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Abstract: This study aims to assess the short-term response of groundwater to the main hydro-me-
teorological variables of drought in a coastal unconfined aquifer. For this purpose, a multiple fuzzy 
linear regression-based methodology is implemented in order to relate rainfall, streamflow and the 
potential evapotranspiration to groundwater. Fuzzy regression analysis is recommended when 
there is a lack of data. The uncertainty of the system is incorporated into the regression coefficients 
which, in this study, are considered to be fuzzy symmetrical triangular numbers. Two objective 
functions are used producing a fuzzy band in which all the observed data must be included. The 
first objective function, based on Tanaka’s model, minimizes the total width of the produced fuzzy 
band. The second one includes the first while additionally minimizing the distance between the 
central value of the fuzzy output of the model and the observed value. Validity of the model is 
checked through suitability measures. The present methodology is applied at the east part of the 
Nestos River Delta in the Prefecture of Xanthi (Greece), where the observed values of the depth of 
groundwater level of four wells are examined. 
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1. Introduction 
Groundwater is a vital resource of ecosystems and it is affected by natural and an-

thropogenic factors. Primarily, groundwater is the main water source in case of drought 
caused by the variability of precipitation and temperature. The groundwater level of un-
confined aquifers is strongly influenced by the variability of the amount of rainfall of an 
area and the temperature [1–3]. Particularly, οn a local scale, these climate changes have 
greater impact on shallow aquifer systems than on deeper ones [3]. Additionally, shallow 
aquifers in lowland areas, which constitute an important role in the development of soci-
eties, are under more pressure since they are commonly associated with meeting the irri-
gation needs of crops. Different approaches have been developed to groundwater model-
ing in which mathematical relationships represent either the physical laws (physical mod-
els) or the natural processes of the system (conceptual models). Furthermore, natural pro-
cesses may be represented through relations coming from the general theory of systems 
analysis without any consideration of physical laws and empirical relations (statistical-
stochastic models). 

Several studies, which intend to relate hydro-meteorological variables to groundwa-
ter, have been proposed. Viswanathan [4] suggests a multiple linear regression model in 
order to determine the recharge parameters of a coastal unconfined aquifer. Based on 
daily rainfall and water table records of the year 1979, he uses a recursive least squares 
method in order to minimize the difference between the groundwater level of an explor-
atory well and that estimated of the model. The water table level is estimated as a function 
of the given series of rainfall events and the prior water table levels. In their research, 
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Ferdowsian et al. [5] investigate statistically the trends of groundwater levels by taking 
into account the time lag between rainfall and its impact on groundwater. Based on daily 
rainfall records, two forms of accumulative residual rainfall are estimated and compared 
in order to be used as one of the two independent variables in a multiple linear regression 
model. The other independent variable is the number of months since the commencement 
of the observation. The output (dependent variable) of the model is the water table depth, 
for which sufficient data from forty-nine (49) wells, both of shallow and deeper aquifers, 
are collected every three (3) or nine (9) months during a sampling period of 7 to 10 years. 
The regression coefficients estimated by the model represent the impact and the trend rate 
of the groundwater level rise or fall over time. In the study of Chen et al. [6], precipitation 
and temperature are linked to the groundwater level of a carbonate aquifer. On the basis 
of a groundwater flow and a water budget model, they proposed a statistical-empirical 
model applying a multiple linear regression in which groundwater level constitutes one 
function of meteorological variables with a time delay Δt. In another research [7], a mul-
tiple linear regression model between rainfall and groundwater is applied in order to in-
vestigate the groundwater response to rainfall. The model is powered by monthly records 
of water table depth and rainfall by considering their values fromthe previous monthly 
step. Data from several piezometric stations during the period of 2007 to 2008 are used 
and the analysis is conducted at representative areas in a regional scale basin. Zhang et al. 
[8] evaluated the effects of several factors with regard to the fluctuations in water table 
elevations in the case of shallow aquifers at a local scale. For this purpose, multiple/step-
wise multiple regression techniques are used to investigate the linear relationship be-
tween identified groundwater level response height and independent factors. Six wells at 
an experimental site covering a region of 17 km2 are used to collect water table elevation 
data every fifteen minutes on a weekly basis while hydrogeological data and site specific 
data are also used. In another experimental research [9], a statistical model is suggested 
for the investigation of the groundwater level response to precipitation, evaporation, river 
stage and tide level. Daily water table data are selected from twelve (12) wells in a shallow 
unconfined aquifer of a farmland covering an area of 50×150 m for one year. 

All the aforementioned researches are important and useful for the understanding of 
the interrelationships between the groundwater level and other hydrological and climate 
factors. The use of such models relies on the availability of sufficient long-term time series 
of the hydrogeological and hydrometeorological variables examined at each research. 
Furthermore, analysis in most of these researches is conducted on the basis of a river basin 
or a regional scale basin. 

In the last two decades, fuzzy logic and sets have an increased use in surface water 
and groundwater hydrological applications examining various problems [10]. Several ap-
plications are based on fuzzy IF –THEN rules based methodologies [11–14], while others 
are based on hybrid fuzzy multicriteria techniques [15–18]. These applications are very 
popular because of the ANFIS toolbox of MATLAB. As far as fuzzy regression methodol-
ogies are concerned, a variety of applications werecarried out in modeling both qualitative 
and quantitative parameters [19–31]. 

