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Abstract: In this paper, analysis and optimization of surrounding channel nanowire (SCNW) tunnel
field-effect transistor (TFET) has been discussed with the help of technology computer-aided design
(TCAD) simulation. The SCNW TFET features an ultra-thin tunnel layer at source sidewall and shows
a high on-current (ION). In spite of the high electrical performance, the SCNW TFET suffers from
hump effect which deteriorates subthreshold swing (S). In order to solve the issue, an origin of hump
effect is analyzed firstly. Based on the simulation, the transfer curve in SCNW TFET is decoupled into
vertical- and lateral-BTBTs. In addition, the lateral-BTBT causes the hump effect due to low turn-on
voltage (VON) and low ION. Therefore, the device design parameter is optimized to suppress the
hump effect by adjusting thickness of the ultra-thin tunnel layer. Finally, we compared the electrical
properties of the planar, nanowire and SCNW TFET. As a result, the optimized SCNW TFET shows
better electrical performance compared with other TFETs.

Keywords: nanowire; TFET; subthreshold swing; low-power, steep switching; ultra-thin tunnel
region; vertical band-to-band tunneling

1. Introduction

A reduction of power density in complementary metal-oxide-semiconductor (CMOS) technology
becomes one of the major concerns as the CMOS devices have been scaled down [1], [2]. A tunnel
FET (TFET) has been attracted as a substitutable device for an ultra-low power logic circuit since
it can achieve subthreshold swing (S) less than 60 mV/decade at room temperature which allows
TFET to be operated with the lower supply voltage (<0.5 V) maintaining a high on-off current ratio
(ION/IOFF) [3–6]. However, experimental results have demonstrated that the TFET suffers from some
critical issues such as low-level ION, ambipolar current and poor S [7,8]. There are several studies to
address them with the help of narrow band gap materials [9–11], abrupt doping profile [12] and novel
geometrical structures [13–15]. Among these studies, many papers propose a TFET with an ultra-thin
tunnel layer at source sidewall which enables band-to-band tunneling (BTBT) perpendicular to the
channel direction (vertical-BTBT) [16–23]. It can improve ION as well as S with the help of a large BTBT
junction area and a short tunnel barrier width. However, it only considers a vertical-BTBT and ignores
the other BTBT component including a BTBT parallel to the channel direction (lateral-BTBT), [24,25].
Since BTBT at sharp source corner is deeply related to the hump effect which degrades average S and
ION, it should be examined rigorously for a device design optimization [26]. Therefore, more precise
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analysis are required considering both vertical- and lateral-BTBTs in technology computer-aided design
(TCAD) simulation [27–30].

This paper is composed as follow. First of all, device design parameters and TCAD simulation
conditions for a gate-all-around (GAA)-NW TFET with an ultra-thin tunnel layer at source sidewall
are explained. Second, after examining the basic operation of studied TFET, a fundamental origin of
hump effect is analyzed by two-dimensional (2D) contour plots. Third, the influences of geometrical
parameters on hump effect are investigated and analyzed to minimize undesired effect which degrades
switching performance. Last of all, the optimized structure is compared with the control devices.

2. Device Fabrication

The device structure used in this work is similar to that in [16], except a lateral channel direction
considering the compatibility with the state-of-the-art CMOS technology for a sub-5 nm-technology
nodes [31] (Figure 1). It is named as a surrounding channel nanowire (SCNW) TFET, since its intrinsic
(or lightly doped) channel which is named as tunnel region surrounds conventional nanowire structure.
All the materials except for gate oxide are Si. The gate oxide is SiO2. In TCAD simulation, a channel
length (LCH) is set by 30 nm to exclude short-channel effect. Considering the latest CMOS technology,
a nanowire radius except surrounding channel (i.e., tunnel region) (TB) and a gate oxide thickness
(TOX) are set by 7 nm and 1 nm, respectively. The other important design parameters are summarized
in Figure 1 and Table 1. All the parameter variations in this simulation are set in consideration of
the fabrication processes [32,33]. The following models are used for an accurate simulation result:
Shockey-Read-Hall recombination, doping and field dependent mobility, and dynamic non-local
BTBT after calibration by referring [17]. Since the thickness of tunnel region (TTUN) is less than
8 nm, modified local density approximation is also used to consider quantum effect. In addition,
the physical characteristics for BTBT is reflected by the calibrated current model based on the fabricated
device [34–37]. For the calculation of BTBT generation rate (G) per unit volume in uniform electric
field, Kane’s model is use as follows:

