
applied
sciences

Article

Spectrogram Classification Using Dissimilarity Space

Loris Nanni 1,* , Andrea Rigo 1, Alessandra Lumini 2 and Sheryl Brahnam 3

1 DEI, Via Gradenigo 6, 35131 Padova, Italy; andrea.rigo.5@studenti.unipd.it or rigoandrea96@gmail.com
2 DISI, University of Bologna, Via dell’Università 50, 47521 Cesena, Italy; alessandra.lumini@unibo.it
3 Department of Information Technology and Cybersecurity, Missouri State University, 901 S. National Street,

Springfield, MO 65804, USA; sbrahnam@missouristate.edu
* Correspondence: loris.nanni@unipd.it

Received: 19 May 2020; Accepted: 9 June 2020; Published: 17 June 2020
����������
�������

Abstract: In this work, we combine a Siamese neural network and different clustering techniques
to generate a dissimilarity space that is then used to train an SVM for automated animal audio
classification. The animal audio datasets used are (i) birds and (ii) cat sounds, which are freely
available. We exploit different clustering methods to reduce the spectrograms in the dataset to a
number of centroids that are used to generate the dissimilarity space through the Siamese network.
Once computed, we use the dissimilarity space to generate a vector space representation of each
pattern, which is then fed into an support vector machine (SVM) to classify a spectrogram by its
dissimilarity vector. Our study shows that the proposed approach based on dissimilarity space
performs well on both classification problems without ad-hoc optimization of the clustering methods.
Moreover, results show that the fusion of CNN-based approaches applied to the animal audio
classification problem works better than the stand-alone CNNs.

Keywords: audio classification; dissimilarity space; siamese network; ensemble of classifiers;
pattern recognition; animal audio

1. Introduction

Sound classification and recognition have been applied in different domains, e.g.,
speech recognition [1], music classification [2], environmental sound recognition, and biometric
identification [3]. Traditionally, in pattern recognition problems, features have been extracted from
the actual audio traces (e.g., Statistical Spectrum Descriptor and Rhythm Histogram [4]). However,
by replacing audio traces by their visual representation, image classification techniques can be used to
extract features on sound classification problems. The most commonly used visual representation of
audio traces involves the display of their frequency spectrum as they vary in time, as in spectrograms [5]
and Mel-frequency Cepstral Coefficients spectrograms [6]. A spectrogram can be described as a graph
with two dimensions (time and frequency) plus a third dimension in terms of pixel intensity [7] that
represents the signal amplitude in a specific frequency at a particular time step. Costa et al. [8,9]
applied several classification and texture analysis techniques to music genre classification using
such a method. In [9], the authors extracted grey level co-occurrence matrices (GLCMs) [10] from
spectrograms, while in [8] they used the local binary pattern (LBP) [11], which is a popular texture
descriptor. In [12], two other feature descriptors were extracted from audio images: local phase
quantization (LPQ) and Gabor filters [13]. In 2017, Nanni et al. [2] demonstrated on multiple audio
datasets how the fusion of acoustic features extracted from audio traces using state-of-the-art texture
descriptors greatly improves the accuracy of acoustic and visual feature-based systems.

When deep learning became popular and Graphic Processing Units (GPUs) became more
powerful at accessible costs, traditional pattern recognition changed, and attention focused even

Appl. Sci. 2020, 10, 4176; doi:10.3390/app10124176 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3502-7209
https://orcid.org/0000-0003-0290-7354
https://orcid.org/0000-0001-7664-6930
http://www.mdpi.com/2076-3417/10/12/4176?type=check_update&version=1
http://dx.doi.org/10.3390/app10124176
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 4176 2 of 17

more on visual representations of acoustic traces. In the traditional machine learning framework,
the optimization of the feature extraction step plays a key role, especially with the evolution of
handcrafted features, which minimize the distance between patterns of the same class in the feature
space while simultaneously attempting to maximize their distance from the patterns of other classes.
Since deep classifiers learn the best features for describing patterns during the training process,
these engineered features have diminished in significance, playing in the deep framework more of
a supporting role when combined with features extracted from visual representations of acoustic
traces that the deep classifiers determine are most informative. Another reason for the growing
popularity of representing audio as images is the fact that the convolutional neural network (CNN),
one of the most famous deep classifiers, requires images for its input. In their study, Humphrey and
Bello [14,15] explored CNNs as an alternative approach to music classification problems, establishing
the state-of-the-art in automatic chord detection and recognition. Nakashika et al. [16] converted
spectrograms into GCLM maps to train CNNs for music genre classification, and Costa et al. [17]
performed better than the state-of-the-art on the LMD dataset by fusing canonical approaches, e.g.,
LMP-trained SVMs with CNNs. Only a few studies, however, have focused on making these processes
that were designed for image classification more specific for sound image recognition. In their study,
Sigtia and Dixon [18] focused on adjusting CNN parameters and structures and showed how using
Rectified Linear Units (ReLu) instead of stochastic gradient descent with the Hessian Free optimization
and sigmoid units reduced training time. Wang et al. [19] presented an innovative CNN, which they
named a sparse coding CNN, for sound event recognition and retrieval, which, when evaluated under
noisy and clean conditions, achieved competitive and sometimes better performance than the majority
of other approaches. In Oramas [20], a hybrid approach was presented that combined diverse
modalities (album cover images, reviews, and audio tracks) for multi-label music genre classification
by applying deep learning techniques appropriate for each modality, an approach that outperformed
the single-modality methods. Finally, it should be mentioned that many methods in machine learning
are also proposed for the human voice classification task: emotion recognition [21], English accent
classification, and gender classification [22], to name a few.

