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Abstract: In this paper, we use the literature to help us better understand carbon capture costs and
how these estimates fare against those of avoided costs, focusing on bioenergy carbon capture and
storage (BECCS), carbon capture and storage (CCS), as well as direct air capture technologies. We
approach these questions from a meta-analysis perspective. The analysis uses meta-analysis tools
while applying them to numerical rather than statistical studies. Our analysis shows that avoided
costs are, on average, 17.4% higher than capture costs and that the carbon intensity of the feedstock
matters: the estimates for coal-based electricity generation capture costs are statistically smaller than
those for natural gas or air. From a policy perspective, the literature suggests that the costs of CCS
are like the 45Q subsidy of USD 50 per metric ton of carbon captured.

Keywords: avoided costs; bioenergy carbon capture and storage (BECCS); capture costs; carbon
capture and storage (CCS); direct air capture; meta-analysis; publication biases

1. Introduction

One hundred ninety nations participated in COP27; the UN climate change conference
was held at Sharm El Sheikh, Egypt, from 6 to 18 November 2022 [1]. COP27 was the 27th
time nations gathered under the UN convention, which concluded with a historical decision
to establish and operationalize a loss and damage fund [2]. The participating members
agreed to compensate vulnerable nations for “loss and damage” caused by climate-induced
disasters. This is a continuation of the COP26 meeting in Glasgow, where nations agreed
that global warming requires drastic measures to significantly reduce the world’s carbon
footprint and greenhouse gas (GHG) emissions. COP28 further emphasized the “loss and
damage” theme, a meeting that concluded with a need for a transition underpinned by
deep emissions cuts and scaled-up finance.

Multiple solutions are proposed to achieve a meaningful impact and yield a significant
decline in the stock of GHGs, from the broad deployment of renewable technologies such as
wind and solar to the adoption of energy-efficient building codes. However, one principle
remains vital to any attempt by humanity to alleviate global warming successfully—carbon-
negative technologies. These technologies will become even more pertinent once the
world reaches low emissions levels and these technologies compete with other mitigation
strategies. Once reaching that stage, the question will be whether it is cheaper to reduce
anthropogenic emissions via renewables or is more efficient to introduce technologies that
reduce emissions (i.e., carbon-negative emissions).

What do carbon removal technologies entail? Carbon neutrality, or “net zero”, sug-
gests that CO2 released into the atmosphere is balanced by an equivalent amount of CO2
being removed. Thus, carbon-negative technology requires removing more CO2 from the
atmosphere than it emits. To this end, the Intergovernmental Panel on Climate Change
(IPCC) Special Report on Global Warming of 1.5 ◦C, published in late 2018 [3], had most
pathways analyzed assuming using carbon removal technologies to achieve net-negative
emissions after 2050.
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Some carbon removal technologies are nature-based, using nature (e.g., afforestation)
or enhancing nature’s ability to sequester carbon (e.g., through soil), while others are
technological-based solutions. This work focuses on the latter group of technologies. The
negative emission technologies (NET) solutions include bioenergy with carbon capture and
storage (BECCS) and direct air capture (DAC), which—as the name suggests—involves
the capture of CO2 directly from the atmosphere. In pathways limiting global warming to
1.5 ◦C with limited or no overshoot, the IPCC [3] found that agriculture, forestry, and land-
use measures could remove between 1 billion and 11 billion metric tons of CO2 annually
by 2050. On the other hand, the potential amount of CO2 removal from BECCS ranged
from zero to 8 billion metric tons per year. To put this in context, global energy-related CO2
emissions were 33 billion metric tons in 2018.

This paper focuses on carbon capture and avoided costs, reported in the literature
surveying three technologies: CCS, BECCS, and DAC. Its aim is to better understand
the economic viability of these technologies. To this end, we next present the various
carbon capture technologies and discuss their importance (Section 2.1). We turn to the
data in Section 2.2. Section 2.3 discusses this paper’s systematic approach to exploring the
benefits of technology-based carbon dioxide removal technologies through a meta-analysis.
Section 3 presents the results, and Section 4 concludes.

2. Materials and Methods

Before delving into the methods and data, a few definitions are provided.