Concerning the regression methodologies, the research of Bardossy et al. [19] was 
one of the first applications in groundwater hydrology and surface hydrology dealing 
with finding a relationship between saturated hydraulic permeability and resistivity. In 
addition several methodological points and criteria of vagueness were proposed by [19]. 
Furthermore, Bardossy et al. [32] developed a fuzzy unit hydrograph based model in or-
der to calculate the fuzzy ordinates of the proposed fuzzy unit hydrograph.In the current 
study, a fuzzy linear relationship between rainfall (R), streamflow (Q), the potential evap-
otranspiration (PET) and the groundwater depth (DGW) is investigated in the case of a 
shallow unconfined aquifer covering a local site of a deltaic environment. Two multiple 
linear regression models based on the principles of fuzzy logic and sets are implemented. 
Fuzzy linear regression models may satisfactorily function when there is a lack of data by 
incorporating uncertainty into the regression coefficients which consider them as fuzzy 
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numbers [19,33]. All of the observed data must be included into the produced fuzzy band, 
the spread of which is minimized. Appropriateness of the models is checked through the 
value of the objective function which indicates the total fuzziness. Other suitability 
measures are also proposed in this work. 

2. Materials and Methods 
2.1. Basic Consepts of Fuzzy Logic and Sets 

Fuzzy logic and sets consist of an extension of Boolean logic, which means that an 
element x of a given fuzzy set B may take not only two values {1,0}, but also all the values 
between 1 and 0 including limit values. Thus, an element x may belong to some degree to 
a fuzzy set B, whereas in the case of Boolean logic an element x either belongs or it doesn’t 
to a given set (crisp set). Fuzzy methodologies can be autonomous (for example, a set of 
fuzzy rules based on Mamdani approach, for example, [34]) or hybrid, where uncertainty 
of complex issues can be incorporated through analysis. Fundamental concepts of fuzzy 
logic and sets are referenced below: 

A fuzzy set B  is a mapping : 0,1B X →    . The membership function ( )μ x  of an 

element x X∈  indicates the degree of membership in the B . 
A fuzzy number Y  defined on   is a special kind of fuzzy set satisfying the fol-

lowing properties [35]: 

• x X∃ ∈ such that ( ) 1μ x =  (normal fuzzy set) 
• the α-cut, [ ]αY , must be a closed interval (0,1]α∀ ∈  

• the support set (strong zero-cut), 
[0]

Y + , of the fuzzy number Y  must be bounded 

The α-cut, [ ]αY , of the fuzzy number Y  (and for any fuzzy set) is a crisp set con-

taining all the elements in the X that have membership value in Y greater than or equal to 
α: 

}{[ ] : ( )αY x X Y x α= ∈ ≥  (1)

}{[ ]
: ( )

α
Y x X Y x α+ = ∈ > (strong α-cut) (2)

It should be noted that the total fuzziness is taken into account when the strong zero 
cut, 

[0]
Y + , is used. More analytically, according to equation (2) above the 0-cut is an open 

interval and does not contain the boundaries. For this reason and in order to have a closed 
interval containing the boundaries, Hanss [36] proposed the phrase worst-case interval 
W, which is the union of the strong 0- cut and the boundaries. 

A symmetric triangular fuzzy number (STFN) (Figure 1) is a special kind of fuzzy 
number of which the membership function is expressed by the following equation: 

1
( )

( )
( )

0

Y

for x r
x r w if r w x r

wμ x
r w x if r x r w

w
otherwise

 =
 − − − ≤ ≤
=  + − ≤ ≤ +




 (3) 

where w=the semi-width of the Y , r=the central value of the Y . 
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Figure 1. The shape of a symmetric triangular fuzzy number (STFN). The support set of a fuzzy 
number Y  is identical to its strong 0-cut. 

The extension principle is a fundamental principle in fuzzy set theory. In brief, with 
the use of the extension principle all the operations of the crisp functions can be extended 
as the fuzzy arithmetic and fuzzy algebraic operations [37,38]. Thus, a crisp function can 
be performed on a fuzzy number and the result of this operation should also be a fuzzy 
number. 

Let Y  be a fuzzy number and let f  be a continuous crisp function. Then the result 
of the performed operation will be a fuzzy number Z  with a membership function 

( )Zμ x , the α-cuts of which can be described as follows [39]: 

{ }
{ }

= ∈

= ∈

[ ] [ ]

[ ] [ ]

min ( ) ,

max ( )

L
α α

R
α α

Z f Y

Z f Y

x x

x x
 (4)

for 0≤α≤1, where [ ]
L

αZ  and [ ]
R

αZ are the left boundary and the right boundary of the 

fuzzy number Z . 

2.2. Fuzzy Linear Regression Analysis 
2.2.1. Fuzzy Multiple Linear Regression Based on Tanaka’s Model 

In this research, a fuzzy multiple linear regression (Equation (5)) is implemented in 
order to relate the independent variables (R, PET and Q), to the dependent variable (DGW). 
Uncertainty caused by the complexity of natural processes can be incorporated through 
the use of the fuzzy regression based on Tanaka’s approach [40]. This study examines the 
case of input and output data taken as experimental crisp values while the output of the 
model and the regression coefficients constitute STFN. Uncertainty is incorporated into 
the fuzzy regression coefficients, the determination of which leads to a conventional con-
strained optimization problem [41,42]. The objective function J of this optimization prob-
lem is minimized since it indicates the total fuzziness of the solution. 