Because deep classifiers have produced a patent improvement in music classification, researchers
have begun to apply deep learning approaches to other sound recognition tasks, such as biodiversity
assessment. Precise sound recognition systems can be of crucial importance in assessing and
handling environmental threats like animal species loss and climate changes affecting wildlife
fauna [23]. Birds, for instance, have been acknowledged as an indicator species for ecological
research, and their monitoring has become increasingly important for biodiversity preservation [23],
especially considering the minimal impact video and audio acquisition has on ecosystems. To date,
many datasets are available to develop classifiers to identify and monitor different species, such as
birds [24,25], whales [26], frogs [24], bats [25], and cats [27]. For instance, both Cap et al. [28] and
Salamon et al. [29] have investigated the fusion of CNNs with other methods to classify animals. The
former study combined CNNs with handcrafted features to classify marine animals [30] using the Fish
and MBARI benthic animal dataset [31], while the latter fused deep learning with shallow learning for
bird species identification based on 5428 bird flight calls from 43 species. In both cases, the fusion of
CNNs with other canonical techniques outperformed the single approaches.

Existing approaches for animal audio classification can roughly be classified into two categories:
fingerprinting and CNN approaches. Fingerprinting [32] relies on the compact representation of
audio traces so that each one can be efficiently matched against other audio clips to compare for
similarity and dissimilarity [33]. A sample of audio fingerprinting by CNN is shown in [34], where the
authors used a Siamese neural network to produce semantic representations of the audio traces.
However, fingerprinting is useful only in finding an exact match; the problem addressed in this work
involves audio classification. As already noted, CNN-based approaches [35,36] train networks for
animal audio classification starting from an image representation of the audio signal. Unfortunately,
CNNs require a large number of training examples to be effective (larger than available in most animal

Appl. Sci. 2020, 10, 4176 3 of 17

audio datasets) and cannot generalize to new classes without retraining the network. The objective of
this work is to solve these issues by proposing an approach based on Dissimilarity Spaces. Recently,
Agrawal [37] proposed an approach that learns a distance model by training a Siamese neural network
directly on dissimilarity values for brain image classification, and in [38] an approach is proposed for
online signature verification using a Siamese neural network and a contrastive loss function. In the
latter work, the authors claim that the main advantage a Siamese network offers over a canonical CNN
is the ability to generalize: the Siamese network approach they developed was shown to verify the
authenticity of the signature of a new user without being trained on any examples from this user.

In this work, the dissimilarity space is created using a Siamese Neural Network (SNN) trained on
the entire training set to define a distance function among the samples. The training phase for SNN is
aimed at maximizing the distance between patterns of different classes; the testing phase of the SNN is
used to compare two spectrograms to obtain a measure of their dissimilarity. In theory, all the training
samples can be selected as centroids of the dissimilarity space. Dimensionality reduction is obtained
by selecting a smaller number (k) of prototypes via a clustering approach. The dissimilarity space is
the space where each spectogram is represented by a its distance to each centroid/prototype: in this
space, the SNN is used to compare the spectrogram to every centroid, obtaining the spectrogram’s
dissimilarity vector, which is the final descriptor. The classification task is performed by a support
vector machine (SVM) trained using the dissimilarity descriptors generated from the training samples.
The proposed system is evaluated on two different datasets for animal audio classification: domestic
cat sounds [27] and bird sounds [23]. Results for the different clustering methods and different values
of the hyperparameter (k) are reported.

In addition, an ensemble of SVMs trained on different dissimilarity spaces (by changing the
value of k) are combined by sum rule, and its performance is compared with (i) some canonical CNN
approaches and (ii) the fusion of the SVMs and the CNNs. Experiments demonstrate for the first time
that the use of dissimilarity spaces based on SNN is a feasible representation for image data and can,
when combined with a general purpose classifier, achieve high classification performance. Because the
descriptors obtained in the dissimilarity space show high diversity with respect to the representations
based on CNNs, their fusion can be exploited in an ensemble, as proven by the high classification
accuracy obtained by the fusion of CNNs with our approach. The MATLAB code used in this study is
freely available at https://github.com/LorisNanni.

