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Abstract: Remarkable progress in radio frequency and micro-electro-mechanical systems integrated
circuit design over the last two decades has enabled the use of wireless sensor networks with
thousands of nodes. It is foreseen that the fifth generation of networks will provide significantly
higher bandwidth and faster data rates with potential for interconnecting myriads of heterogeneous
devices (sensors, agents, users, machines, and vehicles) into a single network (of nodes), under the
notion of Internet of Things. The ability to accurately determine the physical location of each node
(stationary or moving) will permit rapid development of new services and enhancement of the entire
system. In outdoor environments, this could be achieved by employing global navigation satellite
system (GNSS) which offers a worldwide service coverage with good accuracy. However, installing a
GNSS receiver on each device in a network with thousands of nodes would be very expensive in
addition to energy constraints. Besides, in indoor or obstructed environments (e.g., dense urban areas,
forests, and canyons) the functionality of GNSS is limited to non-existing, and alternative methods
have to be adopted. Many of the existing alternative solutions are centralized, meaning that there is a
sink in the network that gathers all information and executes all required computations. This approach
quickly becomes cumbersome as the number of nodes in the network grows, creating bottle-necks
near the sink and high computational burden. Therefore, more effective approaches are needed.
As such, this work presents a survey (from a signal processing perspective) of existing distributed
solutions, amalgamating two radio measurements, received signal strength (RSS) and angle of arrival
(AOA), which seem to have a promising partnership. The present article illustrates the theory and
offers an overview of existing RSS-AOA distributed solutions, as well as their analysis from both
localization accuracy and computational complexity points of view. Finally, the article identifies
potential directions for future research.

Keywords: distributed localization; hybrid localization; fifth generation (5G); Internet of Things
(IOT); wireless sensor network (WSN); received signal strength (RSS); angle of arrival (AOA)

1. Introduction

Real-time localization systems have gained much attention in the research community in the
past several years [1–21]. In addition, works that highlight the potential of exploiting mobility of
nodes in the localization process have emerged recently [22–25]. This is mainly owed to extensive
technological advances and the requirement for seamless solutions in location-based services. It is
expected that fifth generation (5G) network will have the potential to interconnect an extensive
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number of heterogeneous (mobile or stationary) devices (objects, users, vehicles) into a single network
(of nodes), called Internet of things (IoT) [26]. In large-scale networks with thousands of nodes,
human moderation is almost impossible, and autonomous network configuration becomes a very
desirable feature. Therefore, the topic of localization is expected to attract even more interest in
the future [27–29]. In fact, location-awareness is the key component in various other applications,
such as emergency and health care services, intruder detection, precision agriculture, ocean data
acquisition, or asset tracking, to name a few. For instance, location information is crucial for detecting
and preventing fire hazards in forests, as illustrated in Figure 1, where a sensor network is employed
to detect fire and, in cooperation with a fleet of autonomous aircraft, extinguish the danger [30].

Figure 1. Application of a wireless sensor network in forest firefighting.

A possible way to obtain a more accurate and granular information from the field is to employ
a low cost, power-efficient, flexible, reconfigurable, and multifunctional smart sensing system
(e.g., with programmable filters and power management units [31] or sensor-to-digital interface [32]).
Such a system combines fixed and mobile sensors in a flexible wireless sensor network, which can
acquire weather data, together with visible and infrared images for local classification of the fire front.
These sensors could be installed on vehicles/aircraft involved in fire suppression, to reduce subjectivity
of human-dependent analysis and improve operational coordination. This could be done by sending
the location information of the target that sensed the fire danger (after processing it on its own) and
fire intensity to the decision support systems to alert the system, in a similar manner as illustrated
in Figure 1.

In terms of outdoor environments, global navigation satellite system (GNSS) is considered to
be a universally accepted solution, since it offers global coverage and excellent localization accuracy.
Nonetheless, its service is limited or even unavailable in indoor or obstructed environments where
line of sight to satellites is obstructed, such as dense urban areas, forests, or canyons. Instead,
alternative solutions for accurate localization based on already deployed terrestrial technologies
is encouraged (which can possibly complement the ones based on satellites). Such technologies
include wireless fidelity, Bluetooth, narrow-band IoT, ultra-wide band, near-field communication,
radio-frequency identification, signals of opportunity, third generation partnership project/long-term
evolution, and inertial measurement units. On the other hand, in indoor environments (or other ones
where satellite reception is not feasible), there is no convergence towards a single solution, and it is an
open question if there will ever be, due to the high degree of difficulty of the problem in such harsh
environments (multipath propagation, obstruction of a direct path, etc.) [7].
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In this survey, we study the problem of distributed localization based on an integration of a specific
set of radio measurements. The problem is studied in detail from a signal processing point of view in
its most general and widely used statistical form. A set of solutions to the problem, considered as
the state-of-the-art, are presented and their main ideas are explained in a clear although informal
fashion. The identified solutions are analyzed from both computational complexity and localization
accuracy perspectives, with a theoretical lower bound included in the latter comparison in order to
assess the margin available for further improvement. Lastly, we recognize some limitations of the
existing solutions and identify possible directions for future research.

