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Featured Application: A self-calibrating variable magnification three-dimensional (3D) tracking
system for single fluorescent nanoparticles is proposed. The proposed tracking system had the
self-calibration functions of coaxiality and magnification; thus, it could accurately track the adopted
fluorescent nanoparticles in 3D through zoom microscopical measurements.

Abstract: A self-calibrating variable magnification three-dimensional (3D) tracking system for single
fluorescent nanoparticles is proposed. The system was based on astigmatic micro-imaging and
has a simple configuration incorporating a dual-spot position detection unit ray transfer matrix.
By analyzing this matrix and utilizing the beam vector measurement of a dual-spot position detection
unit, it was demonstrated that the proposed tracking system had the self-calibration functions of
coaxiality and magnification; thus, it could accurately track the adopted fluorescent nanoparticles
through zoom microscopical measurements in 3D. The available measurements of the proposed
system and accuracy were experimentally validated.
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1. Introduction

Single fluorescent nanoparticle tracking is a method to measure the motion trajectory of
nanoparticulate fluorescent probes in real time, which has been widely used in the fields of biology,
biomechanics, and rheology [1–5]. Particularly, the single particle tracking of upconverting nanoparticles
currently attracts a large amount of interest for bio-imaging and medical applications [6–9]. Originally,
this method could only measure the two-dimensional trajectory of fluorescent nanoparticles, namely
fluorescent nanoparticle motions along the X and Y coordinate axes were obtained, and the motion
along the Z coordinate axis was lacking. Therefore, a complete analysis of particle probe trajectories in
three-dimensions was not possible [10,11].

Recently, several three-dimensional (3D) tracking methods have been developed, including
a differential interference microscopic imaging method with a trapezoidal prism [12], a tracking method
based on focusing beam intensity measurements [13], multi-plane imaging technology [14], stimulated
emission depletion-4π microscopy [15], and a 3D structured lighting imaging method [16]. However, these
methods require complex optical systems or can only image one nanoparticle. In addition, there are various
types of 3D microscopy [17–22], where scanning microscopy, epifluorescence microscopy, and total internal
reflection microscopy are conventional and popular. These 3D microscopies can be categorized into two
kinds of techniques: “z-scanning” and “wide-field” schemes. There are advantages and disadvantages
to each of the microscopies, which can be found in the literature. Shin et al. [9] has already summarized
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the pros and cons of scanning microscopy (confocal microscopy), epifluorescence microscopy, and total
internal reflection microscopy.

An earlier method that added a cylindrical lens to the optical path of the detector of a standard
microscope [23–25] was adopted. By observing nanoparticle mobilities along the X and Y coordinate
axes, the nanoparticle motions along the Z coordinate axis are also obtained in real time through
the astigmatism of the cylindrical lens. This method of adding a cylindrical lens to a microscope is
simple, easily implemented, and can simultaneously image the 3D trajectories of many nanoparticles.
When using this method, different sizes and types of fluorescent nanoparticle probes can be selected
according to the tested specimen. Therefore, the appropriate magnification should be adopted to obtain
a sufficient number of nanoparticle probes that are in motion and can provide accurate imaging at
each tracking sampling location in the tested specimen. High magnification not only causes the noise
to increase, but also decreases the number of nanoparticle probes collected, leading to an inaccurate
mean square displacement (MSD) of the obtained trajectory. Meanwhile, low magnification causes
a low spatial-sampling frequency, leading to inaccurate imaging, which directly affects the sampled
displacement accuracy of each nanoparticle probe. Therefore, this astigmatic microscopic imaging
technique should be able to realize variable magnification microscopic measurements. To achieve
accurate fluorescent nanoparticle tracking of this variable astigmatic microscopic imaging method, it is
not only necessary to obtain accurate values of different magnifications, but also to ensure the coaxial
alignment of the micro-imaging elements after varying the magnification.

In this paper, a minimal optical imaging configuration for fluorescence particle tracking is proposed.
The micro-imaging system of the proposed method comprises only a spherical lens, a cylindrical lens,
and a charge coupled device (CCD). By integrating this minimal structure with a dual-spot position
detection unit, a variable magnification 3D microscopic tracking system was achieved, which had the
self-calibrating functions of coaxiality and magnification.