2. Proposed Approach

The proposed method for spectrogram classification using dissimilarity space is based on several
steps which are schematized in Figure 1. This figure is followed by the pseudo-code for each step
(Algorithms 1 and 2). In order to define a similarity space, it is necessary to select a distance measure
and a set of prototypes in the training phase. The distance measure d(x, y) is learned by means of a
SNN trained to maximize the similarity between couples of spectrograms in the same class, while
minimizing the similarity for couples in different classes. The set of prototypes P = p1, ...pk are
obtained as the k centroids of the clusters generated by a supervised clustering procedure. The final
step represents each training sample x in the dissimilarity space by a feature vector f ∈ <k, where each
component fi is the distance between x and the prototype pi: fi = d(x, pi). These feature vectors are
used to train a SVM for the final classification task. In the testing phase, each unlabeled spectrogram is
first represented in the dissimilarity space by calculating its distance to all the prototypes, then the
resulting feature vector is classified by SVM.

https://github.com/LorisNanni

Appl. Sci. 2020, 10, 4176 4 of 17

TRAINING

Test image

Training set

Siamese network
Training

Training

SVM

TEST
Siamese network

Prototypes

Learned
distance

Figure 1. Proposed approach scheme.

Algorithm 1 Training phase

Input: Training images (imgsTrain), training labels (labelTrain), the number of training iterations

(trainIterations), batch size (trainBatchSize), number of centroids (k), and the clustering

technique (type).
Output: Trained SNN (tSNN), set of centroids (C), and trained SVM (svm).

1: tSNN ← TRAINSIAMESE(imgsTrain, labelTrain, trainIterations, trainBatchSize)
2: P← CLUSTERING(imgsTrain, labelTrain, k, type)
3: F ← GETDISSSPACEPROJECTION(imgsTrain, P, tSNN)
4: tSVM← TRAINSVM(labelTrain, F)

Algorithm 2 Testing phase

Input: Test images (imgsTest), trained SNN (tSNN), Set of centroids (C), Trained SVM (tSVM).
Output: Actual test labels (labelTest).

1: F ← GETDISSSPACEPROJECTION(imgsTest, P, tSNN)
2: labelTest← PREDICTSVM(F, tSVM)

Each of the main functions used in the pseudo-code are described below.

2.1. Siamese Neural Network Training

The SNN, described in more detail in Section 3, is trained to compare a pair of spectrograms
by returning a measure of their similarity. Algorithm 3 presents the pseudocode for this phase and
corresponds with step 1 of Algorithm 1. The SNN architecture is defined in steps 2 and 3 of algorithm
Algorithm 3. Steps 5–8 are repeated for each training iteration. Step 5 extracts randomly batchSize
spectrograms pairs from the training set using the function GETSIAMESEBATCH. Step 6 feeds the pairs

Appl. Sci. 2020, 10, 4176 5 of 17

to the network and computes loss and gradients for gradient descent. Steps 7 and 8 use the gradients
and loss to update the weights of the fully connected layer and the twin subnetworks.

Algorithm 3 Siamese training pseudocode

Input: Training image (trainImgs), training labels (trainLabels), batch size (batchSize), and iterations

(numberO f Iterations).
Output: Trained SNN (tSNN).

1: function TRAINSIAMESE

2: subnet← NETWORK([inputLayer, ..., FullyConnectedLayer])
3: f cWeights← randomWeights
4: for iteration← from 1 to numberO f Iterations do
5: X1, X2, pairLabels← GETSIAMESEBATCH(trainImgs, trainLabels, batchSize)
6: gradients, loss← EVALUATE(subnet, X1, X2, pairLabels)
7: UPDATE(subnet, gradients)
8: UPDATE(f cWeights, gradients)
9: end for

10: return tSNN ← subnet, f cWeights
11: end function

Note: in the case where the SNN fails to converge on the training set, training is rerun.

2.2. Prototype Selection

In this phase, k prototypes are extracted from the training set. In theory, every spectrogram in
the training set could be selected as a prototype, but this would be too resource expensive and the
dimensionality of the generated dissimilarity vectors would be too high. A better alternative is to
employ clustering techniques to compute k centroids for each class. Clustering would significantly
reduce the dimension of the resulting dissimilarity space and thus make the process more viable.
Algorithm 4 presents the pseudo code for prototype selection, which provides a selection from among
four clustering procedures, which are used separately to cluster the training samples belonging to
each class.

Algorithm 4 Clustering pseudocode

Input: Training images (imgsTrain), training labels (labelTrain), number of clusters (k), and clustering

technique (type).
Output: Centroids P.

1: function CLUSTERING

2: numClasses← number of classes from labelTrain
3: kc← k/numClasses
4: for i← from 1 to numClasses do
5: images← images of the class i from imgsTrain
6: switch type do
7: case “k-means” Pi ← KMEANS(imgs,kc)
8: case “k-medoids” Pi ← KMEDOIDS(imgs,kc)
9: case “hierarchical” Pi ← HIERARCHICAL(imgs,kc)

10: case “spectral” Pi ← SPECTRAL(imgs,kc)
11: P← P ∪ Pi
12: end for
13: return P
14: end function

Appl. Sci. 2020, 10, 4176 6 of 17

2.3. Projection in the Dissimilarity Space

Existent classification methods learn to classify patterns using their feature space. In this work,
patterns are represented in a dissimilarity space in which every pattern x is represented by its similarity
to a selected set of prototypes P = p1, ...pk by a dissimilarity vector:

F(x) = [d(x, pi), d(x, pi+1), ..., d(x, pk)], (1)

where the similarity among pattern d(x, y) is obtained using a trained SNN. In order to project each
image in the Dissimilarity space <k, Algorithm 5 compares each input image (stored in X in step 3)
with the k centroids (stored in P) using the trained SNN tSNN with the PREDICTSIAMESE function
(step 4). The resulting feature space F includes the projected features of all the input images.

