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Abstract: The height of the mixing layer is a significant parameter for describing the dynamics of
the planetary boundary layer (PBL), especially for air quality control and for the parametrizations
in numerical modeling. The problem is that the heights of the mixing layer cannot be measured
directly. The values of this parameter are depending both on the applied algorithms for calculation
and on the measuring instruments which have been used by the data source. To determine the height
of a layer of intense turbulent heat exchange, data were used from acoustic meteorological locator
(sodar) and from a passive single-channel scanning microwave radiometer MTP-5 (MWR) to measure
the temperature profile in a layer of up to 1 km. Sodar can provide information on the structure
of temperature turbulence in the PBL directly. These data have been compared with the mixing
layer height calculated with the Parcel method by using the MTP-5 data. For the analysis, July and
September 2020 were selected in the city of Tomsk in Siberia as characteristic periods of mid-summer
and the transition period to autumn. The measurement results, calculations and inter-comparisons
are shown and discussed in this work. During temperature inversions in the boundary layer, it
was observed that turbulent heat transfer (increased dispersion of air temperature) is covering the
inversion layers and the overlying ones. Moreover, this phenomenon is not only occurring during
the morning destruction of inversions, but also in the process of their formation and development.

Keywords: planetary boundary layer; sodar; MWR; mixing height; temperature inversion

1. Introduction

A lot of experimental and theoretical works are devoted to the study of the processes
occurring in the planetary boundary layer (PBL) of the atmosphere. One of the parameters
characterizing PBL is its height above the surface. At the same time, the exact definition
of the PBL height is still a subject of discussion. In this regard, the work on experimental
estimates of the PBL parameters is relevant and makes it possible to determine the PBL
height based on various approaches to solve this problem. Usually, PBL refers to the
level at which turbulence characteristics (e.g., vertical turbulent momentum and/or heat
fluxes) are reduced to a few percent of their surface values. PBL cannot be measured
directly [1] but can be determined using different instruments and methods. For this task,
the results of the measurements of optical instruments [2–10], radiosondes [4–6,11–13],
manned and unmanned aircraft systems [14–17], meteorological microwave temperature
profilers [1,10,18–22], acoustic sounding (sodar) [23–28] and other tools have been used. A
list of which can be found in [4,14,29,30].

In our work, we used data from active acoustic sounding (sodar) and passive single-
channel scanning microwave radiometer (MWR) to compare PBL characteristics and de-
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termine their relationship during the month July and later in September when the season
changes. The purpose of this work was to determine the mixing layer height in the PBL
during its diurnal evolution, the analysis of the temperature profiles over the measurement
period as well as the assessment of the relationship between the mixing layer height and
the characteristics of temperature profiles. Special attention was paid to cases with air
temperature inversions. The mixing layer height according to the sodar measurements
was determined as the layer height with increased dispersion of air temperature (including
the “entrainment zones” at the boundaries of the inversions). The temperature profiles
measured by the MWR allowed the use of the Parcel method modification to calculate the
mixing height. In addition, we wanted to evaluate the repeatability of characteristics and
their transformation PBL in the summer month of July in comparison to the transitional
month September in 2020 (change of seasons).

2. Equipment, Place and Regime of Measurements

For the analysis, we used the results of measurement by ground-based remote sound-
ing the atmosphere by the temperature and wind profiling complex, consisting of the
meteorological temperature profiler MTP-5 (MWR) [22] and the acoustic meteorologi-
cal locator Volna-4M (sodar) [27]. The complex was located on the territory of the Ba-
sic Experimental Complex of the V.E. Zuev Institute of Atmospheric Optics, Siberian
Branch, Russian Academy of Sciences (IOA SB RAS), located in the suburbs of Tomsk (an
open meadow surrounded by forest plantations up to 10–15 m high) with coordinates
56◦28′54” N, 85◦06′00” E (Figure 1).
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Figure 1. Photo of the meteorological temperature profiler MTP-5 (left) and the acoustic meteorological locator “Volna-4M”
(sodar, (right)) on the territory of the Basic Experimental Complex IOA SB RAS, 2020.