G = A
(

F
F0

)P

exp
(
−

B
F

)
, (1)

where F0 = 1 V/m, P = 2.5 for indirect BTBT, A = 4.0 × 1014 cm−1
·s−1, and B = 1.9 × 107 V·cm−1 are the

Kane’s model parameters and F is the electric field [34]. The pre-factor A and the exponential factor B
parameter are calibrated by referring [17].
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Table 1. SCNW TFET design parameters used for TCAD simulation.

Parameters Value

Source doping concentration, p-type (NS) 1020 cm−3

Drain doping concentration, n-type (ND) 1020 cm−3

Body doping concentration, p-type (NCH) 1017 cm−3

Gate work function 4.05 eV

Channel length (LCH) 30 nm

Nanowire radius except tunnel region (TB) 7 nm

Gate oxide thickness (TOX) 1 nm

Length of tunnel region (LTUN) Variable

Thickness of tunnel region (TTUN) Variable

Drain voltage (VDS) 0.5 V

3. Hump Effect in SCNW TFET

Figure 2 shows drain current (ID) versus gate voltage (VGS) curves with 2 nm-TTUN and 0.5 V-drain
voltage (VDS) while LTUN is varied from 20 to 60 nm. The ION is extracted at 2.0 V-VGS and 0.5 V-VDS.
The ION increases linearly proportional to the LTUN which confirms that the BTBT junction area of SCNW
TFET is determined by the LTUN. Generally, the FETs based on a NW channel have a disadvantage
for enhancing current drivability, which can be achieved by increasing a NW radius or using a
multi-channel structure [38]. On the other hand, SCNW TFET can easily adjust ION by controlling a
LTUN. However, as shown in Figure 3a, there is a hump in the subthreshold region of SCNW TFET.
The transfer curves are simulated with various VDS values. At all the VDS values, the hump current
appears. In addition to this, with the higher the doping concentration, the better the ON-current is
shown however, the hump effect is noticeable from 5×1019-NS cm-3 as shown in Figure 3b. The hump
effect should be addressed for TFET’s low-power application since it deteriorates average S which
results in the degradation of ION/IOFF and/or supply power (VDD)-scaling. Therefore, optimization
for other parameters is needed to achieve high ON-current and hump-less transfer curve. In order
to analyze the cause of hump effect, the electron BTBT generation rates (eBTBT) are examined by 2D
contour plots with different VGS conditions (Figure 4). When VGS is applied near a turn-ON voltage
(VON), defined as VGS when BTBT starts to occur, a lateral-BTBT is predominant. As VGS increases,
a vertical-BTBT starts to occur at 0.4 V-VGS and finally surpasses the lateral-BTBT at 1.2 V-VGS. Therefore,
the current of SCNW TFET can be decoupled into two different BTBTs. In addition, transfer curves
with various LTUN are plotted in Figure 5. The ID at low VGS (< 0.9 V) is unchanged regardless of LTUN,
while ID increases with longer LTUN at high VGS (> 0.9 V). The VGS at this point is defined as hump
voltage (VHUMP). Since the tunnel junction area of vertical-BTBT component is only affected by LTUN.
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4. Device Optimization