Algorithm 5 Projection in the Dissimilarity space pseudocode

Input: Images (imgs), Centroids (P), number of centroids (k), and trained SNN (tSNN).
Output: Feature vectors (F).

1: function GETDISSSPACEPROJECTION

2: for j← from 1 to SIZE(imgs) do
3: X ← imgs[j]
4: F[j]← PREDICTSIAMESE(tSNN, X, P)
5: end for
6: return F
7: end function

2.4. Support Vector Machine Training and Prediction

A Support Vector Machine (SVM) is a supervised learning model witch can be used to perform
classification or regression. An SVM model represents each training example as a data point in space
and is trained to construct one or more hyperplanes that divide the space in two, separating data points
belonging to different classes (function TRAINSVM). The model will predict (function PREDICTSVM)
the class of a new pattern mapped in the space according to the side of the hyperplane the data point
falls into. The hyperplane found by an SVM is defined as follows:

D(x) = w ∗ x− b, (2)

where D(x) is the hyperplane, x is the data point vector, w is the hyperplane’s normal vector, and the
b
||w|| ratio is the hyperplane’s distance from the origin. The optimal hyperplane is the one that

maximizes the distance to the nearest data point of any class, defined as 2
||w|| , which is also called

the margin. The i-th point xi will be assigned to the first class when D(xi) ≥ +1 and to the second
class when D(xi) ≤ −1. The points that lie on the margin line, defined by the equation D(xi) = ±1,
completely describe the solution to the problem and are called support vectors. An example of an
optimal hyperplane with highlighted support vectors is shown in Figure 2.

Appl. Sci. 2020, 10, 4176 7 of 17

Figure 2. SVM’s hyperplane.

Because SVMs use hyperplanes to discriminate data, they do not work well with data that is not
linearly separable in its original space. This problem can be solved using kernel functions, which map
data into a much higher dimensional space, presumably to make the separation easier in that space.
To keep the computational complexity to an acceptable level, the kernel function of choice has to be
computationally efficient.

Being binary classifiers, SVMs can only determine the separation surface between two classes of
data; however, it is possible to apply SVMs to multi-label problems by training an ensemble of SVMs
and combining them. In this work, the One-Against-All approach is used, where for each class an SVM
is trained to discriminate between a given class and all the other classes put together. The pattern is
then assigned to the class that gives the higher confidence score.

3. Siamese Neural Network

The Siamese Neural Network (SNN) is a class of neural network architectures that contains
two or more twins, i.e., sub-networks with the same parameters and weights. SNNs are used in
tasks involving similarity or in identifying correlations between different entities. SNN was first
proposed by Bromley et al. [39] for performing signature verification. SNNs have since been used
successfully in other application domains, such as face verification [40], image recognition [41], human
fall detection [42], content-based audio representation [34], and sound search by vocal imitation [43].
The SNN architecture used in this work is similar to the one used in [43] and is represented in (Figure 3).

Figure 3. Siamese Neural Network architecture.

As shown in Figure 3, the SNN used in this work is composed of five blocks:

Appl. Sci. 2020, 10, 4176 8 of 17

• Two identical twin subnetworks

The twin subnetworks in our SNN are two Convolutional Neural Networks composed of 13 layers,
as listed in Table 1.

Table 1. Siamese subnetworks layers.

Layer Filer Size Number of Filters

1 Input Layer 224 × 224 images

2 2D Convolution 10 × 10 64

3 ReLU

4 Max Pooling 2 × 2

5 2D Convolution 7 × 7 128

6 ReLU

7 Max Pooling 2 × 2

8 2D Convolution 4 × 4 128

9 ReLU

10 Max Pooling 2 × 2

11 2D Convolution 5 × 5 64

12 ReLU

13 Fully Connected Returns a 4096-dimensional vector

These subnetworks learn the features best representing the spectrograms in the input (X1 and
X2), returning a 4096-dimensional feature vector for each (F1 and F2). The subnetworks share
parameters and weights which are mirrored during the training.

• Subtract block

The output vectors of the subnetworks are subtracted, resulting in a feature vector Y representing
the features in which the images differ:

Y = |F1− F2| (3)

• Fully Connected Layer

As in [37], the Fully Connected Layer (FCL) learns the distance model to calculate the dissimilarity.
The output vector of the subtract block is fed to the FCL which returns a dissimilarity value for
the pair of spectrograms in the input.