Throughout the survey, upper-case bold type, lower-case bold type and regular type are used
for matrices, vectors, and scalars, respectively. Rn is used to denote the n-dimensional real Euclidean
space and the transpose operator is denoted by ()T . The normal (Gaussian) distribution with mean µ

and variance σ2 is denoted by N (µ, σ2), the von Mises distribution with mean µ and concentration
parameter κ is denoted by VM(µ, κ), while the uniform distribution on the interval [a, b] is denoted by
U [a, b]. For any matrix M, its trace is denoted by tr (M). The designation diag(v) denotes a square
diagonal matrix in which the elements of vector v form the main diagonal of the matrix, and the
elements outside the main diagonal are zero. The N-dimensional identity matrix is denoted by IN
and the R× C matrix of all zeros by 0R×C (if no ambiguity can occur, subscripts are omitted). ‖v‖
denotes the vector norm defined by ‖v‖ =

√
vTv, where v ∈ Rn is a column vector. For a matrix A,

Ar,c denotes the (r, c)-th entry of A. The cardinality (the number of elements) of a set is denoted by
| • | and the statistical expectation of the argument as E(•).

The remainder of this survey is organized as follows. In Section 2, we introduce the problem
of distributed target localization in a generic framework, and we provide details about the main
performance metrics often used in the literature. We also summarize the main sources of errors for the
considered radio measurements. Section 3 presents a set of existing statistical-based estimators that
are available to solve the considered problem. This section summarizes the main ideas behind each
of the existing solutions, without a rigorous formal analysis. In Section 4, we offer a set of results in
order to give an intuition to the reader about the performance of each of the existing solution from
both computational complexity and localization accuracy points of view. Lastly, Section 5 concludes
the survey and identifies possible future research directions regarding the problem of interest.

2. RSS-AOA Distributed Localization Problem

Future networks are expected to be composed of heterogeneous devices. Here, we use a generic
term, nodes, to denote (any kind of) these devices. Note that wireless localization systems typically
assume the presence of some reference nodes (usually called anchors or landmarks) deployed at fixed
known locations (or equipped with GNSS receivers to determine their locations) and one or more
nodes with a location one desires to determine (often referred to as targets or agents). Across the
literature, the used terminology is not universal, and it frequently depends on the deployed technology.
For instance, in cellular networks, the term base station is employed for anchors, whereas the term
mobile station is utilized for a target node (the term user equipment is frequently used in the literature,
as well) [33].

In general, the solution to localization problem comprises two phases: collecting measurements
and exploiting them together with some known reference points to estimate target locations [34]. In the
former phase, nodes communicate between themselves in order to acquire (radio) measurements.
Based on the type of communication, we here distinguish two types of networks: non-cooperative
(targets communicate with anchors exclusively) and cooperative (targets communicate with any nodes
within their communication range), as illustrated in Figure 2. While in non-cooperative networks
one takes advantage of known locations of anchors, which minimizes the error propagation due to
localization inaccuracy, in many applications the number of anchors is scarce, and due to limited
resources of nodes (e.g., battery life), only some of them can establish direct communication with
anchors; hence, node cooperation is required in order to determine locations of all targets. It is well
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known that node cooperation can bring advantages and lead to better decisions, especially when
connectivity in the network is limited [35–37].

(a) Non-cooperative network (b) Cooperative network

Figure 2. Illustration of different network types based on the type of communication.

The most frequent radio measurement techniques utilized in practice are time (difference) of
arrival, round trip time, phase of arrival, received signal strength (RSS) and angle of arrival (AOA).
Moreover, the notion of hybrid system in which two (or more) measurements are integrated has
gained much popularity lately [4,7,12,38]. Even though it is intuitive that more information should
lead to better localization accuracy, one should note that joining any two measurements does not
necessarily bring advantage in every scenario [12,39]. In the latter phase, the measured quantities are
converted into distance or direction estimates, which combined with some known reference locations
are processed to determine locations of interest.

Depending on where the information processing is occurring, we discern two types of networks:
centralized (assumes existence of a sink or a central node (CN) in the network which collects all
measurements gathered in the network and executes all information processing) and decentralized
or distributed (each target node collects measurements from its direct neighbors and executes all
information processing by itself, usually in an iterative fashion), as illustrated in Figure 3. Both types
of networks have their pros and cons: the centralized ones are more stable, but their computational
burden becomes too costly as the number of nodes in the network increases, whereas the computational
cost in distributed networks depends only on the size of local neighborhood of a target, but distributed
processing often requires iterations which might disseminate localization errors across the entire
network [40]. Here, we will concentrate on the distributed cooperative networks exclusively,
both because in 5G networks we are expected to deal with networks with a large number of nodes,
and because some of them might not wish to reveal their private content (e.g., their objective functions)
to other nodes.
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Figure 3. Illustration of different network types based on the type of processing. CN = central node.

2.1. Problem Statement

Let us consider a radio localization system consisting of M + N nodes (M of which are targets
and N anchors, with preferably N � M), where their true locations are denoted by xi ∈ Rq,
i = 1,. . . , M, and aj ∈ Rq, j = M + 1, . . . , M + N, respectively, with q = 2 or 3. One can view
such a system as a connected graph G(V , E), with |V| = N + M vertices and a set of edges, E .
Thus, we can also define the set of all targets, T = {i : i = 1, . . . , N}, as well as the set of all
anchors, A =

{
j : j = N + 1, . . . , N + M

}
, where it follows that V = T ∪ A. Due to limited energy

constraints, it is assumed that nodes have constrained communication range. If two nodes, i and j,
are within the communication range of each other, they can interact, i.e., there is an edge between
them, E =

{
(i, j) : ‖xi − sj‖ ≤ R, i, j ∈ V

}
, with sj = xj, if the j ∈ T and sj = aj, if the j ∈ A.

