluid
responsiveness has a consistent, quantitative definition, fluid tolerance is more qualitative
and unformulated [47]. The concept of fluid tolerance has arisen in step with whole-body
ultrasonography and the increasingly recognized stigmata of excessive IV fluid when
scanning different organ systems [70]. Though a universal definition is yet to be articulated,
for the discussion herein, fluid tolerance is defined as the capacity to accept additional IV fluids
without adverse reaction. While the extent of ultrasonographic fluid tolerance is an organ-
specific concept (e.g., diffuse b-lines in the lung), to narrow the focus of the framework
explicated below, only hemodynamic facets of fluid tolerance (with emphasis on venous
Doppler ultrasonography) are considered further.

Doppler ultrasonography of a large vein is qualitatively and quantitatively distinct
from that of a large artery. When a vein is collapsed, because its intraluminal pressure is
low and/or its extraluminal pressure is high, venous Doppler demonstrates a relatively
indistinct, high-velocity pattern that varies with respiration; this is discussed and illustrated
in subsequent sections (see Figure 4). As the pressure within the vein rises and the vein
rounds out, Doppler velocity falls and takes on a pulsatile pattern, which is an inverse
representation of the CVP waveform [71,72]. At end-diastole, venous Doppler velocity
falls, coincident with atrial kick (i.e., the ‘a wave’). With the x-descent (i.e., falling CVP
from tricuspid valve systolic excursion), venous Doppler velocity rises sharply, forming
the systolic, ‘s wave’. Similarly, falling CVP during the y-descent (i.e., when the tricuspid
valve opens) is marked by increased diastolic Doppler velocity, the ‘d wave’.

As central venous volume rises and stretches the atrium to its elastic limits, the
pattern of the CVP and venous Doppler also change. For instance, as CVP rises, the
y-descent exceeds the x-descent; accordingly, the venous Doppler ‘d wave’ eclipses the
‘s wave’. If right ventricular function is impaired, and especially if there is tricuspid
regurgitation, then the venous Doppler ‘s wave’ can disappear completely, leaving only
a monophasic ‘d wave’. This progression of venous Doppler, with rising CVP and/or
worsening right ventricular function, has been observed in the jugular vein [73], superior
and inferior vena cavae [74–76], hepatic vein [77], femoral vein [78] and even within intra-
renal veins [79]. Indeed, Iida and colleagues recently noted a direct relationship between
CVP and the qualitative intra-renal venous Doppler morphology described above (see
x-axis of Figures 3 and 4B) [79,80].

To standardize some of the aforementioned physiology, the venous excess ultrasound
score (VExUS) was proposed [81]. The VexUS score combines Doppler ultrasonography
of the hepatic and portal veins and the size of the IVC into a composite grade between
zero and three. Higher VexUS is associated with kidney injury, which mirrors earlier data
linking high CVP to renal dysfunction in congestive heart failure [82–84]. Though not
included in VexUS, the pulmonary venous Doppler waveform transforms analogously to
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systemic veins with left atrial pressure elevation [85]. Further, the ratio of early trans-mitral
filling velocity (i.e., the E wave) to spectral tissue Doppler (i.e., e’) rises with left atrial
pressure [86]. Accordingly, one can imagine a scoring system akin to VexUS for the left
heart, such that pulmonary venous congestion is standardized and stratified.
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Figure 4. Simultaneous venous and arterial Doppler from a wearable ultrasound. (A) shows the
wearable technology on a healthy volunteer. (B) shows the effect of rising preload from left to right
(arrows 1 & 2 are ↑ preload). The jugular wave is amorphous indicating jugular collapse, as preload
rises, the morphology of the jugular vein becomes more pulsatile and forms the s and d waves
described above; the x and y refer to the pressure descents of the CVP. The carotid VTI also rises from
left to right suggesting that the SV is rising with preload (e.g., quadrant 1 to 2, Figure 3). (C) shows
just the jugular morphology from inspiration to expiration, intimating jugular collapse on inspiration.

The ultrasonographic findings of venous congestion speak to an aspect of fluid toler-
ance, given the definition offered above. That is, venous congestion intimates diminished
capacity to accept additional IV fluid and could be an adverse hemodynamic pattern as-
cribed to excessive fluid resuscitation. Nevertheless, while venous congestion is remarkable
when present, its absence does not necessarily affirm that further IV fluid will be tolerated.
Fundamentally, this is because the venous ultrasonography detailed above informs only
the ∆x (i.e., preload) of the cardiac function curve. As such, a clinician who singly follows
hemodynamic measures of fluid tolerance (∆x) ignores how the heart responds to IV fluids.
Conversely, a clinician who assesses only how the heart responds to IV fluids (∆y) misses
warnings of preload excess. In the framework described below, it is maintained that the
advanced sonographer pays equal notice to both axes of the cardiac function curve.