• Sigmoid

The sigmoid function is a class of mathematical real functions having a characteristic S-shaped
curve. We apply the sigmoid to the dissimilarity value returned by the FCL to convert it to a
probability value in the range [0, 1], using the standard logistic function:

S(x) =
1

1 + e−x (4)

• Binary Cross Entropy

The Binary Cross Entropy (BCE) is a popular loss function, which, given the prediction of the
model and the correct observation label (in our case, 1 if the two spectrograms belong to the
same class, 0 otherwise) returns a measure of the performance of the model. Loss functions are

Appl. Sci. 2020, 10, 4176 9 of 17

used by learning algorithms to train the network by adjusting the weights. BCE is applied to
the probability obtained from the sigmoid and computes the gradients of the loss function with
respect to the weights of the network in order to adjust them. In a two-class problem, BCE can be
calculated as:

BCE(y, p) = −(y log(p) + (1− y) log(1− p)), (5)

where y is the binary value that indicates whether the class label c is correct for the observation o,
p is the predicted probability that observation o is of class c, and log is the natural logarithm.

4. Clustering

Clustering is the task of organizing data in groups (Figure 4) so that patterns in the same cluster
are more similar to each other than they are to patterns belonging to other clusters. Clustering is often
used to find natural clusters in unlabeled data. Some clustering techniques calculate centroids during
the process. A centroid is the mean vector of all the patterns in a cluster. Because it is a mean vector,
it contains the most characterizing features of a cluster’s patterns. Centroids are computed to reduce
the dissimilarity space size without losing too much information. The greater the number of centroids
used for each class, the more information that is retained. In this work, samples are divided into classes
before clustering, and the clustering procedure is applied to each class separately. The remainder of
this section describes the four clustering techniques used in this study.

Figure 4. A sample of clusters found from unlabeled data: on the left the original 2D data, on the right
clustered data, where different colors denote different clusters.

4.1. K-Means

K-means is a popular clustering algorithm that partitions a set of patterns into k clusters by
assigning each observation to the cluster with the nearest centroid, or mean vector. There are several
versions of this algorithm. In this study, the default implementation (with the Euclidean distance
metric) in the MATLAB Statistics and Machine Learning Toolbox was applied. The standard k-means
algorithm cycles through the following steps:

1. Choose k initial cluster centers (centroids) according to the k-means++ variation detailed below.
2. Compute point-to-cluster-centroid distances of all observations to each centroid.
3. Assign each observation to the cluster with the closest centroid.
4. Compute the average of the observations in each cluster to obtain k new centroids.
5. Repeat steps 2 through 4 until cluster assignments no longer change (i.e., until the algorithm

converges) or until the maximum number of iterations is reached.

Appl. Sci. 2020, 10, 4176 10 of 17

The k-means++ variation [44] employs a heuristic to find the initial centroids:

1. Choose one center uniformly at random from among the data points.
2. For each data point x, compute d(x), the distance between x and the nearest center that has

already been chosen.
3. Choose one new data point at random as a new center, using a weighted probability distribution

where a point x is chosen with probability proportional to d(x)2.
4. Repeat Steps 2 and 3 until k centers have been chosen.

4.2. K-Medoids

K-medoids is a clustering technique very similar to k-means. It partitions a set of observations into
k clusters by minimizing the sum of distances between a pattern and the center of that pattern’s cluster.
The main difference between k-means and k-medoids is that, in the first case, the center of a cluster is
its centroid, or mean, whereas, in the latter case, the center is a member, or medoid, of the cluster. A
medoid is an observation in a cluster whose sum of distances from the other observations within the
cluster is minimal. The basic algorithm for K-medoids loops through the following three steps:

1. Build-step: each k cluster is associated with a potential medoid. The first assignment
can be performed in various ways; the standard MATLAB’s implementations uses the
k-means++ heuristic.

2. Swap-step: within each cluster, each point is tested as a potential medoid by checking whether
the sum of the within-cluster distances gets smaller using that particular point as the medoid.
If so, the point is defined as a new medoid. Every point is then assigned to the cluster with the
closest medoid.

3. Repeat steps 1–4 until medoids no longer swap (i.e., until the algorithm converges) or until the
maximum number of iterations is reached.

4.3. Hierarchical

Hierarchical clustering is a clustering technique that groups data by building a hierarchy of
clusters. The hierarchy tree that is obtained is divided into n levels chosen for the application at hand.
There are two main categories of hierarchical clustering:

• Agglomerative: each pattern starts in its own cluster; then, moving up the hierarchy, each cluster in
one level is obtained by merging two clusters in the previous level.

• Divisive: all patterns start in one cluster; then, by moving down the hierarchy, each pair of clusters
is obtained by splitting a single cluster in the previous level.

In this work, the default MATLAB implementation of hierarchical clustering is used, which is the
agglomerative type. The MATLAB algorithm loops through the following three steps:

1. Find the similarity or dissimilarity between every pair of objects in the dataset using a
distance metric.

2. Group the objects into a binary hierarchical cluster tree by linking objects in pairs based on their
distance. As objects are paired into binary clusters, the newly formed clusters are grouped into
larger clusters until a hierarchical tree is formed.

3. Determine where to cut the hierarchical tree into clusters. Here, MATLAB’s cluster function is
used to prune branches off the bottom of the hierarchical tree and to assign all the objects below
each cut to a single cluster. In this way, k clusters are obtained.

After applying this algorithm, centroids, as the mean vectors of each cluster, are computed.