2.1. Carbon Capture Technologies

Carbon sequestration can significantly reduce CO2 emissions into the atmosphere and
is essential to any climate mitigation scheme. The geological storage includes the capture,
liquefaction, transport, and injection of CO2 deep into the Earth [3–5].

How can we capture carbon from smokestacks? The existing literature suggests three pri-
mary forms of capturing carbon: pre- and post-combustion capture and oxyfuel combustion.

The literature associates the lowest capital costs with pre-combustion. At the same
time, the projects surveyed by the literature report that the most efficient method of
capturing carbon is post-combustion, which can be achieved at an efficiency rate higher than
90%. The oxyfuel combustion technology is the costliest (in terms of capital costs). However,
one must transition away from the numerical models and assess large-scale facilities to
arrive at more definite conclusions regarding efficiency and costs. Turning innovative
ideas from early-stage research into full-scale projects can be challenging. This process
often presents a range of technical and managerial obstacles that can make implementation
more complicated than initially anticipated. As a result, the full-scale outcome may only
sometimes be as successful as the literature suggests.

Pre-combustion capture (Figure 1a) involves reacting a fuel with oxygen to give mainly
a “synthesis gas (syngas)” or “flue gas” composed of carbon monoxide (CO) and hydrogen
(H) [6]. Oxyfuel (Figure 1b) uses oxygen for the combustion of primary fuel to produce
flue gas [7]. And finally, post-combustion (Figure 1c) captures CO2 from the flue gas in the
power plants [8].

In geologic carbon sequestration, usually CO2 is pressurized on-site until it becomes
a liquid and then transported via pipelines and injected into porous rock formations in
geologic basins [9]. CO2 may be injected into coal seams, old oil wells (to increase yield),
stable rock strata, or saline aquifers [10–14].

This work focuses on three alternative carbon capture and storage technologies. However,
before delving into the empirical analysis, we wanted to mention an alternative and promising
supply chain path that replaces carbon storage, namely, carbon utilization. Carbon utilization,
different from carbon storage, implies carbon is recycled and reused, thus generating value-
added products. Although at the R&D stages, carbon can be used to produce cement and
used in buildings and can also be used with hydrogen production [15–17]. Today’s most
widely utilized carbon is in enhanced oil recovery projects. However, carbon can also be used
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to grow algae, which can then be converted into various products, including chemicals and
fuels, soil supplements, fish and animal feed, and nutritional food supplements.
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Figure 1. The three capture technologies. (a) Pre-combustion; (b) oxyfuel; (c) post-combustion. 
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Figure 1. The three capture technologies. (a) Pre-combustion; (b) oxyfuel; (c) post-combustion.

2.2. The Data

We searched for the various studies by using the following key terms in Google
Scholar during 2022: bioenergy carbon capture and storage (BECCS), carbon capture and
storage (CCS), and direct air capture (DAC). This resulted in a sample of 50 papers and
345 observations (Table 1). When considering only those papers that provided the costs of
the technologies, a smaller subset of these papers is retained for use in subsequent analysis.
Table 2 summarizes papers explicitly mentioning transportation and storage costs.

Each ‘observation’ is a unique estimation of the cost of a power plant equipped with
CCS technology. Costs were consolidated into a smaller set of costs by converting each
observation to 2016 US dollars and metric tons (MT). Units of power and energy showed
more consistency across studies; hence, the most used units for each parameter were in
turn utilized for the data.
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Table 1. Citations to sources used in the meta-analysis.

Papers Used under the Alternative Technologies

CCS BECCS DAC

Al Juaied and Whitmore, 2009 [18] Azar et al., 2006 [18] Chen and Tavoni, 2013 [19]

Azar et al., 2006 [20] Bhave et al., 2017 [21] Fuss et al., 2013 [22]

Bozzuto et al., 2001 [23] Carbo et al., 2011 [24] House et al., 2011 [25]

Christensen and Holloway, 2004 [26] Edmonds et al., 2013 [27] Keith et al., 2006 [28]

Dooley and Dahowski, 2009 [29] Fuss et al., 2013 [22] McLaren, 2012 [30]