In Section 3, we confirmed that the hump behavior in SCNW TFET is mainly attributed to the
two BTBT paths (i.e., vertical and lateral) which have different VON and BTBT rates. Therefore, a design
optimization is needed to achieve maximum electrical performance (low S and high ION). In this Section,
the influences of LTUN and TTUN on SCNW TFET’s electrical characteristic are investigated since the
vertical-BTBT mostly occurs in the tunnel region. Figure 6a shows transfer curves with 50, 80, 100 nm
of LTUN and 2, 3, 4, 5 nm of TTUN. As shown in the inset of Figure 6a, the VHUMP is clearly decreased as
TTUN increases. The results can be quantitatively analyzed and calculated by voltage division model in
which the gate oxide and depletion capacitors (Cox and CSi) are connected in series (Figure 6b) [13].
Since TTUN is ultra-thin (< 10 nm) and source is highly doped, it can be assumed that the tunnel
region is entirely depleted; the CSi is constant. Therefore, surface potential (ψS) is expressed as (2),
where εSi and εox are permittivity of Si and SiO2, respectively. If TTUN increases, ψS becomes large
and vertical-BTBT occurs with the smaller VGS which results in the decrease of VHUMP as discussed
in Figure 6a.

ψs =
Cox

Cox+Csi
VGS =

εox
Tox

εox
Tox +

εSi
Ttun

VGS = 1
1+3 Tox

Ttun

VGSψs = VGS −
3Tox

Ttun+3Tox
VGS, where εSi ≈ 3εox (2)

Figure 7 shows transfer curves with various TTUN from 2 to 8 nm, where LTUN and VDS are fixed at
20 nm and 0.5 V, respectively. According to the results, the ID is clearly increased, and S is deteriorated
as TTUN becomes thinner. It is attributed to the enhanced vertical-BTBT rate with the smaller TTUN,
because the tunnel resistance (i.e., tunnel barrier width) of SCNW TFET is geometrically determined
by the TTUN [39]. However, an aggressive scaling-down of TTUN is contradictory to the process
capability and the S which gets worse as the TTUN decreases due to an increased VHUMP. Consequently,
an optimization of TTUN can be a strategy for SCNW TFET to compensate its weakness (i.e., low ION and
hump effect) and/or enhance its strength (i.e., under 60 mV/dec-S at room temperature). Finally, TTUN is
optimized as 4 nm. Then, the performances of planar TFET, SCNW TFETs and nanowire TFET are
compared. Figure 8a shows the average subthreshold swing (Savg) and point-to-point minimum
subthreshold swing (Smin) of SCNW, nanowire and planar TFETs. The Savg is defined as the average
inverse slope of the transfer curve while ID changes from 10−12 µA/ µm to 10−2 µA/ µm. For Smin,
the planar TFET, SCNW TFETs and nanowire TFET show similar values, all of which are less than
60 mV/dec. For Savg, SCNW TFET shows the lowest value. Figure 8b shows transfer curve of planar
TFET, SCNW TFETs and nanowire TFET. For fair comparison, the IOFF of these devices should be
adjusted to the same level. The above adjustment is achieved by changing the work function and
channel doping concentration. The adjusted IOFF is 10−7 µA/µm, referring to actual IOFF in nanowire
TFET [40]. The Figure 8b shows that the SCNW TFET has a larger ION than that of the planar and
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nanowire TFETs. In detail, its ION is enhanced 2.4 times more than that of nanowire TFET and 4.7 times
more than that of planar TFET. In addition, the SCNW TFET shows higher ION than other devices at
0.53 V-VGS and fully operates within 0.7 V-VGS.
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5. Conclusions

The SCNW TFET has been studied for high electrical performance. It features nanowire TFET
with a thin tunnel layer at source region. Based on the simulation, the transfer curve in SCNW TFET is
analyzed and decoupled into vertical- and lateral-BTBTs. The vertical-BTBT is attributed to excellent
ION rate and S. However, the lateral-BTBT causes the hump effect due to low VON and low ION.
Therefore, the design optimization is suggested to reduce the hump effect and achieve maximum
electrical performance (low S and high ION). Finally, the electrical performance without hump effect
is optimized by adjusting the thin tunnel layer. In future work, novel design strategy to reduce
lateral-BTBT will be suggested to eliminate the hump effect.
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