0
GW
j R j PET Q jD A A R A PET A Q= + + +      (5)

where R, PET, Q are the crisp data of rainfall, potential evapotranspiration and streamflow, 
respectively, at the examined point in time j, and ( , )j j jA r w=  are the regression coefficients 
selected as symmetric triangular fuzzy numbers with central value r and semi-width w. 

According to the extension principle the estimated fuzzy output, GW
jD  will also be a 

symmetric triangular fuzzy number with a central value r and a semi-width w (Equation 
(6)).  
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, 0

, 0

:

:

GW
r j R j PET j Q j

GW
w j R j PET j Q j

central value D r r R r PET r Q

semi width D w w R w PET w Q

= + + +

− = + + +
 (6)

Based on the concept of inclusion (Equation (7)), all the observed data must be included 
into the produced fuzzy band aiming at its minimum width. 

⊆,
,[ ]

GW obs GW
j j hD D  (7)

The concept of inclusion interprets the inclusion constraints (Equation (8)) of the opti-
mization problem according to which an observation of groundwater depth ( ,GW obs

jD ) at the 

examined point in time j is included into the estimated fuzzy groundwater depth ( GW
jD ) 

with an associated degree 0,1h ∈    . The level h denotes that the observation ,GW obs
jD  is 

contained in the support set of the corresponding estimated GW
jD  with a membership de-

gree greater than h [43]. 

( ) ( )( )
( ) ( )( )

+ + + − − + + + = ≤

+ + + + − + + + = ≥

≥

,
0 0 ,[ ]

,
0 0 ,[ ]

0

1

1

, , , 0

L GW GW obs
R j PET j Q j R j PET j Q j j h j

R GW GW obs
R j PET j Q j R j PET j Q j j h j

R PET Q

r r R r PET r Q h w w R w PET w Q D D

r r R r PET r Q h w w R w PET w Q D D

w w w w

 (8)

where ,[ ]
L GW

j hD  and ,[ ]
R GW

j hD  are the left boundary and the right boundary of the estimated 
GW
jD , respectively, while ,GW obs

jD is the observation of the groundwater depth at the ex-
amined point in time j. 

Fuzzy regression analysis based on Tanaka [40] has no error term since the subject of 
the inclusion constraints is the minimization of the spread of the produced fuzzy band. The 
objective function J summarizes all the produced semi-widths for all points in time 
(j=1,2,…,k). Thus, suitability of the model is checked by the value of the objective function J 
(Equation (9)). A small value of J indicates small fuzzy band and therefore the model has 
high suitability. 

( )
= =

      = = + + +   
      
 0

1 1
min min min

k k
GW
j R j PET j Q j

j j
J w kw w R w PET w Q

 

Fuzzy linear regression model I (FLR-1)

(9)

where k is the number of observations. 

2.2.2. Modification of Tanaka’s Model with the Use of a Non-linear Objective Function 
When using STFN, the objective function suggested above by Tanaka [40] minimizes 

the total semi-width for all the fuzzy regression coefficients and for all observations. Thus, 
under inclusion constraint conditions, it takes into account the distance between the left 
and the right boundary of each fuzzy output. 

In their research, Tzimopoulos et al. [33] use a non-linear objective function based on 
the least squares model suggested by Diamond [44], which minimizes the distance be-
tween the observation (crisp output) and the left and the right boundary of the estimated 
fuzzy output. Tzimopoulos et al. [33] apply this non-linear objective function in the case 
of crisp experimental data without taking into account the inclusion constraints and thus, 
the regression coefficients result crisp numbers. It is worth mentioning that in the case of 
fuzzy experimental data the non-linear objective function used in the research of 
Tzimopoulos et al. [33] works well regardless of whether the inclusion constraints are 
used. 
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This research applies a modified fuzzy multiple linear regression model based on 
Tanaka [18] through the use of the non-linear objective function based on Tzimopoulos et 
al. [33] (Equation (10)) by taking into account the inclusion constraints in the case of crisp 
experimental data. In contrast with the current study, in their research, Papadopoulos et 
al. [45] apply this modified fuzzy regression model between only one independent and 
one dependent variable and they work with probabilities. 

( )
( )=

 − − + − + − + − +  = 
  − + + + + + + +  



2
,

0 0

2
,1

0 0

min
GW obs

k j R j R j PET PET j Q j Q j

GW obsj
j R j R j PET PET j Q j Q j

D r w r R w R r PET w PET r Q w Q
S

D r w r R w R r PET w PET r Q w Q
 

Fuzzy linear regression model 2 (FLR-2)

(10)

where the first bracket denotes the Euclidian distance between the observed groundwater 
depth, ,GW obs

jD , and the left boundary of the corresponding produced fuzzy output of the 

fuzzy regression model, L GW
jD , for level h=0. The second bracket denotes the Euclidian dis-

tance between the ,GW obs
jD  and the right boundary of the corresponding produced, R GW

jD , 
for level h=0. 

Based on the consideration that the total produced fuzziness can be analyzed either 
around the central values or the observations (Equation (11)) (similar considerations can be 
found in [46] which aim at different purposes), it is concluded (Equations(11)–(14)) that the 
objective function S (Equation (10)) takes into account both the distance between the central 
value and the left-right boundaries, and the distance between the central value and the ob-
servation. 