2. Micro-Imaging System

2.1. Ray Transfer Matrix of the Micro-Imaging System

Figure 1 presents the optical configuration of the proposed system and shows the components in
the optical path. The Z-axis of the coordinate system coincides with the optical axis. d0 is the distance
between a cover glass and a single nanoparticle; and d1, d2, and d3 are the distances between two
optical components, which are unknown parameters; and s0, s1, and s3 are the optical component
thicknesses, as shown in Figure 1, which are the given parameters. Based on these parameters, the
optical matrixes of the proposed system are as follows:

P0 =


1 0 d0 0
0 1 0 d0

0 0 1 0
0 0 0 1

, P1 =


1 0 d1 0
0 1 0 d1

0 0 1 0
0 0 0 1

, P2 =


1 0 d2 0
0 1 0 d2

0 0 1 0
0 0 0 1

, P3 =


1 0 d3 0
0 1 0 d3

0 0 1 0
0 0 0 1

,

L0 =


1 0 ni s0/n 0
0 1 0 ni s0/n
0 0 ni/na 0
0 0 0 ni/na

,

L1 =


(na − n)/n 0 na s1/n 0

0 (na − n)/n 0 na s1/n
4na(na − n)/(na n s1) 0 (na − n)/n 0

0 4na(na − n)/(na n s1) 0 (na − n)/n

,
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L2 =


1 0 na s2/n 0
0 1 0 na s2/n
0 0 1 0
0 (na − n)/(na Rc) 0 (n Rc + s2(na − n))/(n Rc)

.
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Figure 1. Optical configuration. 
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Figure 1. Optical configuration.

For the optical matrixes above, P0, P1, P2, and P3 are the transfer matrixes for propagation through
the distances d0, d1, d2, and d3, respectively; and L0, L1, and L2 are the transfer matrixes of the cover
glass, spherical lens, and cylindrical lens, respectively. Here, Rc is the radius of curvature of the
cylindrical lens, ni, na, and n are the refractive indexes of the measured sample, air, and optical glass,
respectively, all of which are given parameters. The integrated ray transfer matrix of this micro-imaging
system is as follows:

W = P3 · L2 · P2 · L1 · P1 · L0 · P0 =


W(1, 1) 0 W(1, 3) 0

0 W(2, 2) 0 W(2, 4)
W(3, 1) 0 W(3, 3) 0

0 W(4, 2) 0 W(4, 4)

 (1)

where W(row, col) indicates the parametric expression or constant value at row = row and column = col
of the matrix W. Assuming the vector of a light ray from a point light source is Xe = [xe, ye, ae, be]T,
where xe and ye are the X- and Y-axis coordinates, respectively, and ae and be are the X- and Y-axis
slopes of the corresponding ray, respectively, the corresponding vector of the light ray incident on the
CCD is Xi = [xi, yi, ai, bi]T = W·Xe.

2.2. Analysis of the Micro-Imaging System

To realize an accurate measurement of the nanoparticle 3D trajectories with the micro-imaging
system in Figure 1, there are two aspects that need to be analyzed: (1) analysis of whether the
nanoparticle image intensity distributions corresponding to different coplanar positions on the same
object plane are identical, and (2) analysis of the relationship between the coplanar displacements
of the nanoparticle on the object plane and the corresponding coplanar displacements of the image
on the image plane. The former is the requirement to realize an axial displacement measurement of
the nanoparticle along the Z-axis, and the latter is the necessity to realize a coplanar displacement
measurement of the nanoparticle in the XY plane.

The given parameters of the ray transfer matrix enumerated above are fixed values, except for ni,
which depends on the measured specimen. The unknown distance parameters are constant values for
a particular magnification, except for d0, which is the position of the nanoparticle fluorescent probe
along the Z-axis. Initially, we determined the distance parameters d1, d2, and d3 for analysis of the
micro-imaging system.

To determine the distance parameters d1, d2, and d3, each given parameter except ni is assigned
a value: n = 1.5, na = 1, Rc = 51.53 mm, s0 = 0.17 mm, s1 = 3 mm, and s2 = 4.5 mm. If the emergent
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light ray is parallel to the Z-axis, namely, Xe = [xe, ye, 0, 0]T, then −AX = W(1, 1) = −1− 444.44 × d2

− 444.44 × d3 and −AY = W(2, 2) = −1− 434.74 × d2 − 444.44 × (1 − 9.7 × d3) × d2, where −AX and
−AY are the magnifications along the X- and Y-axis, respectively. If the emergent light ray vector is Xe