Consequently, we can divide the set E into two subsets, i.e., ET =
{
(i, j) : ‖xi − xj‖ ≤ R, i, j ∈ T

}
and EA =

{
(i, j) : ‖xi − aj‖ ≤ R, i ∈ T , j ∈ A

}
. Lastly, let us define the neighborhood of the i-th

target node as Ei =
{

j : (i, j) ∈ E
}

. The localization system of interest in a 2-dimensional space is
illustrated in Figure 4, where the distance and direction information are extracted from RSS and AOA
measurements, respectively.

x

y

dij

φφiijj

xi=[xix, xiy ]T

aj=[ajx, ajy ]T

            

Figure 4. Illustration of the considered model in 2-dimensional space.

RSS is defined as the voltage level measured by a receiver’s RSS indicator circuit. It is often
equivalent to measured power, i.e., the squared magnitude of the signal strength. In free-space,
signal power decays proportionally to d−2, where d is the distance between a transmitter and a
receiver. However, in practical applications the environment in which the signals propagate is not
free-space, and an obstructed channel decays proportionally to dγ instead, where γ is the path loss
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exponent (PLE) which indicates the rate at which the received strength decreases with distance [41].
Typically, the RSS sensed by the i-th node related to the transmission of the j-th node [42] (Ch. 3),
[43,44], is defined as

Pij = P0 − 10γ log10
dij

d0
+ nij, ∀(i, j) ∈ EA ∪ ET , i 6= j, (1)

where P0 is the reference RSS measured at a short reference distance d0 (d0 ≤ dij), dij is the distance
between nodes i and j, and nij is the log-normal shadowing term modeled as a zero-mean Gaussian
random variable with variance σ2

nij
. Without loss of generality, it is assumed here that RSS observations

between target nodes are symmetric, i.e., Pij = Pji.
Two common ways to measure AOA are by employing antenna arrays and by using directional

antennas. The former method is based on the so-called array signal processing techniques at sensor
nodes. In this method, the AOA is estimated from the differences in the arrival times of a received signal
at each of the array elements. The latter method estimates AOA based on the RSS ratio between two
(or more) directional antennas installed on a node, as illustrated in Figure 5. Usually, two directional
antennas are pointed in different directions so that their main beams overlap, and the overlap is used
to estimate the AOA from the ratio of their individual RSS values [41]. The AOA can also be estimated
from RSS measurements by employing electronically steerable parasitic array radiator antennas [45] or
by rotating a directional antenna at the receiving end [46], or even by using video cameras [47]. It is
also worth mentioning that some recent works estimate the angle by exploiting the known network
topology, rather than installing any additional hardware at the receiving end [48]. Furthermore,
phase of the received signal can play a significant role in the direction of arrival estimation [49,50].

RSS

AOA

RSS1

RSS2

Antenna 1 Antenna 2

Figure 5. Illustration of angle of arrival (AOA) estimation process based on the received signal strength
(RSS) ratio, RSS1/RSS2, between two directional antennas.

From geometry, azimuth angle measurements (at anchor nodes) [15,46,51–53] can be modeled as

ϕij = arctan

(
xi2 − aj2

xi1 − aj1

)
+ mij, ∀(i, j) ∈ EA, (2)

where xkl and akl denote, respectively, the l-th coordinate of k-th target and anchor node, and mij is the
measurement error of the azimuth angle, modeled as a zero-mean von Mises random variable with
the concentration parameter κmij ∈ [0, ∞), i.e., mij ∼ VM(0, κmij). The von Mises distribution can be
seen as a circular analogue of the Normal distribution. There is a close connection between the mean
direction and the concentration parameters of the von Mises distribution and the mean and variance
of the Normal one [54,55].
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In order to simplify the notation, we define P = [Pij]
T , ϕ = [ϕAij ]

T , X = [x1, . . . , xM], (X ∈ R2×M),
and E = EA ∪ ET . Following the model in (1), the conditional probability density function (PDF) of
RSS measurements is given by

fP(P|X) = ∏
(i,j)∈E

1√
2πσ2

nij

e
−

(
Pij−P0+10γ log10

dij
d0

)2

2σ2
nij . (3)

In a similar manner, according to the model in (2), the conditional PDF of AOA measurements can be
written as

fϕ
(
ϕ|X

)
= ∏

(i,j)∈EA

1
2π I0(κmij)

e
κmij uT

ij
aj−xi
‖xi−aj‖ , (4)

where Ik(•) is the modified Bessel function of first kind of order k [54,55], and uij =[
cos

(
ϕij

)
, sin

(
ϕij

)]T
is a unit vector.

If one would maximize (3),(4), one would obtain the maximum likelihood (ML) estimator [56]
(Chapter 7) of X. In distributed networks, the ML problem is actually split into M local ML estimators,
which is then solved individually by each one of the target nodes, resorting only to measurements
acquired from the target’s direct neighbors. Nonetheless, the ML estimator obviously implies
dealing with highly non-convex problem, in which a closed-form solution is not directly attainable;
hence, directly solving the RSS and AOA ML estimator might not be feasible in practice. Therefore,
many researchers opt to tackle an approximation of the ML estimator instead.