( ) ( ) ( ) ( )
= =

   − + − = − + −    
2 2

, ,
, ,

1 1

k k
R GW GW obs GW obs L GW R GW GW GW L GW

j j j j j r j r j j
j j

D D D D D D D D  (11)

Analyzing Equation (11) and solving for ( ) ( )
= =

− + − 
2 2, ,

1 1

k k
R GW GW obs GW obs L GW

j j j j
j j

D D D D  

and developing the analytical expression from the right, it is concluded, as shown in the 
following equation [45,46]. 

( ) ( )

( ) ( ) ( )
= =

= = =

− + − =

− + − + −

 

  

2 2, ,

1 1

2
2 2 ,

, , ,
1 1 1

2

k k
R GW GW obs GW obs L GW

j j j j
j j

k k k
R GW GW GW L GW GW GW obs

j r j r j j r j j
j j j

D D D D

D D D D D D
 (12) 

The analytical expression from the left denotes the total sum of the difference be-
tween the ,GW obs

jD  and R GW
jD  raised to the second power plus the total sum of the dif-

ference between the ,GW obs
jD  and L GW

jD  raised to the second power. The first and the sec-
ond terms of the right analytical expression are the total sum of the difference between 
the boundaries (right and left, respectively) and the central value of the fuzzy groundwa-
ter depth ( ,

GW
r jD ) raised to the second power. The last term denotes the (double) total sum 

of the difference between the ,
GW
r jD  and ,GW obs

jD . 
In the case of STFN (Figure 1) the distance between the central value and the right 

boundary is equal to the distance between the central value and the left boundary (Equa-
tion (13)), thus the first and the second terms of the right part of the Equation (12) can be 
written as follows: 
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( ) ( ) ( )
= = = =

− = − = = + + +   
2 22 2

, , , 0
1 1 1 1

k k k k
R GW GW GW L GW GW

j r j r j j w j R j PET j Q j
j j j j

D D D D D w w R w PET w Q  (13)

where ,
1

k
GW
w j

j
D

=
  denotes the total semi-spread of the produced fuzzy band. 

Hence, Equation (12) can be re-written as follows: 

( ) ( )

( ) ( )
= =

= =

− + − =

+ + + + + + + −

 

 

2 2, ,

1 1

22
,

0 0
1 1

2 2

k k
R GW GW obs GW obs L GW

j j j j
j j

k k
GW obs

R j PET j Q j R j PET Q j j
j j

D D D D

w w R w PET w Q r r R r PET r Q D
 (14)

Consequently, the objective function S includes both the total fuzziness and the (dou-
ble) distance between the central value of the fuzzy groundwater depth ( GW

jD ) and the 

observed groundwater depth ( ,GW obs
jD ). 

2.3. Suitability Measures 
As aforementioned above, validity of the applied fuzzy linear regression models is 

checked through the values of the objective functions J and S. Lower values of J and S 
indicate higher suitability of the models. In addition, two more suitability measures are 
used. 

The first one is based on Theil’s inequality coefficient U [47], as presented according 
to Bliemel [48] (the first of the two formulae) and Botzoris and Papadopoulos [49]. The 
difference with the conventional U is that the fuzzy output estimated by the two fuzzy 
linear regression models (which in this study is the fuzzy groundwater depth) is used 
instead of the (crisp) output estimated by the conventional regression. Based on the ex-
tension of principle [36,39], algebraic operations between fuzzy numbers and crisp num-
bers can be performed producing fuzzy numbers and hence, a fuzzification of U is 
achieved. Thus, this study proposes, for the first time, the fuzzified Theil’s inequality co-
efficient, U , which is expressed as follows: 

( )
=

= =

−
=

+



 

2
,

1

2 2
,

1 1

1

1 1

k
GW GW obs
j j

j

k k
GW GW obs
j j

j j

D D
k

U

D D
k k





 (15) 

where GW
jD  is the fuzzy output (fuzzy groundwater depth which is produced based on 

the fuzzy linear regression model) and, ,GW obs
jD  is the observed groundwater depth at the 

examined point in time j (which is crisp number). 
The problem of Equation (15) is that the fuzzified Theil’s inequality coefficient, U con-

tains some fuzzy inputs, that is, the fuzzy prediction of the water depth GW
jD . This point 

can be addressed based on the extension principle. Finally, based on Equation (4), the left 
(minimum) and the right (maximum) hand sides of the fuzzified Theil’s inequality coeffi-
cient,U  are calculated as follows for one α-cut: 

{ }
{ }

= ∈ ∈

= ∈ ∈

[ ] 1 1 1 [ ] [ ]

[ ] 1 1 1 [ ] [ ]

min ( ,..., ) ,..., ,

max ( ,..., ) ,...,

L GW GW
α k α k k α

R GW GW
α k α k k α

U f x x x D x D

U f x x x D x D
 (16)
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where [ ]
GW
j αD , for 0≤α ≤1, denotes the α-cuts of the fuzzy groundwater depth and x1,x2,…,x9 

are the solutions of the double optimization problem. By using a significant number of α-
cuts the fuzzified Theil’s inequality coefficient can be built. 