The MTP-5 is a self-calibrating, self-testing single-channel scanning microwave me-
teorological temperature profiler [22]. MTP-5 has been used for measuring temperature
profiles from the level of installation to the height of 1000 m in all weather conditions.
The instrument passed the series of international comparisons with different alternative
measurement systems: radiosondes, RASS, meteorological masts, etc. [31]. Following the
results of the series of comparisons and tests in 2011, the instrument is included in the
“Quality Assurance Guidance for the Collection of Meteorological Data Using Passive
Radiometers” worked out by the U.S. Environmental Protection Agency [32]. The tropo-
spheric temperature profile T(H) is found from the angular spectrum of the atmospheric
brightness temperature in the absorption band of molecular oxygen O2 near the frequency
ν ≈ 60 GHz by solving the inverse problem. The connection between the measured angular
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spectrum of the brightness temperature TB(θ) and the temperature profile T(H) is deter-
mined by the Fredholm nonlinear integral equation of the first kind. Upon linearization and
algebraization (i.e., after passing from integration to summation), the equation is solved by
the statistical regularization method. Thermal sounding of the troposphere is carried out at
the frequency ν = 56.6 GHz for eight zenith angles in the range θ = 0◦–86◦. The effective
height of the thermal sounding is about 1.3 km. Approximately 80% of the atmospheric
radiation is formed in this layer. Effective retrieval of the tropospheric temperature profile
T(H) is also performed in the altitude range h = 0–1.3 km. The rms deviation (RMSD)
of the T(H) profile in the range of effective sounding heights h = 0–1.3 km is 0.3–1.2 ◦C,
accordingly [22]. We verified the reliability of measuring temperature profiles using the
MTP-5 instrument by comparing them with radiosonde measurements [33]. A sufficient
accuracy with a single-channel microwave radiometer (MTP-5) in the lower layers of the
PBL allows to get a representative description of the dynamics of characteristics up to 1 km.

Meteorological acoustic locator (sodar) is a device capable of diagnosing the mi-
crostructure of the turbulent component of the temperature field. Sodar signals are propor-
tional to the dispersion of air temperature in the atmospheric layer of the volume V at a
certain height H.

The higher the altitude, the bigger the value (up to tens of thousands of cubic meters
for sodar Volna-4M at altitudes of about 1 km with a sounding pulse duration of 0.15 s at
carrier frequencies from 1.9 to 2.3 kHz).

For the data analysis, the results of daily measurements in July and September 2020
were used. The MTP-5 measured temperature profiles in the range of heights from the
installation level (4 m from the surface, see Figure 1) to an altitude of 1 km with a time step
of 5 min and a height step of 50 m.

Sodar provided measurements in the range of 45 to 1000 m with a time step of about
10 s. As a result, the simultaneous operation of MTP-5 and sodar amounted to 509 h (68%)
in July and 599 h (83%) in September 2020. For the data analysis, the synchronized and
averaged 10 min values are used as source.

At the observation point (56◦28′53” N, 85◦06′00” E), the local time of sunrise varied
from 04:32 to 05:20 in July and from 06:24 to 07:21 in September, and the time of sunset is
from 22:13 to 21:32 in July and from 20:15 to 18:58 in September.

3. Temperature Regime of the Experiment Period

The air temperature profile time series (MTP-5 data) in the 0–1 km layer in July and
September 2020 is shown in Figure 2. Note that the influence of clouds and precipitations
was not considered in the analysis.

Figure 3 and Table 1 show the statistical distribution of the temperature profiles values
in heights from 0 to 1000 m as profile of the minimums in temperature (Tmin(H)), profile of
the averages values (Taver(H)), profile of the maximum values (Tmax(H)) and the profile of
rms deviation (RMSD(H)) for all month data of July and September.

The variability of the temperatures values for July was mainly concentrated at heights
below 300 m (the level above which increment dRMSD = 0, green line on Figure 3). For
September, variability was observed in the whole 0–1 km layer and it is difficult to dedicate
a level when the increment of the dRMSD = 0. In absolute values, it is 200 m, but not as
prominent as in July.

Table 1. Statistical distribution of the temperature profiles values.