2.2. Performance Metrics

In general, requirements and performance metrics depend on the application for which an
estimator will be employed. In practice, some intrinsic uncertainties are always present in the system
(such as measurement noise), which naturally lead to errors in the node’s location estimate. The location
error of the i-th node is defined as ei = ‖xi − x̂i‖, where x̂i is the estimated location of the true node’s
location, xi. One can use this error to build a variety of statistics that can be utilized as performance
metrics. One of the most popular in the localization literature is the root mean square error (RMSE),
given by

RMSE =

√
E
(

e2
i

)
.

However, in practical performance evaluation tests, the expectation is approximated by a set of Monte
Carlo (Mc) trials. In addition, due to the consideration of M target nodes in the network, one can
actually define the average RMSE (ARMSE) as

ARMSE =

√√√√ 1
Mc

1
M

Mc

∑
i=1

M

∑
j=1
‖xij − x̂ij‖2, (5)

where x̂ij represents the estimate of the true j-th target location, xij, in the i-th Monte Carlo run.
ARMSE can be thought of as accuracy, since it is the rate of the statistical deviation of the location
estimate from its real location.

In order to get a notion of how good the performance of an estimator actually is, it is useful
to compare it against some benchmark. Theoretically, the best achievable performance is often
bench-marked by the Cramér-Rao lower bound (CRLB) [56] (Chapter 3). If one defines the co-variance
matrix C of an estimator, where the estimate is denoted by, for instance ŷ, with

C = E
((

y− ŷ
) (

y− ŷ
)T
)

,
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then we know that the covariance is bounded by

C � J−1,

where J represents the Fisher information matrix (FIM) and A � B means that the matrix A− B is
non-negative definite. The interested reader can find the derivation of the CRLB for the considered
localization problem in the Appendix A.

The reason why ARMSE is the most widely used performance metric in the localization literature
is the fact that it is the best finite-sample approximation of the standard error, which is usually the most
desired optimality criterion in terms of errors. Obviously, the ARMSE might not capture completely
the accuracy of an estimator, and one may opt to employ other performance metrics. These include
localization error outage, cumulative distribution function of the localization error, average Euclidean
error, geometric average error, etc. [57,58].

It should be noted that performance evaluation is never completely fair nor impartial. To some
extent, this is owed to the fact that elementary metrics are not able to capture a complete picture of an
estimator, while those that are more complete are too complex and are often biased due to subjective
interpretations (for instance, a metric can be in favor of an estimator that implicitly tries to optimize
this same metric) [57]. To prevent such issues, in general, one should choose a metric that is the most
relevant for the intended application.

2.3. Main Sources of Errors

All terrestrial localization systems based on pair-wise measurements closely rely on the quality
of the measurements. Therefore, the key objective in establishing reliable localization systems is to
accurately model the main degrading effects of the channel through which the radio signals propagate.
In many practical applications, the environment in which the propagation of the radio signals occurs
consists of various stationary or mobile objects/people (obstructions) that impede line of sight between
the transmitter and the receiver, and cause reflections of the signal. These factors severely aggravate
the task of propagation modeling [41].

In general, range and direction measurements involved in the process of localization are affected
by both time-varying errors and static, environment-dependent errors [59]. The former ones might
occur due to additive noise and interference, and can be alleviated by averaging over several
measurements in time. The latter ones are the product of physical arrangement of objects (such as walls
and furniture) in a given surrounding in which the network is operating. Owing to unpredictability
of the surrounding, both types of errors are unmanageable and are treated as random. Nevertheless,
in a given environment in which objects are mostly stationary, environment-dependent errors will be
largely constant over time.

In practice, multipath signals and shadowing are the main causes of errors in RSS
measurements [42,60]. The former sources of error occurs because of reflections, causing multiple
copies of the signal (of various amplitudes and phases) to arrive at the receiving end. These signals
can cause destructive and constructive interference, which might result in weak correlation of RSS
with distance. The latter source of error are environment-dependent and are caused by attenuation of
the received signal due to obstructions, since the signal penetrates or diffracts around. This type of
errors are often referred to as medium-scale fading.

Similar with RSS measurements, the main source of errors in AOA measurements is the multipath,
although additive noise can also cause inaccuracies [41]. Essentially, at the receiving end, we desire
to determine the direction of arrival of the signal coming from a direct path from the transmitting
end. This can be challenging to achieve in multipath channels, since instead of finding the highest
peak of the cross correlation, the receiver has to determine the first-arriving peak, because there is
no guarantee that the direct-path signal will be the strongest of the arriving signals. Many multipath
signals arrive instants after the direct-path signal, and they can obscure the location of the peak from
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the direct-path signal. Furthermore, in some cases the direct-path signal can be considerably attenuated
compared with its late-arriving multipath components, which might cause the receiver to overlook it
completely [41].

3. Existing Methods

In this section, we give a brief overview of the existing (state-of-the-art) distributed RSS-AOA
localization algorithms, summarizing their main ideas without going into many technical details;
we refer the interested reader to see all specific technical details in the respective works, cited below.