Theil’s U can take values between zero and unit [0,1]. It is always reasonable that their 
values be close to zero [48,49]. The two fuzzy linear regression models produce another 
fuzzy groundwater depth value (fuzzy outputs) and therefore another U are estimated for 
each model. However, since the Theil’s U are produced as fuzzy numbers, it is demanded 
to choose which of them is greater or smaller in order to decide the more suitable fuzzy 
regression model. Therefore, a computationally efficient method to compare the fuzzy num-
bers is presented in the Appendix A. 

In the second suitability measure Edis, which is used in the research of [45], the numer-
ator denotes the Euclidian distance between the observed groundwater depth and the left 
boundary, the right boundary and the central value of the corresponding fuzzy estimate. 
The denominator denotes the distance between the observation and the unbiased mean of 
the historical sample. It is calculated through the following algebraic expression: 

( ) ( ) ( )

( )
=

=

 − + − + − 
 

= −
−





, , ,2 2

,
2

,

2

1

1

/ 3
1

GW obs L GW GW obs R GW GW obs GW
j j j j j r j

GW ob

k

j
dis k

GW

j

s
j

D D D D D D

D
E

D
 (17)

where L GW
jD , R GW

jD  and ,
GW
r jD  are the left boundary, the right boundary and the central 

value of the fuzzy groundwater depth, respectively, while GWD  is the mean value based 
on the historical sample. The closer Edis is to unit, the better the model. 

3. Results 
3.1. Case Study 

The study area is located at the south part of the City of Xanthi in the Prefecture of 
Xanthi, N.E. Greece. It is bounded to the west by the Nestos River and to the south by the 
Aegean Sea. Its geomorphology is generally considered to be flat with an elevation of a 
few meters above sea level throughout the entire study area (Figure 2). It is located in a 
recent sedimentary delta environment of a few tens of meters thick alternate sand, clay 
and silt layering deposits. It is worth mentioning the occasional presence of organic clay 
due to the delta marshes. The evolution of the east part of the delta under flooding condi-
tions has been instrumental in forming low potential aquifers in the study area [50,51]. 
After carefully studying drilling, piezometric and geophysical exploration data of the 
area, it was concluded that at the north side of the study area, alternate clay and mostly 
sand layering extend down to a depth of 30 m. A marly layer, 50 m thick, comes in be-
tween 30 m to 80 m and below the depth of 80 m, the same clay and sand layers extend 
again [52–54]. 
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Figure 2. Piezometric map of the unconfined aquifer at the east part of the Nestos River Delta and 
the examined wells (October 2008) [52]. 

The east delta plain extends for 176.4 km2, forwhich 106.63 km2 are cultivated, while 
the coastal saline uncultivated lands extend for 45 km2. The irrigated lands extend for 89.9 
km2, while 35 km2 of them meet irrigation needs from the Nestos River. The remaining 
areas meet irrigation needs by pumping groundwater from the unconfined aquifer of the 
area. The mean annual water consumption is estimated at 27×106 m3 [51]. 

Hydrogeologically speaking, there is a shallow and a deeper aquifer system both of 
which are formed within the alluvial deposits of the wider study area [53,54]. This study 
focuses on the shallow hydrological system, which consists of phreatic and of semi-con-
fined aquifers extending to a depth of about 30 m. The transmissivity (T) value of the 
unconfined aquifer is approximately 1.1×10−2 m2/s [53,54]. 

As aforementioned, the inputs of the fuzzy regression models are rainfall (R), the 
potential evapotranspiration (PET) and streamflow (Q). With respect to R and the PET, 
their monthly measurements, which refer to the corresponding observations of the 
groundwater depth (DGW,obs) for the month j and for the period of October 2006 to October 
2008, that is, k=9, are utilized. It is mentioned that PET is calculated based on the 
Thornthwaite method. Streamflow data are derived from the three-months mean value, 
starting from October 2006. As far as the groundwater depth of the shallow unconfined 
aquifer is concerned, which is the output of the two fuzzy multiple linear regression mod-
els, the used measurements were collected from four (4) wells every three months, starting 
from October 2006 [52]. 

3.2. Results of the Two Fuzzy Regression Models 
Αs aforementioned, for simplicity, the fuzzy linear regression model based on 

Tanaka’s approach [40] will be symbolized as FLR-1 and that which uses the non-linear 
objective function S will be symbolized as FLR-2. Likewise, the estimated U  based on 
the results of FLR-1 will be symbolized as 1U  and the estimated U  based on the results 

of FLR-2 will be symbolized as 2U . 
The results of the FLR-1 model are separately presented in Figure 3 in the case of well 

194. For illustration purposes, only R-DGW and PET-DGW are presented. The coefficients of 
the fuzzy regression are presented in Table 1. 

(a) (b) 

Figure 3. The results of the fuzzy linear regression(FLR)-1 model in the case of well194, (a) the 
rainfall R and the groundwater depth DGW, and (b) the potential evapotranspiration (PET) and the 
groundwater depth DGW. 