Finkenrath, 2011 [31] Gough and Upham, 2010 [32] Pacala et al., 2018 [33]

Fornell et al., 2013 [34] Katofsky et al., 2010 [35] Pielke Jr., 2009 [36]

Freund and Ormerod, 1997 [37] Laude et al., 2011 [38] Socolow et al., 2011 [39]

Gibbins and Chalmers, 2008 [40] Luckow et al., 2010 [41]

Hendriks et al., 2004 [42] McLaren, 2012 [30]

Herzog, 2011 [43] Pacala et al., 2018 [33]

Herzog and Drake, 1996 [44] Rhodes and Keith, 2005 [45]

Katofsky et al., 2010 [35] Schmidt et al., 2010 [46]

Ramezan et al., 2007 [47] Schmelz et al., 2020 [48]

Riemer and Ormerod, 1995 [49]

Rubin et al., 2015 [50]

Schmidt et al., 2010 [46]

Socolow et al., 2011 [39]

Viebahn et al., 2012 [51]

Table 2. Citations to sources used in the transportation and sequestration costs meta-analysis.

Transportation Costs Sequestration Costs

Christensen and Holloway, 2004 [26] Christensen and Holloway, 2004 [26]

Fornell et al., 2013 [34] Freund and Ormerod, 1997 [37]

Herzog, 2011 [43] Gibbins and Chalmers, 2008 [40]

Laude et al., 2011 [38] Laude et al., 2011 [38]

Luckow et al., 2010 [41]

This procedure was used to create a panel dataset with two outcome variables, each
representing two ways of conveying CCS costs for power plants. What follows is a discus-
sion of these variables, beginning first with the subset of the independent variables used
and continuing with a review of the cost variables. This ends with a review of the CCS
technology clusters studied via the analysis.

The covariate variables include the levelized cost of electricity (LCOE) and plant capacity,
two parameters provided in multiple forms across the literature. LCOE is a measure of the
lifetime cost of a power plant divided by energy production, while plant capacity denotes the
plant’s electricity capacity expressed in megawatts. These parameters are present in a large
volume of observations, making them useful in determining to what extent CCS costs are
related to idiosyncratic qualities unique to certain facilities. The remaining parameters found
relay similar information about the plant, revealing aspects of its cost or physical structure,
which point to factors possibly influencing actualized CCS costs.

The categorical variables we look at are feedstock, point of capture (PC), and currency.
Feedstock allows us to indicate the type of fuel that the plant we study utilizes (e.g., coal,
natural gas), while PC is a means of indicating how CCS systems capture carbon (i.e., pre-
or post-combustion capture, oxy-combustion capture). Currency indicates whether original
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costs were reported in US dollars or euros, and technology sorts the observations by the
kind of application of CCS used (CCS, BECCS, and DAC).

The two outcome variables our analyses focus on are capture cost and avoided cost.
The capture cost represents the amount paid to catch CO2 released from the plant of interest.
All observations pertaining to this type of cost were directly obtained from papers, with the
application of unit conversions for the purpose of standardizing being the only alterations.
Avoided cost in the context of CCS usually represents money that would have otherwise
been spent on upgrading or constructing power plants utilizing fossil fuels or other non-
renewables and cleaning up CO2 released by such alternatives [12]. Formally, avoided cost
“compares a plant with CCS to a ‘reference plant’ without CCS, and quantifies the average
cost of avoiding a ton of atmospheric CO2 emissions while still providing” ([51], page 182)
1 MWh of electricity. This cost is helpful for policymakers as it better expresses the value
provided by CCS technologies and the trade-offs for not utilizing them. As the negative
effects from carbon emissions are expected to amplify over time with the progression of
climate change, it is unsurprising that the literature also shows an upward trend for this
type of cost over time.