= [0, 0, ae, be]T, the corresponding incident light rays vector components xi and yi for ideal imaging
are both zeros, no matter what the emergent light slopes ae and be are. Thus, the equations 0 = W(1,
3) = −AX × (d0 + ni × d1) + 0.036 × ni and 0 = W(2, 4) = −AY × (d0 + ni × d1) + 0.025 × ni should
both be satisfied. Here, (d0 + ni × d1) is denoted as dvar, where dvar = 0.025 × ni/AY = 0.036 × ni/AX is
the focal position on the optic axis at which a one-point light source can be ideally imaged. Making
0.025 × ni/AY = 0.036 × ni/AX be true means the magnification ratio AX/AY is 1.44; if the system is not
capable of guaranteeing the magnification ratio, a one-point light source cannot be imaged to one
point. For actual cases, the magnification ratio 1.44 is difficult to realize, and so a dvar variation range
between 0.025 × ni/AY and 0.036 × ni/AX is the relatively ideal focus depth. Obtaining dvar in the
range means realizing the nanoparticle Z-axis position measurement for the micro-imaging system
in Figure 1. Here, assuming −AX = −53.67 and −AY = −39.07, then d2 = 42 mm and d3 = 76.5 mm;
assuming ni = 1.33, then 0.85 mm < dvar < 0.89 mm.

Before practically measuring the nanoparticle 3D trajectories, the imaging spot intensity
distribution (X- and Y-axis width ratio) of the adopted nanoparticle probes when they are located on
different longitudinal object planes should be calibrated. For nanoparticulate fluorescent probes, d1 is
constant and d0 is varied to adjust dvar. Whereas, during calibration, because the adopted nanoparticle
probe is fixed between the cover glass and the glass slide with fixative, d0 is constant, and dvar varies
with d1. Therefore, when analyzing the two aspects of this micro-imaging system mentioned above,
it is also necessary to verify whether the same dvar value has an identical influence on each of the two
aspects. In addition, there are noises (e.g., Poisson noise and background noise) that affect the two
aspects in an actual micro-imaging process, and so de-noising processing is needed, where there are
many effective de-noising methods used to reduce the noises in actual measurements. Here, the effect
of noises on micro-imaging is outside the scope of this study; analysis of the micro-imaging below is
stated under the condition of non-noise, which does not contain the analysis of errors caused by noises.

The entrance pupil of one point on the fluorescent nanoparticle is determined by four marginal
rays that are tangent to the spherical lens, as shown by Figure 2a. In Figure 2b, light exits from the
cylindrical surface of the cylindrical lens. The width of the valid imaging spot along the X-axis is equal
to the distance between the incident points of the right and left marginal rays, and the width along the
Y-axis is equal to the distance between the incident points of the upper and lower marginal rays.
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Figure 2. Valid pupil area determined using a cone of light propagating from one point on the surface
of a nanoparticle: (a) valid entrance pupil, and (b) corresponding valid exit pupil.

To ensure the established optical matrix of Equation (1) is modeled accurately, it requires surface size
of the curved lens participating in micro-imaging to be significantly smaller than its radius of curvature,
and this allows the lenses to be more accurately modeled in the paraxial approximation. In Figure 1,
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it is easy to make the cylindrical lens size far smaller than its radius of curvature, but the spherical lens
size cannot meet the requirement. Obtaining a true nanoparticle image intensity distribution is not the
desired outcome; rather, analyzing the two aspects stated above is our aim. The four marginal rays
determining the angular aperture of the micro-imaging system can be used to analyze characters of the
two aspects using the optical matrix of Equation (1); therefore, the rays determining the central part of
the angular aperture also have the same function, namely the proportional variation of the angular
aperture has no effect on the analysis of the two aspects. Reducing the angular aperture determined by
the four marginal rays on each object plane with one same proportion is done to confirm the central
part of the angular aperture, and to get four rays of the central angular aperture (namely, four central
rays of the angular aperture) on each object plane. The scaled-down proportion can be chosen (here
ten times is used), and the micro-imaging size of spherical lens determined by the four central rays
is able to reach the requirement for running the optical matrix of Equation (1). The four central rays
instead of original four marginal rays are used to implement the analysis with the optical matrix of
Equation (1). The four marginal rays stated below are the four central rays.