3.1. Second-Order Cone Programming (SOCP) Method

The authors in [61] studied the problem of distributed target localization based on integrating
RSS (measured at all nodes) and AOA measurements (measured at anchor nodes exclusively) and
proposed an algorithm based on convex optimization, namely SOCP. The main idea of the algorithm is
based on deriving a relaxed version of the original problem by applying a sequence of second-order
cone constraint relaxations of the form ‖Ax + b‖ ≤ cTx + d, where A ∈ Rk×n and x ∈ Rn is the
optimization variable. This second order cone constraint is the same as requiring the affine function
(Ax + b, cTx + d) to lie in the second-order cone in Rk+1 [62], which is illustrated in Figure 6. Once the
relaxed, convex, problem is derived, it can be readily solved by off-the-shelf solvers, such as CVX [63],
a MATLAB software for disciplined convex programming. In [61], it was assumed that network
coloring scheme [40] was achievable in order to establish a working hierarchy between targets and
avoid message collisions.

t

x1 x2

Figure 6. Illustration of the second-order (Lorentz) cone in R3: L3 =
{
(x, t) ∈ R2 ×R : ‖x‖ ≤ t)

}
.

Although convex problems are easily solved Today, their solution is sub-optimal due to problem
relaxation, which might increase the set of feasible solutions, as illustrated in Figure 7. Therefore,
the quality of their solutions depends on the tightness of the applied relaxations since, otherwise,
one may end up with a solution from the expanded set that might be considerably far away from the
true one.
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Set of feasible solutions

(a) Original, non-convex set of feasible solutions

Set of feasible solutions

(b) Relaxed, convex set of feasible solutions

Figure 7. Illustration of the process of convex relaxation.

3.2. Linear Least Squares (LLS) Method

In [38], the authors considered the problem of distributed target localization based on fused
RSS and AOA measurements, with the main difference (in comparison with the problem studied
in [61]) that they assumed that all nodes in the network are capable of measuring both RSS and AOA
quantities. The authors in [38] proposed an algorithm based on LLS approach. LLS is a special subclass
of convex optimization, where the objective function is of the form ‖Ax− b‖2, and the solution is
given in closed form as x = (AT A)−1 ATb. It is a standard approach in regression analysis, where the
main idea is to give the best fit that minimizes the sum of squared residuals, where a residual is
considered to be the difference between an observed value and the fitted one provided by the model,
as illustrated in Figure 8. LLS requires the model to be linear, which is evidently not the case for RSS
nor AOA. Nevertheless, rather than applying a sequence of approximations to the model, the authors
in [38] cleverly took advantage of the geometry of the problem at hand. More precisely, for each of
the anchors, they estimated the distance to a target of interest, and together with the measured AOA,
obtained an estimate of the target location, much like the illustration shown in Figure 4. Of course,
distance and angle estimates were employed, rather than their true values. It was considered that
there exists some node synchronization protocol which allowed targets with direct edges to anchors
to localize themselves first, after which they played a role of quasi-anchors (reference points with
imperfectly known locations, also called helpers [64]) to help localize the targets with no direct link to
anchors, iteratively.
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Figure 8. Illustration of the least-squares fitting method.

3.3. MCMC-MH Method

The authors in [65] proposed a different approach based on Bayesian regression. Their approach
is known as Markov chain Monte Carlo with Metropolis-Hastings (MCMC-MH) algorithm [66]
(Chapter 6), [67] (Chapter 12). In such an approach, one is interested in sampling from a generic
distribution, i.e., from the posterior distribution of a parameter, say θ, given its prior and likelihood,
i.e., p(θ|y) = p(θ)×p(y|θ)

p(y) . This approach is often used when one knows how to write p(θ|y), but does
not know how to generate a random number from this distribution (because it is too complex). Hence,
one generates a sequence of values (θ(1), θ(2), . . . , θ(n)) in such a way that when n → ∞, we have
that θ(n) ∼ p(θ|y). The samples θ(n) can later be exploited to estimate, for instance, the mean of the
posterior distribution.

To better explain the main idea of MCMC-MH, we divide it into three parts. In the first part,
the term Monte Carlo refers to generation of random numbers from a chosen distribution, called the
proposal distribution. The proposal distribution is entirely up to the user, but is usually chosen as a
Normal one with predefined mean and variance. The key idea of Monte Carlo approach is that the
more generations are performed, the more similar the resulting density is with the proposal density.
In the second part, one has a Markov chain that is a sequence of numbers, where each number is
dependent on the previous one in the sequence. If one generates a sequence of numbers using Markov
chain Monte Carlo method, the trace plot of the parameter of interest, θ, is often called a random
walk. Finally, the Metropolis-Hastings algorithm is used to determine which generated values of θ to
accept/reject. It is based on the proportion between the posterior probability of a newly generated
value and the posterior probability of the previously accepted value, i.e.,

r(θ(new), θ(t−1)) =
p(θ(new)|y)
p(θ(t−1)|y)

=
p(θ(new))× p(y|θ(new))

p(θ(t−1))× p(y|θ(t−1))
.

One then calculates the acceptance probability of the new point as α(θ(new), θ(t−1)) =

min
{

r(θ(new), θ(t−1)), 1
}

. Finally, to check whether to accept/reject the new value, one draws a

uniform random number and keeps θ(new) if the acceptance probability is greater then the uniform
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random number and rejects θ(new) otherwise. A simplified pseudo-code of MCMC-MH algorithm is
summarized in Algorithm 1 and is graphically illustrated in Figure 9.

Algorithm 1 Summary of MCMC-MH algorithm

1: Generate: θ(new) from a proposal distribution

2: Calculate: r
(

θ(new), θ(t−1)
)

3: Calculate: α
(

θ(new), θ(t−1)
)

4: Draw: u ∼ U [0, 1]

5: if u < α
(

θ(new), θ(t−1)
)

then

6: θ(t) = θ(new)

7: else

8: θ(t) = θ(t−1)

9: end if

θmin

θmax

θ θ
Initial sample (θ(0))

Prior distribution p(θ)
Posterior
distribution

p(θ|y)

accepted

rejected

Figure 9. Illustration of the Markov chain Monte Carlo with Metropolis-Hastings
(MCMC-MH) procedure.