Due to how avoided costs are defined, obtaining numbers representing the costs of
different steps and aspects of CCS energy generation along the supply chain enables one
to approximate such values even if these costs are not reported. A total of 17 studies,
amounting to a slight majority of papers in the sample reporting costs, contained ‘implicit’
avoided cost data. The first method used to obtain implicit avoided costs is widely used.
Specifically, we consider avoided costs to be the sum of capture, transportation, and storage
costs. Each price represents the amount paid for three distinct services used to prevent the
release of CO2, hence approximating the avoided cost. The other method is based on our
observation of government cap costs expressed by a large volume of papers. Specifically,
if one knows a certain carbon tax must be necessarily charged to incentivize wide-scale
adoption of CCS operations, along with the price of operating the power plant subject to
the tax. If at a particular tax level, energy producers augment their operations with CCS,
this represents the point at which they are indifferent between producing electricity with
CCS or without (i.e., the ‘reference plant’). The application of both methods increased the
total number of unique observations by 110, with 88 coming from the application of the
second method.

2.3. Methodology

We use meta-analysis to discern what the literature says about the costs of CCS and
use an analytical framework closely mirroring those used in [52]. Specifically, we treat
each scenario from a paper as an “observation” and each paper as an “individual”. These
assumptions enable us to encapsulate the model in the form of panel data and employ
statistical tools to better understand the cost structure of CCS technologies. We allow
intercepts to vary across papers to account for differences in methodology between studies.
So then, for p, s, n ∈ N, where p is paper, s is scenario, and n is total number of independent
variables, the costs yps, which are the dependent variables, are explained by a series of
independent variables {1, x1ps, . . ., xnps} whose intercepts vary across papers.

yps = β0,p + β1x1ps + ... + βnxnps + εps (1)

In Equation (1), the error is simply the difference between the actual value observed
and the estimated value for the dependent variable.

εps = yps − E
[
yps

∣∣xps
]

(2)

We are interested in seeing how differences in technologies impact the cost estimates
provided in the literature. Hence, we are concerned with the difference in reported costs
within technologies and the average cost reported across technologies, the latter of which
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serves as our base case. So, we denote y as the average cost and use yps to denote the cost
of the technology of interest. The difference in costs is given by the following equation:

∆yps = y − yps (3)

To account for suspected heteroscedasticity caused by correlation between dependent
variables, we run both the White and Breusch–Pagan (BP) tests. Each tests the same
null hypothesis, thus giving greater support for the possibility of codependence between
dependent variables if both tests find it present. If we find that we reject H0 in both cases,
this implies that there is a correlation between the error terms of different dependent
variables. This requires utilizing a Seemingly Unrelated Regression (SUR).

For the sake of stating our procedure conveniently, abstracting out the indices for
independent variables and scenarios is necessary. Notation is defined, allowing for succinct
reference to a simplified form of Equation (1).

x̂ps =
(
1, x1ps, . . . , xnps

)
(4)

β̂i =
(

β0,p, β1, . . . , βn
)

(5)

yps = β̂p x̂T
ps + εps (6)

It is important here to note that the ability to achieve the form of Equations (4)–(6) are
dependent on what x̂T

ps and β̂p are defined to be. Following the same line of reasoning,
we can stack these equations by scenario and paper to abstract out all indices. Redefining
β̂p and x̂T

ps allows us to “drop” an index. Subsequently, stacking the equations on paper
allows us to then rewrite the equation without indices, which is needed for us to state the
SUR assumption neatly.

Next, following Zellner’s method [53], we stack the equations on paper. To follow this,
X and β need to be transposed prior to reversing their order. Variables X̂, Ŷ, and ζ̂ refer to
the respective stacks of independent and dependent variables and error terms obtained
following the above steps.

Ŷ = X̂β̂ + ζ̂ (7)

To satisfy the assumption of a correlation of errors between dependent variables, the
assertion of certain conditions for these values is necessary. Hence, for k, h ∈ p and u, v ∈ s for
k ̸= h and u ̸= v, all the conditions necessary for the SUR model can be summarized as follows.

E
[
εk,u, εk,v

∣∣X̂]
= 0 (8)

E
[
εk,u, εh,v

∣∣X̂]
̸= 0 (9)

3. Results

Applying meta-analysis methods to numerical simulations and techno-economic
analysis yielded valuable insight into CCS technology costs. First, like the indicated prices
of wind, solar, and the smart grid [54], the research suggests the literature overestimates
the CCS costs and that actual costs are likely lower than foretold. The mean cost estimates
reported in the literature suggest a significant effect of existing policies on the adoption
and diffusion of CCS technologies.