Time Series Tmin(H) Taver(H) Tmax(H) RMSD(H)

2020/07 all heights (0–1 km) 5.3 16.6 30.1 3.8
2020/09 all heights (0–1 km) −5.6 7.9 22.3 4.5
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Figure 2. MTP-5 temperature profiles time series (each color for each height with step 50 m) in the 0–1 km layer in July (a)
and September (b) 2020.
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Figure 3. Statistical parameters of temperature profiles values in the 0–1 km PBL altitude range for
July (a) and September (b) 2020 by MTP-5 data.
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4. PBL Parameters by Sodar Data

Sodar registers backscattered acoustic sounding signals from air layers (precisely,
from a layer, the dimensions of which are related to the duration of the sounding pulse
and the width of the sodar antenna pattern), the values of which are proportional to the
dispersion of the air temperature at a given height. According to our estimates (see the
works in [34,35]), the used sodar receives signals from those layers in which the structural
characteristic of air temperature C2

T has values C2
T > 10−5 at (K2/m2/3) at moderate levels

of ambient noise. If C2
T ·L

2/3
T = 2·σ2

T [36], where σ2
T is the air temperature dispersion and

LT is the outer scale of temperature turbulence, focus on LT in the surface layer at the
observation point (LT ~ 8÷ 10 m, see in [37]), then in the controlled area PBL it was possible
to determine dispersion estimates σ2

T > 10−5 (K2). Therefore, sodar can provide sufficient
sensitivity to determine the height of the layer of intense turbulent heat exchange (Hm).
However, at those noise levels (external and instrumental) that were during the observation
periods, we can suppose that sodar provided reliable data only at σ2

T > 10−4 (K2). In this
regard, it can be assumed that there was some underestimation of the height of the level
with an increased dispersion of air temperature, especially during daytime.

Visualization of sodar signals is usually done in the form of “echograms”—the
height-temporal distribution of their amplitude. The height Hm was determined from
the echograms and corresponded to the height at which the “useful” sodar signals became
comparable to the level of the surrounding noise. It was assumed that intense turbulent
heat transfer starts from the surface and does not have any “breaks” up to the height Hm.

Figure 4 shows the example of an original echogram, on which the heights (dotted
line) are plotted, obtained as average values over a time interval of ∆t = 10 min. The
example demonstrates the presence of separate layers with increased temperature dis-
persion, located above and not connected by turbulent heat exchange with the surface
layer (see period 02: 00–08: 00). According to our estimates, the errors of determination
can be up to 30–50 m, and in conditions of high levels of ambient noise, it is somewhat
higher. Nevertheless, we believe that the results with calculations Hm presented provide an
adequate idea of the range of variation of these heights in the range of 0 to 1 km of the PBL.
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Figure 4. The original sodar echogram with the plotted height Hm graph (red line with dots). Times of sunrise and sunset
were 04:36 and 22:11, respectively (indicated by blue arrows).
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In Figure 5, the daily variation and some statistical characteristics of the Hm in the
compared measurement periods are shown. Comparing the diagrams of the average daily
variation in July and September (Figure 5c), we can conclude that, overall, they are similar,
but in September in the period 00:00–07:00, the turbulent heat transfer spreads slightly
higher than in July. This effect is due to the fact that in September the wind speed during
the indicated period of the day was generally somewhat higher than in July, and intensified
the processes of turbulent heat transfer, expanding the region with increased temperature
dispersion (even with temperature inversions in the PBL).
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Figure 5. The daily variation of the height Hm in July (a) and in September (b) 2020, indicating the average values (black
asterisks) and its RMSD (black segments); (c) daily variation of mean and median values; (d) relative frequency of the Hm.

It is useful to analyze the statistical characteristic RF, which is the relative frequency. It
allows to roughly estimate the repeatability of values in a range of Hm heights. In Figure 5d,
RF (as a percentage of total cases) are shown for July and September.

The wind speed in the surface layer during the periods under consideration varied
from values close to zero up to 6–7 m/s (estimates for 10-min time intervals at an altitude
of 10 m). During the daytime, the wind speed was usually higher than at night. Moreover,
in September, the wind speed varied more significantly during the day than in July.

5. PBL Characteristics from Temperature Stratification Data

To analyze the dependence and for comparisons of the temperature regime parameters
in the heights range of 0 to 1 km, PBL parameters have been calculated from the acoustic
and microwave remote sensing data.

For days with good weather, the PBL has a well-defined structure and diurnal
cycle [1,38], which leads to the development of a convective boundary layer (CBL), also
called a mixing layer, during the day and a stable boundary layer (SBL) at night [1]. The
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SBL can be characterized by surface-based temperature inversion (SBI), i.e., inversion with
a base height starting at the surface (Hbase = 0) [1,38]. In the investigation, we used a
classification adapted to the conditions of our observations (see Table 2) [1].