3.4. Generalized Trust Region Sub-Problem (GTRS) Method

A geometric approach was presented in [68], where the authors considered that AOA
measurements are acquired at anchor nodes, exclusively. They considered a multi-hop approach
in order to form triangles in which a target node, xi, with a direct edge to an anchor node, aj, plays a
role of a pivot and connects its target neighbor, xk, to the anchor, as illustrated in Figure 10.

The procedure proposed in [68] can be explained in three steps. Firstly, all target nodes with
direct edges towards anchor nodes are localized, by means of weighted central mass (WCM). In the
second step, the localized target nodes were considered as quasi-anchors in order to localize the
remaining target nodes. This was done by taking advantage of the network geometry in the formed
triangles and applying the law of cosines, which led to straightforward formulation of the problem
in a GTRS framework [69,70]. This type of problems has a very convenient characteristic, which is
that, even though non-convex in general, one can determine an interval I on which the function
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is monotonically decreasing [69]. Therefore, GTRS can be efficiently solved by merely a bisection
procedure, as illustrated in Figure 11. Finally, in the last step of the algorithm, the authors performed a
refinement step based on WCM, in which they exploited the estimated locations of the target nodes in
the previous steps and the acquired angle and distance measurements/estimates.

aj

xk

xi

ϕji

ϕijϕik

θi

||xi -xk|| dik
^~~

||xi -aj|| dij
^~~

||xk -aj||

Figure 10. Illustration of the geometric approach in [68] for a 2-hop case.

f (x)

x

I

a1

f (a1)
f (a2)

f (a3)

f (b2)

f (b1)

b1

Figure 11. Illustration of the generalized trust region sub-problem (GTRS) solved by a
bisection procedure.

An overview of the main characteristics of all described algorithms is given in Table 1, where the
notations “noise STD” and “PT” are used to denote the noise standard deviation and node’s transmit
power. Table 1 shows that all considered algorithms require that all nodes measure the RSS quantity,
while some of the algorithms require that only anchor nodes measure the AOA quantity. It can also be
seen from the table that SOCP is perhaps the most universal approach in terms of applicability, since it
can be used for both cases of known and unknown PT , and does not require knowledge about noise
STD. The remaining methods (at least in their original form) are only suitable for the case where PT is
assumed known. Furthermore, some of them require knowledge about the noise STD, which might
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jeopardize their localization accuracy in the case where this information is not perfectly known, as it
will be shown in the following section.

Table 1. Summary of the main characteristics of the considered algorithms. SOCP = second-order
cone programming; LLS = linear least squares; MCMC-MH = Markov chain Monte Carlo with
Metropolis-Hastings.

Algorithm RSS AOA PT Noise STD

SOCP All nodes Anchors Not known/Known Unknown
LLS All nodes All nodes Known Known

MCMC-MH All nodes All nodes Known Known
GTRS All nodes Anchors Known Unknown

4. Performance Analysis

This section offers a set of numerical results with the objective to give the reader a better
understanding of the performance of the considered approaches. The performance is analyzed
from both computational complexity and localization accuracy point of view. Moreover, the results for
average execution time of the algorithms are also included.

4.1. Analysis of Computational Complexity

Here, we analyze the worst-case computational complexity of an algorithm. This is achieved by
considering a fully connected network (i.e., the total number of neighbors of each target is assumed
to be |Ei| = N + (M − 1), ∀i ∈ T ). In addition, the computational complexity of each algorithm
is expressed as a function of the dominating terms (the smaller terms are disregarded), written as
a function of |Ei|. The results of the considered algorithms are given in Table 2, where Smax, Cmax,
and Tmax are used to denote the maximum number of steps allowed in the bisection procedure in [68],
the number of generated candidates and the number of iterations in [65], respectively. Furthermore,
we also present the execution time of the considered algorithms, which is calculated as an average
execution time per target to localize itself in the scenario where N = 15, M = 50, R = 10 m in
Mc = 100 runs. The simulations were performed on the Intel(R)Core(TM) i7-4710HQ CPU with
2.50 GHz and 16 GB RAM.

Table 2. Analysis of computational complexity and average execution time.

Algorithm Complexity Time (sec)

SOCP O
(
|Ei|3.5

)
0.66

LLS O
(
|Ei|
)

0.004
MCMC-MH O

(
Cmax × Tmax × |Ei|

)
1.2

GTRS O
(
Smax × |Ei|

)
0.005

One can see from Table 2 that the computational complexity of distributed algorithms depends
mainly of the size of local neighborhood of a target, rather than on the size of the whole network (which
is a characteristic of centralized ones). Furthermore, Table 2 exhibits that computational complexities
of the SOCP approach in [61] and the MCMC-MH approach in [65] are the most burdensome ones.
Although the complexity of MCMC-MH is actually linear in |Ei|, its execution time is higher by far than
those of LLS and GTRS, and even that of SOCP. This can be explained by the fact that a high number of
candidates is generated and evaluated in every step of MCMC-MH procedure, which even though not
especially intensive in terms of computational cost, is very time-consuming as the number of candidates
increases. Finally, one can see that LLS and GTRS approaches have linear computational complexity
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in |Ei| and their time execution confirms that they might be suitable for real-time implementation,
despite the fact that GTRS requires some iterations in the bisection procedure to reach its final solution.