In arriving at these conclusions, we present a summary statistic about the nature of
the data used in our analysis. Then, we apply the methodology section to the data and
identify the factors that significantly affect capture and storage costs.

3.1. Summary Statistics

The papers provided a variety of economic costs associated with the CCS technologies,
primarily in the form of avoided, captured, storage, and transportation costs.
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Avoided costs compares a plant with CCS to one without CCS and uses the comparison
to quantify the costs of avoiding a unit of CO2 emissions while providing the same unit of
electricity across the two plants [51]. Such a comparison captures the full costs of capturing
and sequestering CO2, thus avoiding a ton of CO2 in the atmosphere.

Figure 2 shows a box plot representing the distribution of avoided costs across three
technologies. Because of significant cost differences, CCS and BECCS (Figure 2a) are
separated from DAC (Figure 2b). To this end, the standard deviations of the CCS and BECCS
scenarios are 23.28 and 55.41, respectively, for avoided costs. The standard deviations of
avoided costs for DAC are substantially more significant at 194.05. The greater variation
witnessed in the DAC cluster is expected owing to the different assumptions disparate
studies have on the concentration of CO2 present at the sites where the technology is
utilized. The variation in CO2 suggests the reader should be cautious when reaching
conclusions when comparing DAC costs across papers. The empirical analysis did not
support the inclusion of these measurements in the regression, an outcome that might be
the product of the small number of observations for the DAC technology. This variation is
appropriate when diverse settings and locations where DAC may be applied are accounted
for. In addition, the small number of papers modeling DAC likely also contributed to the
distribution of the DAC cost figures. However, the maximum and minimum do reach values
that need clarification, irrespective of the technology studied, whereby the average capture
cost is less than the average avoided cost (Table 3). Perhaps more striking is the sparsity of
avoided costs provided for BECCS, accompanied by large standard deviations. It is striking
precisely because of the great reliance of climatic models on the wide-scale utilization of
BECCS to make a carbon-negative energy and economic regime viable; however, estimates
provided by the literature are paltry.

Table 3. The average reported capture and avoided costs for the CCS, BECCS, and DAC technologies.

Capture Costs
(USD per MT CO2)

Avoided Costs
(USD per MT CO2)

CCS 53.21 55.26
BECCS 49.82 115.49
DAC 390.47 463.36

CCS, in contrast, takes up most of the avoided cost observations. To be exact, 82.63% of
all avoided cost observations, or 138 of 167 avoided cost observations across all technology
groups. The tight range between the first quartile (equal to USD 32.5 per ton of CO2) and
the third quartile (equal to USD 76 per ton of CO2) of USD 43.5 per ton of CO2 can be
observed, while two outliers reporting costs of USD 150 per ton of CO2 and USD 180 per ton
of CO2 can also be seen. These last two costs were obtained from the same report, whose
author overviewed some disparate CCS cost estimates in the CCS technology literature [18].
The maximum cost in the dataset, excluding the outliers, was USD 143 per ton of CO2. At
the same time, two papers contained six observations that interestingly found single-digit
avoided costs for CCS technology.

Though one must be cautious in attributing reasons for this visible range, it can be
noted that the distance between the median (equal to USD 46 per metric ton of CO2)
and the first quartile is less than half that between the median and the third quartile—
the distribution is skewed toward lower costs. Studies posting more significant avoided
cost numbers appear to have more disagreement, possibly owing to different methods of
calculating avoided costs. A noticeable trend can also be found in the data, with avoided
costs for CCS generally rising with each passing year.