Table 2. List of abbreviations.

Atmospheric Layers Description

bb convective boundary layer
PBL planetary boundary layer
SBL stable boundary layer

Instruments:

MWR
microwave radiometer using-methods:

PC—Parcel method [39,40] medicated [21]
SBI—surface-based temperature Inversion

Sodar Acoustic meteorological locator for diagnosing temperature turbulence in PBL

Calculated

Hm—the height of the layer of intense turbulent heat exchange,
Hbase and Htop—heights of the base and top of the temperature inversion,

∆Hi—inversion layer thickness ∆Hi = Htop − Hbase
∆H = Hm − Htop

HPC—the height of the mixing layer by using of the Parcel method modification [1,21]
∆Ti—power (strength) of inversion by temperature ∆Ti = T(Htop) − T(Hbase)

kex = Hm/Htop overlap index

Figure 6 shows that in most cases the top height of the temperature inversion (Htop)
is equivalent to the thickness of the inversion layer, because the inversions started from
surface Hbase = 0 (almost all inversions are during nighttime and surface-based ones).
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Figure 6. Distribution of the temperature inversions by time of day (hh) and the number of surface
based inversions (Hbase = 0) in July and September 2020.

In calculations of the mixing layer height HPC, we used the Parcel method [1,4,10,15]
with the refinement introduced by Kuznetsova et al. [21] and methodically approved
by Roshydromet in 2010. With this modification, the HPC height is dedicated by the
intersection of the measured T(H) profile and the “dry” adiabatic profile has been shifted
by 0.5 ◦C: TK(H) ≈ T(H = 0) − 0.0098 × H + 0.5.

Considering the periods of sunrise–sunset and the dependence of the PBL characteris-
tics according to the data on the dynamics of T(H), we have determined the time ranges for
SBL and CBL periods. Table 3 shows the intervals in hours for the SBL and CBL periods and
transitions. Different periods are characterized by a different set of parameters for analysis.
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For night-time (SBL), we compared Hm with temperature inversion (SBI) characteristics,
and for daytime (CBL), comparisons were made with Hm and HPC height.

Table 3. The intervals in hours for the SBL and CBL periods and transitions.

Month SBL SBL→CBL CBL CBL→SBL SBL

07/2020 00–04 05–11 12–17 18–22 23
09/2020 00–06 07–12 13–18 19–21 22–23

6. SBL Characteristics

For the SBL period, Hm has been compared with the top of the temperature inversion
(Htop), with the strength of the temperature inversion (∆Ti) and with the thickness of the
temperature inversion layer (∆Hi). During the observation period, there was a sufficient
number of cases of temperature inversions of 25 and 29% of the total measurement period.
The characteristics of the total number of profiles and the number of cases with temperature
inversion are presented in Table 4.

Table 4. The characteristics of the total number of profiles and the number of cases with temperature inversion.

Number of Hours Percentage

temperature profiles been measured and synchronized 07/2020 509 68%
temperature profiles with temperature inversion 07/2020 187 25%

temperature profiles been measured and synchronized 09/2020 599 83%
temperature profiles with temperature inversion 09/2020 211 29%

We carried out a sufficiently detailed analysis of the temperature inversion cases to
study the special behavior of turbulent heat exchange in the range of 0 to 1 km of PBL. We
investigated the dependencies when this heat exchange covered the entire inversion layer,
and not only during the period of its final destruction in the morning hours.

To identify cases of overlap, we use the relation kex = Hm/Htop (overlap index). An
overlap takes place if kex > 1, Figure 7a,b shows diagrams of the daily variation of the
kex coefficient. According to these plots, the overlapping of the temperature inversion
by turbulent heat exchange can take place practically at all intervals of the inversion
existence. Estimates show that the option kex > 1 was implemented approximately 40% of
this time. Moreover, this was especially active in the evening, when the formation of night
temperature inversions began.

Obviously, the strength of inversion by temperature ∆Ti = T(Htop) − T(Hbase), as well
as the inversion layer thickness ∆Hi = Htop −Hbase, play a significant role in the overlapping
of the inversion by the turbulent heat exchange.