According to diffraction theory, in the paraxial approximation, the image intensity distribution of
a point light source is identical if the size of the entrance pupil (or the size of the exit pupil) remains
the same. Figure 3 shows that irrespective of the distance ∆ (along the X-axis or Y-axis) the point
source (fluorescent nanoparticle) covers on an object plane, the size of the entrance pupil determined
by the four central rays is constant, namely the nanoparticle image intensity distribution is constant
for an object plane. The size changes with dvar, namely the nanoparticle image intensity distribution
according to the object plane variation changes; furthermore, the presented sizes of the entrance pupil
are identical for dvar during calibration and measurement as long as the values of dvar are the same.
Thus, regarding the first aspect of analysis, it is proven that the nanoparticle imaging spot intensity
distribution corresponding to different positions on same object plane do not vary for an object. For actual
measurements, the entrance pupil size cannot be obtained; rather, what is obtained from the imaging
plane is the X- and Y-axis width ratio of the point source imaging. Figure 4 shows that the X- and Y-axis
width ratios of the point source imaging also changes with dvar, and so the X- and Y-axis width ratio
can be used to mark different nanoparticle image intensity distributions along the Z-axis; thus, it can
measure the nanoparticles displacement along the Z-axis.

To analyze the relationship between the coplanar displacement of the nanoparticle on the object
plane and the corresponding coplanar displacement of the imaging spot on the image plane (the second
aspect to be analyzed), it must first be determined how to calculate the center of the point source image.
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Figure 3. Radius of the entrance pupil determined using the four central rays for different dvar and
coplanar shift values ∆ of the point source: (a) variation of dvar with d0, and (b) variation of dvar

with d1.
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Figure 4. X- and Y-axis width ratios for different dvar and coplanar shift values ∆ of the point source:
(a) variation of dvar with d0, and (b) variation of dvar with d1.

When the point source is located on the Z-axis, the center of its image is at the intersection of the
CCD and the Z-axis, which is also the intersection of the angular bisector of the right and left marginal
rays (or upper and lower marginal rays) and the CCD. When a point source moves along the X-axis,
the symmetrical relationship of the upper and lower marginal rays to the CCD in space is invariant,
whereas the symmetrical relationship of the right and left marginal rays in space is undermined and
the center of the image is shifted only along the X-axis, which is the intersection point between the
angular bisector of the right and left marginal rays and the CCD. Similarly, for a point source moving
along the Y-axis, the center of the image is the intersection point of the angular bisector of the upper
and lower marginal rays and the CCD.

Figures 5 and 6 show the center position measurement errors of the point source when it moves
along the X (∆X) and Y (∆Y) axes, respectively. These figures show that the results are identical for dvar

during measurement and calibration for the same value of dvar. The linear relationships between the
measurement errors and the actual coplanar displacement of the point source are evident for different
dvar’s. The slopes of the linear plane displacement measurement errors are also linearly related to dvar,
as shown in Figure 7.

From the second requested analysis aspect stated above, the (fluorescent nanoparticle’s) actual
coplanar displacement of the point source on an object plane can be related to its measured displacement
value based on the linear relationship shown in Figure 7:

actual coplanar displacement
=

measurement coplanar displacement by CCD
|magnification|·(1+ slope of coplanar displacement measurement error)

(2)

The slope of the coplanar displacement measurement error differs with dvar, as seen in Figure 7;
thus, the dvar measurement needs to be labeled when using Equation (2) to obtain the actual coplanar
displacement. The dvar labeling process uses the longitudinal object planes calibration stated above.
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Figure 5. Measurement errors along the X-axis with different dvar values and actual shift value ∆X

along the X-axis for a point source: (a) variation of dvar with d0, and (b) variation of dvar with d1.
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Figure 6. Measurement errors along the Y-axis with different dvar values and actual shift value ∆Y

along the Y-axis for a point source: (a) variation of dvar with d0, and (b) variation of dvar with d1.
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Figure 7. Slope of the coplanar displacement measurement error of the X-axis (a) and Y-axis (b).

3. Layout for Achieving Micro-Imaging

Figure 8 shows the configuration of the proposed micro-imaging system, where the fiber-coupled
laser was mounted to the CCD and the ray emitted by the fiber-coupled laser was adjusted to be
normal to the CCD using precision optical calibration and mechanical assembly. The emitted ray of
the laser had a beam diameter of about 0.3 mm, and the glass block was attached to the cylindrical
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lens and objective stage. The optical surface of the glass block of the cylindrical lens was parallel to
the flat surface of the cylindrical lens, and the optical surface of the glass block of the objective stage
was parallel to the platform of the objective stage. A dual-spot position detection unit is a device for
measuring the incident beam direction vector [26,27] and comprises two position-sensitive detectors
(PSDs), several flat prisms, and a corner cube prism.
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Figure 8. Schematic of the micro-imaging system with a dual-spot position detection unit.