Capture costs follow a trend similar to certain aspects of the avoided cost data, as
can be seen in Figure 3. Though there are several differences that are important to note.
Firstly, the reader’s attention should be drawn to the wide distribution of DAC capture
costs. It should be noted that the outlier cost of USD 2525 per ton of CO2 [25] makes the
distributions of the remaining technologies appear greatly reduced. Secondly, BECCS
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notably has 14 observations. The literature on BECCS reflects interest amongst researchers
due to the technology’s potential to manage climate change in an economically viable
manner, as indicated by several climatic models (e.g., IMPACT [55] and WITCH [56]).
Besides the DAC cluster, BECCS had the largest distribution of costs, ranging from USD 25
per metric ton of CO2 to a high of USD 190 per metric ton of CO2. All data for BECCS
capture costs pertained to biomass energy plants, with variation in capture costs possibly
caused by varying plant efficiencies [50].
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The subsequent cluster, CCS, again contains a plethora of observations. Though
the distribution had a large overall range of USD 184.4 per metric ton of CO2 (when
discounting the outliers), the interquartile range was markedly smaller, at USD 43.66 per
metric ton of CO2. The three observations found to be outliers were obtained from the
same paper containing the outliers for CCS avoided cost [18]. This finding corroborates
those researchers’ view that CCS is a relatively expensive technology.

Finally, DAC shows the characteristically high costs seen for avoided costs, and its
explanation is similar, though subtly different. The high avoided cost reflects that collecting
CO2 directly from the air is significantly expensive. The significant capture costs show that
utilizing DAC is expensive since it operates by collecting CO2 directly from the air [48].
Considering the outlier, the highest capture cost found in this category was USD 2525 per
metric ton of CO2, while the lowest was USD 18 per ton of CO2. The interquartile range for
this group was also extensive, at USD 383 per ton of CO2.

The sample from the body of literature also contained information on the cost of the
major components of CCS. Other technology clusters, such as BECCS, needed to have these
specific component-wise costs because interest in such costs—here narrowly construed to
mean the number of papers discussing the price of BECCS—has only recently been piqued.
However, owing to the similarity of the transportation and storage processes between CCS
and BECCS, these costs may closely resemble those that may come for BECCS [38].

The median cost for each storage and transportation and the combination of storage
and transportation costs are USD 11 per metric ton of CO2, USD 6 per ton of CO2, and USD 9
per ton of CO2, respectively. The median for the combined category, including storage
and transportation costs, was USD 9 per metric ton of CO2, showing that the individual
storage and transportation cost categories are more significant than the combined category.
The higher costs obtained for the storage and transportation category resulted from all
the estimates coming from a paper [20], distinct from those from which the broken-down
costs for each storage and transportation category were taken. Costs vary depending on
the reservoir’s location, depth, and size used to store captured CO2. The remaining two
outliers come from a paper published in 2004 [26] by an author who gives various estimates
that are dependent (sensitive) on locations utilized for CO2 storage.

Impressively, the transportation costs group contains many outliers. Many of these
are obtained from one paper [42] and are represented by the same point at the top (USD 30
per metric ton of CO2). The data from recent papers are sparser. Thus, how transportation
costs change over time is still being determined. However, newer cost estimates appear
generally consistent with older estimates. Some of these costs include the characteristics
of pipelines that transport CO2 for storage and even where carbon is stored (i.e., offshore,
depleted oil wells on land, etc.) [14].

3.2. Meta-Analysis

Each of the papers analyzed by this study aimed to answer roughly the same question:
How much does CCS (or related technologies) cost? Thus, the usefulness of meta-analysis
to obtain an answer to this general yet pertinent question is apparent. Multiple cost
estimates were obtained from dozens of papers, so a satisfactory answer for the cost of CCS
technologies must also consider the effect each study has on the observations obtained.

Most of the continuous data in the sample are specific to the studies they originate
from. This is because different authors use divergent measures to gauge the cost of various
CCS technologies. Hence, though significant regressions were found with two or more
continuous regressors, most attempted models included data from only a subset of papers,
and the population containing non-empty values of interest was found to be minute.