4.2. Analysis of Localization Accuracy

In this section, a set of simulation results are presented in order to evaluate the performance of the
existing algorithms in terms of localization accuracy. In the simulations presented here, all nodes were
deployed completely randomly inside a square area with edge length B = 30 m in each Monte Carlo
(Mc) run, forming connected networks. RSS and AOA measurements were generated according to (1)
and (2). The reference distance was set to d0 = 1 m, the reference RSS to P0 = 20 dBm, and the PLE
to γ = 3. The maximum number of steps in the bisection procedure was set to Smax = 30. Moreover,
σnij = 10 dB and κij = 16.676 were adopted, where the latter parameter corresponds to the Normal
standard deviation of σmij = 10 deg, since σ2

mij
= 1− I1(κij)/I0(κij) [54,55].

In this analysis, the following assumptions are made about the network:

(1) The network is connected and does not vary during the computational period;
(2) All nodes are suitably equipped to measure RSS of the received radio signal;
(3) Some nodes (anchors) or possibly all of them are conveniently equipped to measure AOA of the

received radio signal;
(4) Working order of the nodes is synchronized.

The first part of Assumption (1) guarantees that there is a path between nodes i and j, ∀i, j ∈ V ,
while the second part ensures that there is no topology variation (node/edge failure, node/edge
addition or node movement) during the time required for information processing. Assumptions (2)
and (3) are necessary in order for the nodes to acquire RSS and AOA measurements. While RSS
measurements are cheap (because they do not require specialized hardware) and are thus widely
available Today in almost all devices, in order to measure AOA quantity, typically directional antennas,
antenna arrays or video cameras are required at the receiving end. Assumption (4) is made for
the sake of simplicity, since node synchronization is a difficult problem to tackle in distributed
networks, and it does not represent the main concern of this work. One possible way to achieve node
synchronization could be by using network coloring scheme, as explained in [40,71,72], or any other
medium access protocol.

Figure 12 depicts ARMSE (m) versus N comparison for fixed M = 50 and R = 10 m. It clearly
shows that the performance of all methods improve as N grows. This behavior is anticipated, since the
quantity of reliable information in the network increases when more anchor nodes are added into
the network. The figure shows that the performance of LLS is the best one. This is not a surprise,
since LLS assumes that all nodes can measure AOA and it assumes perfect knowledge about the
noise powers, which might not be feasible in practical scenarios where only a single measurement
between pair of nodes is used for localization. Hence, in order to study the robustness of this method
to imperfect knowledge about the noise power, the results for LLS when instead of the true value
of σij (dB, deg), σ̂ij = 15 (dB, deg) is used are also included. It can be seen that LLS is sensitive to
imperfections about this information. Finally, Figure 12 shows that there is still considerable room for
further improvements, since there is a margin between CRLB (assuming that all nodes can measure
the AOA quantity) and the existing methods.
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Figure 12. Average root mean square error (ARMSE) (m) versus N: M = 50, R = 10 m, Mc = 1000.
CRLB = Cramér-Rao lower bound (CRLB).

Figure 13 depicts ARMSE (m) versus M comparison for fixed N = 15 and R = 10 m. It can be seen
that the performance of LLS and MCMC-MH deteriorates and the performance of SOCP and GTRS
meliorates slightly as M increases. This indicates that the latter two methods benefit from additional
node cooperation achieved by introducing more target nodes into the network, while the latter ones
are unable to take advantage of this additional cooperation.
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Figure 13. ARMSE (m) versus M: N = 15, R = 10 m, Mc = 1000.

Figure 14 depicts ARMSE (m) versus R (m) comparison for fixed N = 15 and M = 50. One can see
from the figure that LLS and GTRS methods are biased for small R (m), since they outperform CRLB in
this setting. Furthermore, even though it is intuitive that all methods improve as R (m) is increased,
Figure 14 shows that this is not exactly the case. For instance, LLS and MCMC-MH methods worsen
with the increase of R, while GTRS improves until a certain point after which it seems to get saturated
and its performance worsens slightly after that point. The only method that continuously benefits
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from the increase of R is SOCP. This can be explained to some extent by the fact that its computational
complexity is the highest among the considered methods, which might give it more robustness when
processing the additional information caused by increasing R.
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Figure 14. ARMSE (m) versus R (m): N = 15, M = 50, Mc = 1000.

5. Summary and Future Prospects

This survey studied the problem of distributed target localization based on amalgamated RSS and
AOA measurements. It provided formal mathematical derivation of the problem and presented a set
of existing solutions. These state-of-the-art methods were studied from a signal processing perspective
and their basic ideas were elaborated without focusing on extensive technical details characteristic to
each one of the approaches. An analysis from both computational complexity and localization accuracy
point of view was provided in order to give an intuition to the reader about the performance of the
existing approaches. Likewise, the most commonly used theoretical lower bound (in the literature)
on the localization accuracy was reviewed, as well, with the objective to evaluate the margin for
further improvements.

Some of the described approaches in this survey are computationally demanding and some
require installing additional hardware (e.g., antenna arrays or directional antennas) on all nodes in
the network. The former issue might restrict the applicability of such approaches in real-time or in
resource-restrained networks (e.g., battery lives of nodes), at least for the time being. The latter issue
raises the question of financial pay off for using such approaches in a wide variety of applications
(e.g., in military or fire prevention applications where nodes are deployed in areas where they are
likely to be damaged or destroyed). Both issues are equally important and should not be disregarded
in the development of future solutions for target localization in general.