Table 1. The fuzzy coefficients regarding the examined wells based on the FLR-1 model. 
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Wells Constant term  R  PET Q mean 

 
 

(centre) 
 

(semi-width) 
 

(centre) 
 

(width) 
(centre) (width) (centre) (width) 

177 0.7371 0.4752 −0.0048 0 0.0456 0.0101 −0.0281 0 
183 1.4440 0.6340 −0.0044 0 0.0416 0 −0.0384 0 
186 1.2953 0.6977 −0.0021 0 0.0403 0 −0.0334 0 
194 2.2853 0.1977 −0.0011 0 0.0260 0 −0.0442 0.0075 

 
As it can be easily observed in the above Figure 3, all the observed data are included 

into the produced fuzzy band as required by the inclusion constraints. Additionally, as 
indicated in Table 1, most of the coefficients result incrisp numbers except from the con-
stant term. Particularly, as expected, the coefficients of R and Q are negative while the 
coefficient of PET has a positive symbol.  

Similar findings regarding the regression coefficients are obtained when using the 
FLR-2 model (Table 2), while the observations of DGW and its corresponding fuzzy esti-
mates are illustrated (for the case of well 194) in Figure 4. 

(a) (b) 

Figure 4. The results of the FLR-2 model in the case of well 194, (a) the rainfall R and the ground-
water depth DGW, and (b) the potential evapotranspiration PET and the groundwater depth DGW. 

Table 2. The fuzzy coefficients regarding the examined wells based on the FLR-2 model. 

Wells Constant term  R  PET Q mean 

 
 

(centre) 
 

(semi-width) 
 

(centre) 
 

(width) 
(centre) (width) (centre) (width) 

177 0.7790 0.4743 −0.0059 0 0.0452 0.0103 −0.0283 0 
183 1.4824 0.6416 −0.0058 0 0.0413 0 −0.0384 0 
186 1.3093 0.7005 −0.0026 0 0.0402 0 −0.0334 0 
194 2.2438 0.2914 −0.0007 0 0.0259 0 −0.0432 0.0020 

Furthermore, as it is observed in Table 1 and the Table 2, in both of models the fuzzy 
coefficient of streamflow seems to be increasing (in terms of absolute value) as the coast 
is approached, whereas the values of the rainfall’s modeldecreases (in terms of absolute 
value). Meanwhile, the total fuzziness (J) gradually decreases as the coast is approached, 
since it takes the highest value in the case of well 177 (the furthest well from the coast) and 
the lowest value in the case of well 194 (the shortest well from the coast) (Table 3). In both 
of the fuzzy regression models, as it easily observed in Table 3, the lowest value of U  
and the higher value of Edis are also obtained in the case of well 194. The previous ascer-
tainments can be justified in hydrological terms considering the hydrogeological charac-
teristics of the aquifer under study focusing on the piezometric conditions and the depth 
values of the groundwater level in the area of the wells 177, 183, 186, and 194 (Figure 2) 
[52]. 

0r 0w Rr Rw
PETr PETw Qr Qc

0r 0w Rr Rw
PETr PETw Qr Qw
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In the Table 3 below, the bold values constitute the lowest values of the objective 
functions J and S and the lowest and highest values that the suitability measures (U and 
Edis) correspondingly get in both fuzzy regression models. The fuzzified Theil’s coefficient 
of inequality, U , is described by the left boundary (LU), the central value (CU) and the 
right boundary (RU). 

Table 3. Suitability measures and the values of the objective functions J and S for both of the fuzzy 
linear regression models. 

Results based on the FLR-1 model 
Wells J S LU CU RU Edis 

177 10.294 46.779 0.000 0.1212 0.2803 0.800 
183 5.706 12.348 0.000 0.0653 0.1401 0.905 
186 6.279 14.293 0.000 0.0700 0.1498 0.874 
194 2.847 3.229 0.000 0.0379 0.0823 0.937 

Results based on the FLR-2 model 
Wells J S UL UC UR Edis 

177 10.371 46.650 0.000 0.1196 0.2801 0.802 
183 5.774 12.175 0.000 0.0633 0.1397 0.908 
186 6.304 14.272 0.000 0.0695 0.1509 0.875 
194 2.899 3.154 0.000 0.0370 0.0816 0.939 

It is worth mentioning that the Pearson’s r between DGW-R, DGW-PET and DGW-Q, 
ranges (regarding all the examined wells) from -0.407 up to -0.497, from 0.931 up to 0.955 
and from -0.466 up to -0.538 correspondingly. 

As aforementioned, in both of the fuzzy regression models, U  gets the lowest value 
in the case of well 194. However, it is difficult to choose the lowest U  between the ap-
plied two fuzzy linear regression models (for each well) since the U  has a fuzzified 
shape. Hence, the fuzzy numbers comparison method of the Appendix A is used, which 
is based on the measure R. The values of the ranking measures R (R-values) are presented 
in Table 4. 

Table 4. R-values of the two fuzzified Theil’s inequality coefficients 1U  and 2U . 

Ranking measure/Wells 177 183 186 194 
R (for 1U ) 0.1277 0.0669 0.0717 0.0391 
R (for 2U ) 0.1266 0.0652 0.0717 0.0384 

In the above Table 4, the lowest (bold) values indicate that in the case of well 194, 

1U  and 2U get the lowest value. In addition, the table information shows that 2U  is 

lower than 1U .The lower the value of R, the closer the membership function of each U

becomes to 0 (Figure 5). 
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Figure 5. Comparison between the fuzzified Theil’s inequality coefficients 1U  and 2U in the 
case of well 194. 