Appl. Sci. 2020, 10, 4176 11 of 17

4.4. Spectral

The spectral clustering technique splits data into groups using the data’s undirected similarity
graph represented by a similarity matrix (also called an adjacency matrix). In the similarity graph,
every·node is an observation, and two nodes are connected by an edge if their similarity is larger then
a certain threshold, which is often 0. The algorithm uses four mathematical expressions:

• Similarity Matrix: a square symmetrical matrix that represents the similarity graph. Letting M
be the similarity matrix, each cell value mij is the similarity value of two connected nodes in the
graph, which, in turn, represent the spectrogram pairs (si, sj).

• Degree Matrix: a diagonal matrix obtained by summing the similarity matrix rows. The degree
matrix is defined by the equation

Dg(i, i) = ∑
j

mij,

where Dg is the degree matrix, and mij is a value of the similarity matrix.
• Laplacian Matrix: another way of representing the similarity graph that is defined as

L = Dg −M.

Here are the steps required by the spectral algorithm:

• For each spectrogram in the dataset, define a local neighborhood. There are different ways such
a neighborhood can be defined. The MATLAB implementation defaults to the nearest-neighbor
method. Once the neighborhood is defined, compute the pairwise similarities of each spectrogram
in the neighborhood using some distance metric.

• Calculate the Laplacian matrix L.
• Create a matrix V containing columns v1, ..., vk, where the columns are the k eigenvectors that

correspond to the k smallest eigenvalues of the Laplacian matrix. The eigenvalues of the matrix
are also called spectrum, hence the algorithm’s name.

• Treating each row of V as a pattern, perform k-means clustering or k-medoids clustering.
• Assign the original spectrograms in the dataset to the same clusters as their corresponding rows

in V.

5. Experimental Results

The approach proposed in this paper is tested, along with some comparison canonical approaches,
using a stratified ten-fold cross validation protocol and the classification accuracy as the performance
indicator. Tests were performed on two datasets:

• BIRDZ, which was also used as a control and as a real-world audio dataset in [23]. The real-world
tracks were obtained from the Xeno-canto Archive (http://www.xeno-canto.org/) and cover
11 widespread North American bird species. Thus, the dataset contains 11 classes: (1) Blue Jay,
(2) Song Sparrow, (3) Marsh Wren, (4) Common Yellowthroat, (5) Chipping Sparrow, (6) American
Yellow Warbler, (7) Great Blue Heron, (8) American Crow, (9) Cedar Waxwing, (10) House Finch,
and (11) Indigo Bunting. BIRDZ is composed of five types of spectrograms: constant frequency,
frequency modulated whistles, broadband pulses, broadband with varying frequency components,
and strong harmonics, for a total of 2762 bird acoustic events with 339 detected “unknown” events
corresponding to noise and other unknown species vocalizations. Including the “unknown class”,
BIRDZ has 3101 samples for 12 classes.

• CAT, which was first presented in [27,45]. This dataset is composed of 10 balanced classes
with about 300 samples per class: (1) Resting, (2) Warning, (3) Angry, (4) Defence, (5) Fighting,
(6)·Happy, (7) Hunting mind, (8) Mating, (9) Mother call, and (10) Paining. The samples have an
average duration of about 4s and were collected by the author from different sources: Kaggle,
Youtube and Flickr. CAT has a total of 2962 samples.

http://www.xeno-canto.org/

Appl. Sci. 2020, 10, 4176 12 of 17

In Tables 2 and 3, the performance of the four tested clustering algorithms is reported using
different values of kc (i.e., the number of clusters per class). As a baseline for comparison, the classification
accuracy is also reported for the following well-known CNN models, each fine-tuned on the problem
(for 30 epochs, using a batch size of 30, and a learning rate of 0.0001, no freezing):

• Googlenet [46], VGG16 and VGG19 [47], all pretrained on ImageNet [48];
• GoogleNetP365, a GoogleNet model pretrained on Places365 [49].

Moreover, in Tables 2 and 3, the accuracy obtained by the following fusion approaches
are reported:

• KAll, fusion by sum rule of the four SVMs trained using the dissimilarity space built with all
tested values for kc = 15, 30, 45, 60;

• ALL, fusion by average rule of the four approaches KAll (one for each clustering method);
• eCNN, fusion by sum rule of the four CNNs;
• ALL+eCNN, fusion by sum rule between ALL and eCNN;
• ALL+GoogleNet, fusion by sum rule between ALL and GoogleNet;
• ALL+GoogleNetP365, fusion by sum rule between ALL and GoogleNetP365.

Table 2. Classification accuracy on the BIRDZ dataset.

BIRDZ k-Means K-Medoids Hierarchical Spectral

kc = 15 91.85 92.06 91.85 92.09

kc = 30 91.81 92.05 91.94 92.05

kc = 45 92.03 91.69 91.90 92.24

kc = 60 91.61 91.77 91.39 91.79

KAll 92.71 92.59 92.63 92.95

ALL 92.97

GoogleNet 92.41

VGG16 95.30

VGG19 95.19

GoogleNetP365 92.94

eCNN 95.81

ALL+eCNN 95.95

ALL+GoogleNet 95.64

ALL+GoogleNetP365 94.74

Appl. Sci. 2020, 10, 4176 13 of 17

Table 3. Classification accuracy on the CAT dataset.