At first, the beam emitted by the fiber-coupled laser directly entered the dual-spot position
detection unit, and the beam direction vector was obtained. The beam was then passed through the
glass block of the cylindrical lens. The incident beam spot on two PSDs of the dual-spot position
detection unit will be shifted if the glass block is not normal to the beam, namely the incidence angle
θinc of the beam spot for the glass block is not zero, which is caused by pitch or yaw of the glass block.

Λ = sin(θinc − θre f ) · (h/ cosθre f ) (3)

Equation (3) is the relationship between the translation variation Λ of the beam spot on the two
PSDs and θinc, where h is the thickness of the glass block and θref is the refraction angle corresponding
to θinc. It is easy to obtain θinc through Snell’s law sinθinc × na = sinθref × n (where, na and n are the
refractive indexes of air and glass, respectively) and Equation (3). After obtaining θinc, it is possible to
adjust the cylindrical lens’ spatial attitude to make θinc be zero.

The coaxiality of the micro-imaging system is ensured by the above operation such that the
magnification of the system can be confirmed. The beam was aligned such that it passes through the
glass block of the cylindrical lens and was transmitted through the glass block of the objective table.
Tilting the glass block of the objective stage such that its pitch and yaw were at a slight angle led to
translation along the X- and Y-axes. These translations obtained by the dual-spot position detection
unit were actual translations along the X- and Y-axes, and the values obtained by the CCD were the
magnified translation variations along the X- and Y-axes. Therefore, the magnifications −AX and −AY

could be determined, and the d2 and d3 values corresponding to the obtained magnifications −AX and
−AY were easily calculated.

Here, there are two points to note: (1) to ensure that the object plane of the observed nanoparticle
was normal to the optical axis of the micro-imaging system, the glass block of the objective stage must
be normal to the beam, which was ensured in a similar way to the alignment of the glass block of the
cylindrical lens; and (2) after the coaxiality and magnification calibration described above, a beam
expander and deflection prism were inserted into the optical path after the beam exited from the
dual-spot position detection unit, as shown in the lower right of Figure 8. The inserted beam expander
and deflection prism were employed such that the expanded beam was incident sideways onto the
sample to be measured sample to excite emission of the adopted fluorescent nanoparticle probe.
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4. Experiments and Results

Except for the coaxiality and magnification calibration in Section 3, the operations to implement
the dvar labeling process and to obtain the slope of coplanar displacement measurement error were
also needed before the proposed micro-imaging system measured the 3D trajectory of the adopted
fluorescent nanoparticle. In the operations, it was necessary to confirm the Z-axis and coplanar
displacements of the adopted nanoparticle probe, which was fixed between the cover glass and glass
slide. In Figure 8, the multidimensional displacement stage provided precise Z-axis and coplanar
displacements for the operations.

Three fluorescent nanoparticles of diameters 50 nm, 100 nm, and 200 nm (fluorescence polystyrene,
excitation peak: 540 nm, emission peak: 580 nm) were adopted. After being fixed between the cover
glass and glass slide with the fixative (refractive index: 1.392), the dvar labeling process was implemented
to build mapping relationships between the X- and Y-axis width ratios and the relative position along
the Z-axis for the three fluorescent nanoparticles at three magnifications (M1: −AX = −112.31 and
−AY = −67.82; M2: −AX = −53.67 and −AY = −39.07; M3: −AX = −37.85 and −AY = −30.04), resulting in
nine experiment results.

Figure 9a–c show the mapping relationships between the X- and Y-axis width ratios and the
relative position along the Z-axis for fluorescent nanoparticles of three diameters, where the relative
zero position was the position at which the width ratio was one for each case. Evidently, these mapping
relationships could be used to obtain the Z-axis displacement of the three diameters of fluorescent
nanoparticle in their actual measurement operations. After calibrating these mapping relationships,
the relationships between the measurement errors and the actual coplanar displacement for each
of the three diameters of fluorescent nanoparticles must be determined for realizing the coplanar
displacement measurement according to Equation (2).
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Figure 9. X- and Y-axis width ratio of three diameters of fluorescent nanoparticles versus their relative
position, along with the Z-axis, at magnifications M1 (a), M2 (b), and M3 (c).