5. Physiological Framework

The foundations of the framework to be discussed below have already been laid
out above. During advanced CCE, the sonographer need not subscribe to monitoring
either ‘fluid responsiveness’ or ‘fluid tolerance’; rather, the sonographer deploys Doppler
ultrasound to assess both when deliberating IV fluid administration. The reasons are
illustrated by examining two hypothetical cardiac function curves, represented in Figure 3.
These two curves embody physiological extremes; they might depict different patients or a
single patient within the course of critical illness. Furthermore, there are an infinite number
of intermediary curves existing between those illustrated, necessarily over-simplifying
this discussion. Nevertheless, the analysis illuminates the physiological and clinical links
between sonographic measures of fluid ‘tolerance’ (i.e., preload, x-axis) and ‘responsiveness’
(i.e., SV, y-axis), using the Frank–Starling–Sarnoff relationship as a unifying principle.
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5.1. Quadrant 1

To break down the examination, Figure 3 is parsed into quadrants. The first quadrant
(upper left) is considered ‘normal’ physiology; there is a steep relationship between chang-
ing preload and SV. A patient in this position is referred to as operating on the ‘ascending’ or
‘preload dependent’ portion of the Frank–Starling curve, because raising preload (∆x) with
IV fluids significantly increases SV (∆y). In addition, measures of venous Doppler herald
low preload in this state; therefore, fluid ‘responsiveness’ and ‘tolerance’ are concordant.

5.2. Quadrant 2

The second quadrant (upper right) discloses a patient with normal underlying cardiac
function who is, nonetheless, operating on the ‘flat’ or ‘preload independent’ portion of
the Frank–Starling curve. Ostensibly, this occurs in a patient with a normal heart, who
is ‘over-resuscitated’ by IV fluids. Arriving at this state is a criticism leveled against
protocols that administer preload until fluid responsiveness disappears; there is data to
support this concern [87]. For example, some algorithms for goal-directed therapy during
elective surgery ‘optimize’ preload by encouraging IV fluid until fluid responsiveness is
extinguished. Following this approach, excessive fluid and length-of-stay were observed in
patients with the greatest cardiovascular reserve, ostensibly those with the most upright
cardiac function curves [88]. Therefore, impelling patients until (∆y) vanishes without
regard to climbing preload (∆x), may be deleterious. Finally, in this quadrant, because
giving preload does not significantly increase SV and venous Doppler exhibits elevated
preload, fluid ‘unresponsiveness’ and ‘intolerance’ are conceptually concordant.

5.3. Quadrant 3

With diminished cardiac function, the third quadrant (lower left) demonstrates dis-
cordance between ultrasonographic signs of fluid tolerance and responsiveness. That is,
the patient appears fluid tolerant via venous Doppler, despite being fluid unresponsive
by arterial Doppler. Arguably, this patient meets the definition of fluid intolerance—a
diminished capacity to accept additional IV fluid without adverse reaction—but this is
a state of dynamic fluid intolerance, because it is expressed only by performing a dynamic
assessment of SV (∆y). A clinical example of this quadrant is a patient with septic car-
diac dysfunction and concurrent sepsis-associated venodilation (± volume depletion),
engendering low preload; this pathophysiological pattern is well-reported. Magder and
Bafaqeeh observed that 25% of critically ill patients with a CVP of 0–5 mmHg were fluid
unresponsive [89], while a meta-analysis noted that 40% with a CVP less than 8 mmHg
were fluid unresponsive [34]. Despite conflicting evidence for size and collapsibility of the
IVC, one of the more favorable investigations found that roughly 20% of patients with
IVC collapse were fluid unresponsive [90]. Consequently, dynamic fluid intolerance is
likely common.

5.4. Quadrant 4

In the fourth quadrant (lower right), there is conceptual concordance between fluid
intolerance and unresponsiveness. An example of this state might be the septic patient
described above, who began in quadrant 3 with low preload and then received IV fluids.
Physiologically, this would only raise filling pressure if there was no concomitant increase
in cardiac function. It must be reiterated, however, that this physiological framework is
over-simplified, assuming that the slope of the cardiac function curve does not change,
consequent to additional preload [91,92].