In the above Figure 5, the Theil’s inequality coefficients U are illustrated together in 
the case of well 194. 2U  (the red shape) is lower than 1U  (the blue shape) and hence, 
the FLR-2 model which uses the non-linear objective function S is a little more suitable. 
Furthermore, 2U  is lower than 1U  regarding all the examined wells, while FLR-2 gets 
a higher Edis-value than the FLR-1 in all cases of the examined wells. 

4. Discussion Points 
Based on the results above (Tables 1 and 2), two fuzzy linear relationships are pro-

duced, one for each multiple fuzzy linear regression model (FLR-1 and FLR-2). As ex-
pected, rainfall (R) and streamflow (Q) negatively affect the groundwater depth (DGW), 
while the potential evapotranspiration (PET) is positively related to DGW. In both of the 
two fuzzy regression models, the fuzzy regression coefficient of the streamflow seems to 
have an inversely proportional relation with the distance of the coast, while the fuzzy 
regression coefficients of the rainfall grows lower. This could be explained by the geology 
of the case study since grain size is increased approaching to the coast and therefore the 
hydraulic interfacebetween the aquifer and the Nestos River may be stronger. This as-
sumption is consistent with the piezometric conditions of (Figure 2) and the observed 
depths of groundwater of the case study. 

In addition, total fuzziness continues to decrease as the distance tothe coast de-
creases, that is, the FLR-1 and FLR-2 models work better approaching the coast. As can be 
easily observed in Table 3, in the case of well 194, the total fuzziness J gets its lowest value 
with respect to the other wells in both fuzzy regression models. Simultaneously, the 
Theil’s U and the suitability measure Edis get their lowest and highest values, respectively. 
Therefore, there is a robust linear (fuzzy) relationship between the aforementioned hydro-
meteorological variables in the case of well 194. This fact could also be explained by the 
geology of the case study where significant variability of hydraulic characteristics of the 
aquifer appears [52]. For instance, a lower permeability in places can negatively affect the 
short-term influence of streamflow and rainfall on groundwater.  

Regarding the suitability measures,the value of Theil’s inequality coefficient U in-
creases when the total fuzziness increases as well, while the higher the values of the suit-
ability measures Edis are, the lower the fuzziness of the models. Consequently, the suita-
bility measures are consistent. It is observed that the uncertainties of the influence coeffi-
cients are negligible, especially for streamflow and rainfall, despite their correlation coef-
ficients being much lower than the corresponding ones of potential evapotranspiration. 
However, both the higher correlation coefficient of streamflow than the corresponding 
one of rainfall in all examined wells and the coefficients of streamflow in both of the two 
fuzzy regression models, show that the contribution of streamflow should not be ignored. 
Eventually, fuzzy linear relationships instead of crisp relationships are produced. 

It is highlighted that in general, both the fuzzy regression models (FLR-1and FLR-2) 
obtain similar results. However, it is worth commenting on the fact that although the total 
fuzziness (objective function J) has alower value when using the FLR-1 model (which is 
obvious, since for the FLR-1 model, J is the objective function), all of the measures, U and 
Edis, are a little more suitable for the FLR-2 model regarding all the examined wells. Since 
the solution of the FLR-2 model has a better performance according to the majority of the 
criteria and because of the fact that the objective function of the FLR-2 model includes 
both the distances between central values-observed values and the objective function of 
FLR-1 (Equation (14)), the authors propose that the use of the FLR-2 model shall be pre-
ferred. 

In that point, it is desirable to point out the difference between the crisp-fuzzy linear 
relationship. In fuzzy linear regression based on the Tanaka model the observed depth of 
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groundwater (DGW) is included in the support of the corresponding fuzzy estimate and 
hence, a membership degree corresponds to it. Whereas, statistical regression creates a 
single line in which the observations are either coincident or they are not. This is shown 
in the following example: 

Let us consider the point with the black cycle (4th point) of the multiple fuzzy linear 
regression based on the Tanaka model (FLR-1) performed in the case of well 177 and il-
lustrated in Figure 6 below.  

 
Figure 6. Results of the performed multiple fuzzy linear regression based on the Tanaka model 
(FLR-1) regarding well 177. For illustration purposes, only one (potential evapotranspiration) of 
the three independent variables is presented (for level h=0). 

The membership function of the fuzzy depth of groundwater is described by Equa-
tion (3). Based on Equations (6) and (8), Equation (3) can be rewritten as follows: 
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(18)

where the brackets of the nominators denote the central value of the fuzzy depth of 
groundwater and the brackets of the denominators denote its semi-width. The up and 
down inequalities denote the left and right boundaries, respectively, while the term 

,GW obs
jD  is the observation j of groundwater depth.  

In the case of well 177 it holds: Y=1.01, X1=150.60, X2=49.75, x3=33.66, where X1,X2, 
and X3 are the measurements of rainfall, potential evapotranspiration and streamflow, 
respectively, while Y is ,GW obs

jD . Based on the results of fuzzy linear regression of Tanaka 
(FLR-1), the left hand boundary is equal to 0.3563 m, the right hand boundary is equal to 
2.3147 m and the central value is equal to 1.3370 m. Replacing these values into Equation 
(18), the membership degree which corresponds to the value of the observation can be 
estimated: 

( )− +
− =

1.01 1.3370
1 0.6655

0.9777  
Let us also consider another point in Figure 6 above (the last of the right point with 

the yellow cycle). For that point it holds: Y=8.90, X1=1.50 (R), X2=158.51 (PET), x3=7.59 (Q). 
According to the results, the left-, and right-hand boundaries and central value are 5.6686 



Environments 2021, 8, 9 14 of 17 
 

 

m, 9.8208 m and 7.7447 m, respectively, while ,GW obs
jD  is equal to 8.90 m. Its membership 

degree is equal to  
−− =(8.90 7.7447)1 0.4435

2.0761
 

It should be noted that in the case that the modified version of Tanaka’s model (FLR-
2) is used, the membership degree, which corresponds to the 4th observation, is equal to 
0.8210, while the membership degree which correspond to the last observation (9th point) 
is equal to 0.4400. 