Figure 10a–f shows the relationship between the slope of the coplanar displacement measurement
errors of five corresponding relative positions along the Z-axis for three diameters of a fluorescent
nanoparticle. In Figure 10, the slopes corresponding to each of the five positions of each magnification can
be seen to lie close to the fitted slope obtained by the micro-imaging system analysis. The intermediate
magnification, M2, performed better than the other two magnifications, demonstrating that improper
magnification has an influence on the measurement accuracy, where high magnification could cause noise
to increase, and low magnification made the collected fluorescence nanoparticle images insufficiently
accurate, both causing an inaccurate measurement. The degree of fit was used as a criterion to choose
an appropriate magnification for the adopted fluorescent nanoparticle during the sample measurement.
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Figure 10. Slopes of coplanar displacement measurement error of the X-axis (a) and Y-axis (b) for M1,
X-axis (c) and Y-axis (d) for M2, and X-axis (e) and Y-axis (f) for M3, respectively.

After the above operations, the three fluorescent nanoparticles were dissolved in a silicone oil
(refractive index: 1.392) to be the three test solutions. We synthesized the results of Figures 9 and 10,
and Equation (2) to realize the nine cases of the fluorescent nanoparticle 3D tracking measurements
and to validate the performance of the proposed micro-imaging system. The diffusion constant D of
the fluorescent nanoparticle had a relationship with its 3D MSD: MSD = 6Dt + σ, where σ was the
offset at time zero, accounting for the positional accuracy, and t was the time delay. Figure 11 shows
the relationships between the MSD in each case and the corresponding diffusion constant D.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 13 

fluorescent nanoparticle. In Figure 10, the slopes corresponding to each of the five positions of each 
magnification can be seen to lie close to the fitted slope obtained by the micro-imaging system 
analysis. The intermediate magnification, M2, performed better than the other two magnifications, 
demonstrating that improper magnification has an influence on the measurement accuracy, where 
high magnification could cause noise to increase, and low magnification made the collected 
fluorescence nanoparticle images insufficiently accurate, both causing an inaccurate measurement. 
The degree of fit was used as a criterion to choose an appropriate magnification for the adopted 
fluorescent nanoparticle during the sample measurement. 

 
Figure 10. Slopes of coplanar displacement measurement error of the X-axis (a) and Y-axis (b) for M1, 
X-axis (c) and Y-axis (d) for M2, and X-axis (e) and Y-axis (f) for M3, respectively. 

After the above operations, the three fluorescent nanoparticles were dissolved in a silicone oil 
(refractive index: 1.392) to be the three test solutions. We synthesized the results of Figures 9 and 10, 
and Equation (2) to realize the nine cases of the fluorescent nanoparticle 3D tracking measurements 
and to validate the performance of the proposed micro-imaging system. The diffusion constant D of 
the fluorescent nanoparticle had a relationship with its 3D MSD: MSD = 6Dt + σ, where σ was the 
offset at time zero, accounting for the positional accuracy, and t was the time delay. Figure 11 shows 
the relationships between the MSD in each case and the corresponding diffusion constant D. 

 
Figure 11. Relationships between each case of mean square displacement (MSD) and its 
corresponding diffusion constant D, for (a) M1, (b) M2, and (c) M3. 

Based on Stokes–Einstein theory, the diameter of a fluorescent nanoparticle can be estimated 
using the diffusion constant D, and the closer to the adopted standard diameter of fluorescent 

-2 -1 0 1 2
-12

-11

-10

-9

Relative position along with Z-axis (μm）

S
lo

pe
 (μ

m
/m

m
)

 

 50 nm
100 nm
200 nm
Fit line

-2 -1 0 1 2
9

10

11

12

Relative position along with Z-axis (μm)

S
lo

pe
 (μ

m
/m

m
)

 

 50 nm
100 nm
200 nm
Fit line

-2 -1 0 1 2
-426.5

-426

-425.5

-425

-424.5

Relative position along with Z-axis (μm)

S
lo

pe
 (μ

m
/m

m
)

 

 50 nm
100 nm
200 nm
Fit line

-2 -1 0 1 2
-514

-513.5

-513

-512.5

Relative position along with Z-axis (μm)

S
lo

pe
 (μ

m
/m

m
)

 

 50 nm
100 nm
200 nm
Fit line

-2 -1 0 1 2
263

264

265

266

267

Relative position along with Z-axis (μm)