6. Discussion

Given the framework above, the foremost implication for current practice is that
certainty around the slope of the cardiac function curve stipulates a dynamic assessment.
While it is tempting to use LVEF as a surrogate for cardiac function, this too falls short; the
LVEF can appear normal when cardiac function is reduced. This assertion is illustrated
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by an investigation by Mahjoub and colleagues, where 83, septic, critically ill patients
were studied for fluid responsiveness with concomitant echocardiographic parameters of
diastolic function [93]. At baseline, fluid responders and non-responders had no significant
difference in LVEF (i.e., mean > 50% in both groups). Further, there was no significant
difference in sonographic measures of left heart filling pressure or diastolic function at
baseline. Notably, however, the non-responders significantly increased the ratio of early
diastolic filling to tissue Doppler (i.e., E/e’ ratio, a marker of left atrial pressure), while the
fluid responders did not increase this ratio. While this obviously reflects the left heart, it
nonetheless reiterates the physiology in Figure 3. The fluid non-responders had normal
LVEF at baseline but exhibited significant expansion along the x-axis following IV fluids
(e.g., moving from quadrant 3 to 4). By contrast, the fluid responders did not significantly
increase Doppler measures of preload with IV fluids. A separate examination by Du and
colleagues evaluated hepatic venous wave morphology between volume responders and
non-responders [94]. Again, in line with the physiological framework summarized in
Figure 3, only fluid non-responders significantly augmented hepatic vein d-wave velocity
following IV fluid expansion; this is anticipated with rising right atrial pressure (e.g.,
quadrant 3 to 4).

Another implication of the framework presented above is that it explains the variable
accuracy of preload surrogates to detect fluid responsiveness [36,90,95,96]. Note that the
shape of the cardiac function curve recapitulates the receiver operator curve for using
preload (e.g., IVC variation, VexUS) to predict SV response (i.e., fluid responsiveness). If
a study population is entirely comprised of patients with normal cardiac function, then
low preload will accurately predict volume responsiveness (i.e., quadrant 1, sensitivity)
and high preload will accurately predict volume unresponsiveness (i.e., quadrant 2, speci-
ficity). Yet, by first principles, finding a strong relationship between preload and preload
responsiveness only demonstrates an investigation with inadequate patient heterogeneity.
Accordingly, to the extent that a study includes patients with increasingly flat cardiac
function curves, the relationship between preload and preload responsiveness becomes less
definite; this is analogous to a flattening receiver operator curve. There will be a greater
fraction of ‘false positives’ (e.g., quadrant 3) and false negatives when a study includes a
broad spectrum of cardiac function.

A final implication of this novel framework is that emerging technology may help
automate ultrasonographic assessments of both preload (e.g., venous Doppler) and stroke
volume (e.g., arterial Doppler), simultaneously (Figure 4) [97]. We have developed a wireless,
wearable Doppler ultrasound that concurrently insonates the jugular vein and common
carotid artery [98–104]. To our knowledge, we have first reported synchronous venous and
arterial Doppler during a dynamic assessment, both in a volume-responsive, healthy volun-
teer and critically ill, septic patient [99]. The healthy volunteer demonstrated venous and ar-
terial Doppler changes consistent with quadrant 1 physiology, while the critically ill patient
manifested quadrant 3 physiology—dynamic fluid intolerance. Theoretically, a large dataset
of synchronously acquired venous and arterial Doppler measurements could be used for
machine learning-powered ‘clustering’ akin to a recent, provocative investigation by Geri
and colleagues that elucidated unique, ultrasonographic septic ‘phenotypes’ [15]. Figure 5
summarizes these implications as well as other key learning points from this review.
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7. Conclusions

Ultrasound has become the dominant hemodynamic assessment tool within the emer-
gency department and intensive care unit. While basic, morphological studies help diag-
nose and triage, they are less precise regarding therapy, especially IV fluids. With the addi-
tion of Doppler ultrasonography to gauge cardiac filling and output, the clinician adopts
an advanced approach, appraising fluid ‘tolerance’ and ‘responsiveness’, respectively. The
physiological framework described above is founded by the Frank–Starling–Sarnoff curve,
conceptually linking fluid ‘tolerance’ and ‘responsiveness’. This model emphasizes the
dynamic nature of the cardiac function curve; with worsened performance, the relationship
between preload and SV response is less clear cut. Because the ejection fraction does not
definitively judge preload dependence, anticipating the response to additional IV fluid
requires a dynamic measure. Emerging ultrasound technology may facilitate these deci-
sions and open new and exciting avenues of research, especially in conjunction with large
datasets and machine learning.
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