3.2.1. Models

We first identified statistically significant and continuous variables using Bayesian
model averaging (BMA) and weighted-average least squares (WALS) tests. Model averag-
ing is a statistical technique that helps account for model uncertainty when analyzing data.
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Rather than relying on just one model, model averaging averages results over multiple
plausible models based on the observed data. Model averaging can be used to estimate
model parameters and predict new observations to avoid overly optimistic conclusions.
It is particularly useful when there are several plausible models and no definitive reason
to choose one over the others. BMA provides a principled way to identify important pre-
dictors and evaluate the sensitivity of the results to various assumptions. It also provides
optimal predictions in the log-score sense. On the other hand, the WALS method uses a
statistical framework to fit a linear regression model with uncertainty about the choice
of explanatory variables. This technique provides a coherent method of inference on the
regression parameters by taking explicit account of uncertainty due to both estimation and
model selection steps. The method uses a Bayesian estimator that relies on preliminary
orthogonal transformations of the auxiliary regressors and their parameters.

For each test, the set of auxiliary variables must be coterminous with the categori-
cal variables. If a particular categorical variable appeared in the output with t ≥ 1, and
0 /∈ [µ − σ, µ + σ], this was interpreted to mean that a robust model includes this vari-
able [57,58]. Although numerous specifications were evaluated, Table 4 depicts the most
inclusive and robust specification. When assessing capture costs, energy feedstock, period
of analysis, and price of electricity are key. However, the number of authors should also be
controlled when assessing avoided costs, although energy feedstock should still be included
in the empirical model. The outcome seems to suggest that although capturing costs go
down with time, the increase in the number of authors yields higher costs—the coefficient
modeling time (i.e., period in our model) is statistically insignificant at a 10% significance
level. While most of the calculations for capture costs focus on the publication period,
many studies on avoided costs focus on future periods. Although data suggest learning
and that the cost of capturing carbon declines with time, reports with more authors per
paper focus more on avoided costs and suggest otherwise. To this end, existing literature
suggests similar biases exist in assessing wind, solar, and the smart grid [54]. Most articles
and reports underestimate learning and the decline in cost over time.

Table 4. Significant and robust regressions.

Capture Costs Avoided Costs

Variables
(1) (2) (3) (4)

BMA model WALS model BMA model WALS model

Energy feedstock 1.898 *** 1.918 *** 1.4038 *** 1.3967 ***
(0.218) (0.206) (0.2907) (0.2492)

Capture technology −0.142 −0.348 ** −0.3433 −0.4346 **
(0.220) (0.173) (0.3256) (0.2075)

Number of Authors 0.015 0.101 2.9068 ** 3.0339 **
(0.049) (0.080) (1.1786) (1.1664)

Period of analysis −5.728 *** −5.919 *** 0.2463 0.6783
(0.852) (0.867) (0.4383) (0.5341)

Price of electricity (USD per kWh) 657.037 *** 614.623 *** −2.3046 −1.6405
(79.592) (78.256) (11.6587) (17.6569)

Constant 11,494.699 *** 11,887.986 *** −457.0317 −1323.8800
(1711.243) (1740.940) (882.1436) (1075.4327)

Observations 67 67 128 128
Standard errors in parentheses, *** p < 0.01, ** p < 0.05.

Besides the high level of significance associated with each of the estimates in each
regression, several surprising results can be seen. The positive relationship between
capture cost and power efficiency is peculiar, as one might expect that more efficient energy
operations would necessitate fewer inputs, resulting in a lower carbon output. However,
this may be explained by higher transportation and storage costs levied due to the plant’s
distance from designated carbon reservoirs or the nature of carbon transportation systems.
In the latter case, one can speculate that the infrequent discharge of CO2 for storage is
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charged at a premium. However, due to the lack of studies providing transportation costs,
capture costs, and power efficiency, it is not easy to make a concrete assessment.

Avoided cost is calculated as the sum of several costs, including capture cost, making
the difference between the models initially concerned. More precisely, avoided cost is
calculated as the sum of capture, transportation, and storage costs. However, the subsets
of the original data used in each regression are completely disjointed when grouped on
paper. This is assuring in the sense that model differences may be explained by differences
in methodology used. The added fact that each paper whose observations were utilized
in the regressions exclusively reported one but not both avoided or capture costs appears
to implicitly add support to this notion. Clear documentation of how calculations were
derived was not provided in most studies, begging for further investigation into possible
methodological differences.