The kex coefficient should depend on the value ∆Ti/∆Hi (◦C/m) (intensity of the
inversion). This dependence within the daily cycle is shown in Figure 7c,d. In the graph in
Figure 7c, estimates of kex in the period 10:00 ÷ 19:00 have been excluded due to too small
amount of data with temperature inversions. As noted above, the difference in heights ∆Hi
is shown in most of the cases in Figure 7c,d, corresponding to surface-based temperature
inversions, except (in total) 16 h in July and 12 h in September, when elevated temperature
inversions were measured.

Therefore, it follows that the temperature inversion in the PBL layer 0–1 km can exist
when it is completely covered by turbulent heat exchange if the normalized intensity of the
inversion ∆Ti/∆Hi (◦C/m) is less (very approximately) 0.015 ◦C/m. Additional conditions
for cases with Hm > Htop (kex > 1) require an additional analysis. The effect of overlapping
temperature inversions in the 0-1 km PBL layer by turbulent heat exchange is characteristic
not only for the warm season, which is represent in this work, but also in winter with
long-term implementation of stable stratification. This has been demonstrated in our
publications [27,28].
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Figure 7. Diurnal variation of the kex overlap index (a) in July and (b) in September 2020; dependence of the overlap index
on the time of day and the intensity of the inversion (c) in July and (d) in September 2020.

7. SBI Characteristics

In analyzing the SBI periods, the difference between Hm and Htop was investigated in
dependence of the inversion power ∆Ti and by the layer thickness ∆Hi. When the temperature
inversion is surface-based then Hbase = 0 and the top height of the inversion Htop is equivalent
to the thickness of the inversion layer ∆Hi. Figures 8 and 9 show the statistical distribution of
the inversions power ∆Ti and for inversion layer thickness ∆Hi for both months. Both periods
are similar in the distribution of the analyzed values with minor differences. The graphs
illustrate the presence of powerful inversions (∆Ti = 3–8 ◦C) corresponding with a layer
thickness ∆Hi of 150–300 m. The range of 3 to 8 ◦C is characterized by the fact that with
inversions of such a power in temperature, the difference between Hm and Htop is more
often negative for both months (Figure 10).

To analyze the relations between Hm and Htop, the graphs of the ∆H = Hm − Htop were
plotted in dependence on ∆Ti (Figure 10, green and blue in left axis) and ∆Hi (Figure 10,
red in right axis). If ∆H is in range ±50 m, then in 92% of the cases is ∆Ti in the range of 1
to 6 ◦C with a ∆Hi ranging from 150 to 250 m in July. For September, 85% of the cases were
situations with ∆H = ±50 m, 1 < ∆Ti < 6 ◦C and 150 < ∆Hi < 450 m.

Figure 11 illustrates how the difference ∆H is distributed over the number of cases.
∆H values in the range from −100 to 0 m (Hm < Htop) are more common for both July
and September 2020. Table 5 shows that in most cases ∆H < 0 (Hm < Htop). However, the
number of cases when ∆H ≥ 0 (Hm ≥ Htop) is significant and is 44% in July and 39% in
September 2020.
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Figure 10. Graphs of the ∆H = Hm − Htop in dependence of ∆Ti and ∆Hi: (a) July and (b) September 2020.
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Figure 11. Distribution of ∆H = Hm − Htop in dependence of the frequency of cases in July (triangles)
and in September (dots) 2020.

Table 5. Distribution of the ∆H (positive and negative) in July and September 2020.

July 2020 September 2020

∆H ≥ 0 m 44% 39%
∆H < 0 m 56% 61%

Figures 10–12 illustrate the change in the ratio between Hm and Htop in the daily
(Figure 12) evolution of PBL in the altitude range of 0 to 1 km. In the transition from CBL to
SBL after sunset, the inversions do not yet gain maximum power in terms of temperature
∆Ti and layer thickness ∆Hi, and the case Hm > Htop (∆H ≥ 0) occurs most often (Figure 12).
According to Figure 10, positive values of ∆H occur mainly at values ∆Ti < 4 ◦C and
∆Hi < 300 m.
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Figure 12. ∆H = Hm − Htop in the daily PBL cycle for (a) July and (b) September 2020. ∆H ≥ 0—red line, ∆H < 0—blue line.