The application in fire detection/prevention is very important in countries where the climate
favors this hazard, such as Portugal. In the last 20 years, Portugal has been severely affected by large
wildfires with dramatic consequences and casualties. Hence, it is urgent that the scientific community
provides sound and efficient tools capable of improving decision making during wildfires crisis to
minimize its negative consequences. A key component in decision support mechanisms for operational
interventions is the information obtained within the network, which might be useless without knowing
the location of nodes that acquired the information. Currently, the hardware used in forest surveillance
is based on expensive video cameras installed on tall towers, complemented by meteorological sensors.
There is no operational decision support system functioning in real-time fed by data provided by the
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network, mostly because it requires significant resources (human and equipment), which are very
limited during wildfires.

In the following years, we expect to see a further boost in the research interest for target
localization in general. Our reasoning is founded on the fact that we are living in a period of incessant
and rapid development of novel technologies and introduction of new applications. For instance,
employing localization technologies to complement and enhance vehicular and pedestrian systems
in the fields of intelligent transportation systems, location-based services, robotics, and automated
vehicles has already began. Similarly with the line of research presented here, a huge potential for
future improvements of localization performance is expected to emerge from a fusion of information
coming from already deployed (or novel) infrastructures (e.g., signals of opportunity), as well as the
use of crowd sensing, owing to the widespread use of smartphones today.

The forthcoming technologies (5G and IoT) will continue attracting the research interest towards
distributed target localization without a doubt. It is expected that the IoT will continue nourishing the
growth of networks in their size and their dynamics. Due to the augmented network size and node
mobility, implementation of localization algorithms in a distributed manner will become a requirement
for many practical settings, like smart buildings and smart cities. As a direct consequence, this will
stimulate researchers to develop novel signal processing approaches for efficient (accurate and fast)
distributed localization solutions. Furthermore, we expect that all these activities will require some
level of security; hence, we expect that secure localization (localization in the presence of one or
more malicious/corrupted nodes) will attract many research interest in the upcoming years. This is
because today’s localization systems are susceptible to location spoofing, where devices can deceive
other devices with regards to their own locations or can manipulate the measured locations of other
devices [73].

Finally, we saw that node cooperation does not bring benefit by default for any of the considered
estimators (e.g., when M and/or R (m) is increased). From the localization accuracy perspective,
this result is very important since it indicates that there is still room for improvements, as it was also
confirmed by comparing the methods against the theoretical bound. Essentially, this might imply that
unlimited node cooperation is not the solution for the localization problem at hand, or simply that one
needs to come up with a better way to exploit the additional information due to node cooperation in
order to benefit from it.
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Appendix A. CRLB Derivation for RSS-AOA Localization

In estimation theory and statistics, the CRLB gives a lower bound on the variance of unbiased
estimators of a deterministic (fixed, though unknown) parameter [56] (Chapter 3). Loosely speaking,
the bound states that the variance of any unbiased estimator is at least as high as the inverse of the
FIM. Thus, the CRLB is a reference point against which the performance of unbiased estimators can
be analyzed.

According to the definition [56] (Chapter 3), the variance of any unbiased localization estimator
is lower bounded by var(X̂) ≥ trace

(
J−1(X)

)
, where J(X) is the 2M× 2M FIM. The elements of

the FIM are defined as
[

J(X)
]

i,j = −E
[

∂2 ln p(θ|X)
∂xi∂xj

]
, where i, j = 1, . . . , 2M, and p(θ|X) is the joint

conditional probability density function of the observation vector θ = [PT ,ϕT ]T , given X.
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Therefore, it follows that the FIM can be computed as:

J(X) =
1

σ2
nij

∑
(i,j):j∈EAi

hijh
T
ij +

1
σ2

mij
∑

(i,j):j∈EAi

uijuT
ij +

1
σ2

nik
∑

(i,k):k∈ETi

hikhT
ik +

1
σ2

mik
∑

(i,k):k∈ETi

uikuT
ik,

where EAi =
{

j : (i, j) ∈ EA
}

and ETi =
{

j : (i, j) ∈ ET
}

are the anchor and target neighborhoods of
the i-th target,

hij = ρ− 10γd0

ln(10)
Ei(ET

i y− aj)

‖ET
i y− aj‖2

,

uij =
Eie2(eT

1 ET
i y− eT

1 aj)− Eie1(eT
2 ET

i y− eT
2 aj)

(eT
1 ET

i y− eT
1 aj)2 + (eT

2 ET
i y− eT

2 aj)2
,

hik = ρ− 10γd0

ln(10)
(Ei − Ek)(ET

i y− ET
k y)

‖ET
i y− ET

k y‖2
,

uik =
(Ei − Ek)(e2(eT

1 ET
i y− eT

1 ET
k y)− e1(eT

2 ET
i y− eT

2 ET
k y))

(eT
1 ET

i y− eT
1 ET

k y)2 + (eT
2 ET

i y− eT
2 ET

k y)2
,

Ei = [e2i−1, e2i], with ei representing the i-th column of the identity matrix I2M, and e1 = [1, 0]T ,
e2 = [0, 1]T .

Therefore, the CRLB for the estimate of the target locations is computed as:

CRLB = trace
(

J−1(X)
)

.
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