CAT k-Means K-Medoids Hierarchical Spectral

kc = 15 65.83 78.75 75.12 65.69

kc = 30 56.88 78.47 77.66 71.29

kc = 45 72.81 72.31 66.34 67.36

kc = 60 80.37 78.54 80.37 73.73

KAll 80.61 81.59 81.29 81.69

ALL 82.41

GoogleNet 82.98

VGG16 84.07

VGG19 83.05

GoogleNetP365 85.15

eCNN 87.36

ALL+eCNN 87.76

ALL+GoogleNet 85.02

ALL+GoogleNetP365 87.49

From the results reported in Tables 2 and 3, the following conclusions can be drawn:

1. KAll outperforms each stand alone method based on a single value of kc;
2. ALL outperforms each KAll in both datasets;
3. Performance of ALL is similar to that obtained by GoogleNet;
4. The ensemble ALL based on our dissimilarity space is a feasible representation for spectograms

and achieves a performance that is comparable to the CNNs.
5. In both datasets, the best performance is obtained by ALL+eCNN, (even though the improvement

with respect to eCNN is negligible).
6. ALL+GoogleNet strongly outperforms ALL and Googlenet; this light ensemble, which uses only

one CNN, is our recommended method.

The proposed approach based on the representation of animal sound in a dissimilarity space has
two main advantages: (1) it produces a compact representation on the signal (ranging from 15 to 60,
depending on the number of clusters for the single space, to 150 for the KAll ensemble); (2) it generates
a high diversity of classification results with respect to the baseline CNNs, which can be exploited to
improve the performance in an ensemble method (i.e., ALL+GoogleNet).

In Table 4, the ensembles proposed in this work are shown to achieve a performance on the two
datasets that is similar to some of the state-of-the-art approaches reported in the literature. Two results
are taken from [27], and are labeled [27] and [27]-CNN.

Unfortunately, most published papers in the field of acoustic animal classification focus only on
a single dataset. The authors of this paper are aware that evaluating the proposed approach on two
different datasets instead of focusing on just one limits the strength of the conclusions drawn. Be that
as it may, the experiments reported here prove the robustness of the proposed approach, which obtains
good classification accuracy on two different problems without any ad-hoc parameter optimization
and according to a clear and unambiguous testing protocol. As a result, the performances reported in
this paper can be used for baseline comparisons with other audio classification methods developed in
the future.

Appl. Sci. 2020, 10, 4176 14 of 17

Table 4. Literature results.

Descriptor BIRDZ CAT

[50] 96.3 —

[2] 95.1 —

[23] 93.6 —

[45] — 87.7

[27] — 91.1

[27] −CNN — 90.8

[51] 96.7 * —

* Note that the results in [51] are based on a feature selection approach where the number of selected features
is the hyperparameters selected on that dataset; the approach presented here has no hyperparameters selected
on a given dataset.

6. Conclusions

In this work, a method using dissimilarity space is presented that achieves competitive results in
automated audio classification of animal sounds (bird and cat sounds). Different types of clustering
techniques to obtain centroids for dissimilarity space generation were tested and compared. A set
of SVMs was trained on the dissimilarity spaces generated using four clustering techniques and
different numbers of centroids. These SVMs were then combined by sum rule to obtain a high
performing ensemble.

Moreover, it is shown that the method presented here can be fused with other state-of-the-art
approaches to improve classification accuracy. The proposed ensemble of SVMs was fused with
other state-of-the-art approaches. The fusions improved performance on the two audio classification
problems and were shown to outperform the standalone approaches.

In the future, this study will be further developed by including other sound classification problems,
e.g., those cited in [26,37], in order to obtain a more comprehensive validation of the proposed approach.
The plan is also to test the proposed method on some image classification problems using additional
supervised and unsupervised clustering techniques.

Author Contributions: L.N. conceived of the presented idea., A.R. carried out the implementation. L.N., A.L.
performed the experiments. A.L. and S.B. wrote the manuscript with input from all authors. S.B. provided some
resources. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank NVIDIA Corporation for supporting this work by donating a Titan
Xp GPU.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Padmanabhan, J.; Premkumar, M.J.J. Machine learning in automatic speech recognition: A survey.
IETE Tech. Rev. 2015, 32, 240–251. [CrossRef]

2. Nanni, L.; Costa, Y.M.G.; Lucio, D.R.; Silla, C.N., Jr.; Brahnam, S. Combining visual and acoustic features for
audio classification tasks. Pattern Recognit. Lett. 2017, 88, 49–56. [CrossRef]

3. Sahoo, S.K.; Choubisa, T.; Prasanna, S.R.M. Multimodal biometric person authentication: A review.
IETE Tech. Rev. 2012, 29, 54–75. [CrossRef]

4. Lidy, T.; Rauber, A. Evaluation of Feature Extractors and Psycho-Acoustic Transformations for Music Genre
Classification; ISMIR: Washington, DC, USA, 2005; pp. 34–41.