In addition, the outputs of the fuzzy regression based on the Tanaka approach (de-
pendent variable) may have different uncertainties expressed by its own membership 
function, whereas in statistical regression all the outputs have the same error [19]. Last, in 
fuzzy linear regression there is no theoretical obstacle to take errors in independent vari-
ables into account, while fuzzy measure (or measures of vagueness) are commonly used. 
Therefore, the two approaches should not be interpreted by each other in the same way 
[19]. 

5. Concluding Remarks 
This study investigates the short-term response of groundwater (in terms of the 

depth of groundwater) to rainfall, streamflow and the potential evapotranspiration, seek-
ing a fuzzy linear relationship among these hydrometeorological variables. The area un-
der investigation is a shallow unconfined aquifer at the east part of the Nestos River Delta 
in the Prefecture of Xanthi, Greece where a small size of observed groundwater depth of 
four wells are related to the hydrometeorological records at the same point in time.  

Fuzzy regression analysis is preferred in this application because of the lack of data. 
Two fuzzy multiple regressions based on Tanaka’s model and a modified version of it are 
applied. The modified version uses a non-linear objective function which additionally 
considers the distance between the observed groundwater depth and the central value of 
the corresponding fuzzy estimate. In both cases, the problem concludes to a constrained 
optimization problem where all the observed data must be included within the produced 
fuzzy band. 

In fuzzy linear regression based on Tanaka’s approach there is no error term. Suita-
bility of the model is checked through the value of the objective function, while other 
fuzzy measures may be used. This study uses a fuzzified version of Theil’s inequality co-
efficient U, which is estimated for each fuzzy regression model. Since Theil’s inequality 
coefficient U has a fuzzy form, a ranking measure, R, is applied in order to compare Theil’s 
inequality coefficient with different fuzzy regression models. Another suitability measure, 
Edis, takes into account the Euclidian distance between the observed groundwater depth and 
the corresponding fuzzy estimate as well as the unbiased estimation of the mean value of 
the historical sample.  

Based on suitability measures, the two fuzzy multiple linear regression models per-
formed well in the case of well 194 and thus a fuzzy linear relationship is achieved. The 
fuzzy regression coefficients show that the groundwater depth is negatively related to rain-
fall and streamflow and positively related to the potential evapotranspiration. Groundwater 
seems to be differentially affected by streamflow and rainfall as the coast is approached, 
while the total fuzziness decreases when the distance of the coast decreases. Correlation 
which is separately carried out between the dependent variable and the independent ones 
shows that the groundwater seems to have a stronger linear dependence on streamflow than 
on rainfall, while the highest correlation coefficient is that of potential evapotranspiration. 
Meantime, the uncertainties of the influence coefficients of rainfall and streamflow are neg-
ligible. However, the contribution of streamflow should not be ignored. Although similar 
results are obtained from both fuzzy linear regression models, based on the suitability 
measures, the model which uses the non-linear objective function is preferred. 
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Appendix A 
Let 1U  be a fuzzy number (here, the fuzzified Theil’s inequality coefficients). Then, 

the left and right areas are the integral between the inverse functions of the left and right 
branches of the membership functions of 1U , respectively, and the x-axis (Figure A1). 

 
Figure A1. Comparison between two fuzzy numbers based on left and right areas. a) and b) are 
the left and right areas, respectively, of the greater fuzzy number 1U , while c) and d) are the left 

and right areas, respectively, of the lowest fuzzy number 2U . 

Nguyen, in his research [55], takes into account these areas in order to develop a uni-
fied index for ranking fuzzy numbers. Mathematically, the left and right areas can be ex-
pressed as follows in case of fuzzy numbers: 

=

=





1

0

1

0

( ) ,

( )

L L
U

R L
U

R g y dy

R g y dy

 (A1)

where ( )L
Ug y  and ( )R

Ug y  stand for inverse functions of the left and right brunches of the 

membership function ( )Uμ x  of each U . These integrals can be easily calculated by us-
ing numerical methods if a large number of the corresponding α- cuts are known. 

Then, the ranking measure R for the fuzzy number 1U  can be calculated as follows: 

= + −(1 )R LR λ R λ R  (A2)

where the parameter λ∈ [0,1]  is a level of optimism reflecting a data-revelation optimism 
degree of a decision maker. The larger the λ is the more optimistic attitude the decision-
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maker has on the data revelation. In our case, it is adopted thatλ=1/2, which reflects a 
neutral decision attitude [32]. The comparison between two fuzzy numbers is depicted in 
Figure A1. 

This research uses the ranking measure R in order to compare to each other the fuzz-
ified Theil’s inequality coefficients U  estimated through the two fuzzy multiple linear 
regression models. The lowest U  indicates the more suitable fuzzy regression model. 
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