The differences between the data used to determine the capture costs and the (con-
structed) avoided costs might have influenced the analysis result and the effect of electricity
prices on these costs. Since these costs are frequently reported independently in the lit-
erature, we have had to rely on proxies to estimate the avoided costs. We have made
every effort to address this problem and provide accurate estimates. However, we must
acknowledge that the available data are sometimes limited.

3.2.2. Small Sample Biases

Next, we investigated the presence of publication bias, focusing on CCS. To this end,
we use a funnel plot, which consists of a scatter plot of the effect sizes of the individual
scenarios on the horizontal axis against a measure of study precision (the standard deviation
of the outcomes within the study) on the vertical axis. In addition, we employ the trim-and-
fill method, which adjusts for publication bias in funnel plots. The analysis suggests no
publication biases when focusing on the capture costs (Figure 4a). The reader can confirm
that studies with lower precision (higher standard deviation) are scattered more widely at
the bottom of the plot, forming the broader part of the funnel. As precision increases, points
cluster more closely near the overall estimate at the top of the plot. On the other hand,
avoided costs do suggest higher levels of uncertainty regarding the estimates (Figure 4b).
Similar conclusions are drawn for CCS, and the results are also confirmed using the Egger
and the Galbraith tests for small-sample biases.

3.2.3. The Estimated Effects

The trim-and-fill analysis suggests a capture cost of USD 42.59, with a 95% confidence
interval of [39.66,45.51] (Table 5).

When correcting publication biases using non-parametric trim-and-fill analysis, the
estimated transportation and storage effects are USD 5.48 and USD 4.57, respectively.
These estimates are consistent with the avoided costs (calculated as the sum of capture,
transportation, and storage costs). When modeling avoided costs, the overall estimated
avoided cost, focusing on coal and biomass, is USD 49.04 (Table 6). It is interesting to note
that the US 45Q policy yields a subsidy of USD 50 per metric ton of carbon sequestered.

Table 5. Capture costs.

Studies Effect Size [95% Confidence Interval]

Observed 44.742 41.760 47.724
Observed + imputed 42.586 39.662 45.509

Table 6. Avoided costs.

Studies Effect Size [95% Confidence Interval]

Observed 51.633 49.450 53.816
Observed + imputed 49.041 46.601 51.481
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4. Discussion

The various carbon capture technologies aim to mitigate climate change by capturing
CO2 emissions from industrial processes and power generation, preventing emissions
from being released into the atmosphere, and then storing it in geological formations
underground or reusing CO2 in other production processes. The primary goal of these
technologies is to reduce the concentration of CO2 in the atmosphere.

Through the focus on capture and avoided costs, we tried to understand the implica-
tions of implementing carbon capture technologies, and the costs of the technologies vary
depending on the specifics. We borrowed tools from meta-analysis to assess biases in the
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numerical estimates and to quantify the overall estimated average costs suggested by the
literature. In addition to the capture costs, we surveyed the transportation, storage, and
avoided costs discussed in the literature.

According to the analysis, the capture costs comprise over 80% of the total carbon
capture and storage cost, estimated to be around 42.6 US dollars based on the trim-and-fill
analysis. The study also indicates that these costs decrease over time and that the type of
feedstock used—coal, natural gas, or air—and electricity prices heavily influence their level.
After adjusting for biases using non-parametric approaches, the literature reports avoided
costs of around USD 50, the subsidy provided through 45Q for every metric ton of carbon
sequestered. Yet, while there is vast potential, there is also significant uncertainty regard-
ing the deployment and commercialization of various carbon-sequestering technologies,
including those specializing in BECCS technologies [59].

In addition, the meta-analysis suggests no significant publication biases and supports
the robustness of these estimates. The analysis suggests heterogeneity in estimates may
result from using different geological structures for CO2 storage. That is, on top of varia-
tions in feedstock used or electricity prices, the structure of the CO2 supply chains yields
variations in cost estimates. Although outside this paper’s scope, the supply chain’s end
outcome likely significantly affects the viability of the specific carbon capture process.
While usage generates additional revenues, storage results in higher costs. This likely
impacts avoided costs and may yield murkier outcomes. Work in this area identified the
value chains of waste-to-energy power plants and the high-value-added products that
build on the CO2 stream generated during power generation [60], as well as other uses [16].
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