Close to sunrise, before the transition from SBL to CBL, the inversions are maximum
in terms of the temperature difference (∆Ti > 4 ◦C), the thickness of the inversion layer
(∆Hi > 300 m), and Hm < Htop (∆H < 0) takes place. Thus, the change in the sign of the
difference ∆H between Hm and Htop occurred during the night-time cooling of PBL. Note
that in September 2020, the change in the sign of ∆H is less pronounced in time of day
compared to July (Figure 12b).



Environments 2021, 8, 115 12 of 15

8. Mixing Layer Height Characteristics in the Case of CBL

Figure 13 shows the diurnal dynamics of Hm and HPC on the background of the
potential temperature gradient field for 3 July 2020. The potential temperature gradient at
a height Hj is calculated as γΘ(Hj) = [Θ(Hj) − Θ(Hj−1)]/∆z, where ∆z = Hj − Hj−1 = 50 m
and Θ(Hj) ≈ T(Hj) + 0.0098 × Hj is the potential temperature profile with a step of 50 m).
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Figure 13. Diagram of the height-time distribution of the potential temperature gradient (the scale of
values is shown to the right of the graph), HPC—asterisks, Hm—red dots.

The values HPC were calculated for cases when for the low level of the PBL the
condition T(H) − TK(H) < 0 was satisfied, where TK(H) is the “dry” adiabatic profile shifted
by 0.5 ◦C. If the specified inequality took place up to an altitude of 1000 m, then the
estimate was marked as 1001 m. Such conditions significantly reduce number of profiles
available for calculation HPC, for night-time especially. Calculation of the HPC was applied
to the measured profiles to detect daytime PBL parameters in the period of the CBL. This
is demonstrated in Figure 14 with a daily evolution of HPC (dots) in July (392 h) and in
September (377 h). The figure does not include values of HPC less than 50 m and more
than 1000 m; these cases were not included in the calculations. Note, the elevation level
of 1000 m was present for 14 h in July and 7 h in September. The hourly averaged values
HPC are shown in Figure 14. A comparison of the averaged, hourly values HPC in July and
September is shown in Figure 14c, and the cumulative frequency is shown in Figure 14d.
According to Figure 14a,b the processes of formation of the mixing layer height values are
more diverse in September than in July. Although the ranges of changes in the diurnal
variation are approximately the same (considering the difference in the duration of daylight
in July and September, Figure 14c.
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Figure 14. Diurnal variation (a) in July and (b) in September 2020 showing the mean values (asterisks) and RMSD (segments);
(c) comparison of the daily variation of the mean values; and (d) cumulative frequency.

9. Conclusions

Based on the experimental data obtained using the temperature-wind complex (single-
channel MWR MTP-5 and acoustic meteorological locator sodar), the height of the mixing
layer HPC with height values of the intense turbulent heat exchange Hm have been esti-
mated and compared. The height range from the surface layer up to 1000 m was monitored.
The analysis included measurements from July and September 2020. The obtained re-
sults for July and for the season changing in September illustrate the repeatability and
transformations of PBL characteristics, such as the temperature inversions daily time distri-
butions. For both months, ∆H in dependence of the inversion power by temperature ∆Ti
and inversions layer thickness ∆Hi has been calculated. Note that the character of the ∆H
distribution by daily times in September is less pronounced than in July.

According to the results of the analysis, it was found that in 95% of the cases HPC was
in the range of 50 < HPC < 700 m in July and 50 < HPC < 850 m in September. The range of
Hm (except for ±2.5% of the “edge” values in the distribution of the integral function) was
50 < Hm < 600 m both in July and September. In the daytime, the height HPC was higher
than Hm.

For periods with surface-based and elevated air temperature inversions a detailed
analysis of the height Hm, i.e., the height of the layer with increased air temperature disper-
sion characterizing turbulent heat exchange, was carried out. As a result, it was found that
at sufficiently long-time intervals (up to 40% of the total time of the existence of inversions)
this layer can completely “cover” the inversion without leading to its destruction.

The material presented in this article will be useful for refining the methods and
algorithms for modeling the state of the atmospheric boundary layer under temperature
inversion conditions. As far as we know, current methods do not take into account the
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possible effects of overlapping of inversions by turbulent heat transfer. In the future, we
plan to carry out a comparative analysis of experimental estimates of the layer height of
intense turbulent heat transfer with the stable stratification of the PBL with the models
published in the literature for the mixing layer height under such conditions.
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