S
lo

pe
 (μ

m
/m

m
)

 

 50 nm
100 nm
200 nm
Fit line

-2 -1 0 1 2
406

407

408

409

410

Relative position along with Z-axis (μm)

S
lo

pe
 (μ

m
/m

m
)

 

 50 nm
100 nm
200 nm
Fit line

(a) (c) (e)

(f)(d)(b)

4 6 8 10
1000

1500

2000

2500

3000

3500

Time (s) 

M
S

D
 (n

m
2 )

 

 
50 nm fit line
100 nm fit line
200 nm fit line
50 nm MSD
100 nm MSD
200 nm MSD

4 6 8 10
600

800

1000

1200

1400

1600

1800

2000

Time (s) 

M
S

D
 (n

m
2 )

 

 
50 nm fit line
100 nm fit line
200 nm fit line
50 nm MSD
100 nm MSD
200 nm MSD

4 6 8 10
300

400

500

600

700

800

900

Time (s) 

M
S

D
 (n

m
2 )

 

 
50 nm fit line
100 nm fit line
200 nm fit line
50 nm MSD
100 nm MSD
200 nm MSD

(a) (b) (c)

Figure 11. Relationships between each case of mean square displacement (MSD) and its corresponding
diffusion constant D, for (a) M1, (b) M2, and (c) M3.

Based on Stokes–Einstein theory, the diameter of a fluorescent nanoparticle can be estimated using
the diffusion constant D, and the closer to the adopted standard diameter of fluorescent nanoparticle
the estimated diameter is, the more correct the obtained diffusion constant D (the acquired MSD result)
is [28]; the smaller the offset σ (the MSD error) is, the more correct the acquired MSD result is [24].
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The accuracy of the diffusion constant D and the size of the offset σ both present how correct the
acquired MSD result is. The correctness of the acquired MSD result can be confirmed by considering
the overall performance of the diffusion constant D (accuracy of the estimated diameter) and the
offset σ, where the influence of the diffusion constant D has a larger weight than the offset σ for judging
the correctness of the acquired MSD result. The correctness of the acquired MSD result testifies to the
measurement accuracy of the proposed imaging system.

Table 1 lists the σ of each magnification of each of the three diameters of fluorescent nanoparticle
calculated using the respective diffusion constant. Evidently, the MSD error and calculated diameter
corresponding to M2 were relatively small and exhibited the best agreement with the adopted
fluorescent nanoparticles (particularly, for the case of measuring a 50 nm fluorescent nanoparticle).
The selection of a magnification not corresponding to the adopted fluorescent nanoparticle will cause
an inaccurate measurement; using a suitable magnification is important for fluorescent nanoparticle 3D
tracking. The experiment proved the availability of the 3D zoom tracking of the adopted fluorescent
nanoparticle with the proposed micro-imaging system.

Table 1. σ of each case and diameter Ø of the fluorescent nanoparticle calculated using D.

Probe Ø M1 M2 M3

50 nm σ = 25.6 nm2, Ø = 43.6 nm σ = − 12.1 nm2, Ø = 47.3 nm σ = 69.4 nm2, Ø = 41.5 nm
100 nm σ = 91.4 nm2, Ø = 81.8 nm σ = 63.5 nm2, Ø = 102.8 nm σ = −21.8 nm2, Ø = 67.1 nm
200 nm σ = − 11.3 nm2, Ø = 174.3 nm σ = 29.5 nm2, Ø = 192.1 nm σ = 75.3 nm2, Ø = 154.8 nm

5. Conclusions

In this paper, a 3D microscopic tracking system for single fluorescent nanoparticles based on
astigmatic microscopic imaging was proposed, which principally involved a micro-imaging system
comprising a spherical lens, a cylindrical lens, a CCD, and a dual-spot position detection unit. By analyzing
the established ray transfer matrix of the proposed system and utilizing the beam vector measurement
of the dual-spot position detection unit, it was demonstrated that the appropriate magnification of the
adopted fluorescent nanoparticle could be selected to realize its accurate 3D tracking with the proposed
system. The three diameters of the fluorescent nanoparticle were measured under three magnifications,
and the tracking results for the intermediate magnification were the most accurate, which proved that
the proposed tracking system could accurately track the adopted fluorescent nanoparticles in 3D through
zoom microscopical measurements based on the self-calibration functions of coaxiality and magnification.
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