5. Wyse, L. Audio spectrogram representations for processing with convolutional neural networks. arXiv 2017,
arXiv:1706.09559.

http://dx.doi.org/10.1080/02564602.2015.1010611
http://dx.doi.org/10.1016/j.patrec.2017.01.013
http://dx.doi.org/10.4103/0256-4602.93139

Appl. Sci. 2020, 10, 4176 15 of 17

6. Rubin, J.; Abreu, R.; Ganguli, A.; Nelaturi, S.; Matei, I.; Sricharan, K. Classifying heart sound recordings
using deep convolutional neural networks and mel-frequency cepstral coefficients. In Proceedings of the
2016 Computing in Cardiology Conference, Vancouver, BC, Canada, 11–14 September 2016; pp. 813–816.

7. Nanni, L.; Costa, Y.; Brahnam, S. Set of Texture Descriptors for Music Genre Classification. In WSCG 2014:
Communication Papers Proceedings: 22nd WSCG International Conference on Computer Graphics, Visualization and
Computer Vision; UNION Agency: Plzen, Czech Republic, 2014.

8. Costa, Y.M.G.; Oliveira, L.S.; Koerich, A.L.; Gouyon, F.; Martins, J.G. Music genre classification using LBP
textural features. Signal Process. 2012, 92, 2723–2737. [CrossRef]

9. YCosta, M.G.; Oliveira, L.S.; Koericb, A.L.; Gouyon, F. Music genre recognition using spectrograms.
In Proceedings of the 18th International Conference on Systems, Signals and Image Processing, Sarajevo,
Bosnia-Herzegovina, 16–18 June 2011; pp. 1–4.

10. Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [CrossRef]
11. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification

with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]
12. Costa, Y.; Oliveira, L.; Koerich, A.; Gouyon, F. Music genre recognition using gabor filters and lpq texture

descriptors. In Iberoamerican Congress on Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 67–74.

13. Ojansivu, V.; Heikkilä, J. Blur insensitive texture classification using local phase quantization. In Lecture
Notes in Computer Science (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics); Springer: Berlin,
Germany, 2008; pp. 236–243._27. [CrossRef]

14. Humphrey, E.J.; Bello, J.P. Rethinking automatic chord recognition with convolutional neural networks.
In Proceedings of the 11th International Conference on Machine Learning and Applications, Boca Raton, FL,
USA, 12–15 December 2012; pp. 357–362.

15. Humphrey, E.J.; Bello, J.P.; LeCun, Y. Moving beyond feature design: Deep architectures and automatic
feature learning in music informatics. In Proceedings of the 13th International Society for Music Information
Retrieval Conference ISMIR, Porto, Portugal, 8–12 October 2012; pp. 403–408.

16. Nakashika, T.; Garcia, C.; Takiguchi, T. Local-feature-map integration using convolutional neural networks
for music genre classification. In Proceedings of the Thirteenth Annual Conference of the International
Speech Communication Association, Portland, OR, USA, 9–13 September 2012.

17. Costa, Y.M.G.; Oliveira, L.S.; Silla, C.N., Jr. An evaluation of convolutional neural networks for music
classification using spectrograms. Appl. Soft Comput. 2017, 52, 28–38. [CrossRef]

18. Sigtia, S.; Dixon, S. Improved music feature learning with deep neural networks. In Proceedings of the 2014
IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 4–9 May 2014;
pp. 6959–6963.

19. Wang, C.-Y.; Santoso, A.; Mathulaprangsan, S.; Chiang, C.-C.; Wu, C.-H.; Wang, J.-C. Recognition and
retrieval of sound events using sparse coding convolutional neural network. In Proceedings of the 2017 IEEE
International Conference on Multimedia and Expo, Hong Kong, China, 10–14 July 2017; pp. 589–594.

20. Oramas, S.; Nieto, O.; Barbieri, F.; Serra, X. Multi-label music genre classification from audio, text, and images
using deep features. arXiv 2017, arXiv:1707.04916.

21. Badshah, A.M.; Ahmad, J.; Rahim, N.; Baik, S.W. Speech Emotion Recognition from Spectrograms with Deep
Convolutional Neural Network. International Conference on Platform Technology and Service (PlatCon),
Busan, Korea, 13–15 February 2017; pp. 1–5.

22. Zeng, Y.; Mao, H.; Peng, D.; Yi, Z. Spectrogram based multi-task audio classification. Multimed. Tools Appl.
2019, 78, 3705–3722. [CrossRef]

23. Zhao, Z.; Zhang, S.; Xu, Z.; Bellisario, K.; Dai, N.; Omrani, H.; Pijanowski, B.C. Automated bird acoustic
event detection and robust species classification. Ecol. Inform. 2017, 39, 99–108. [CrossRef]

24. Acevedo, M.A.; Corrada-Bravo, C.J.; Corrada-Bravo, H.; Villanueva-Rivera, L.J.; Aide, T.M. Automated
classification of bird and amphibian calls using machine learning: A comparison of methods. Ecol. Inform.
2009, 4, 206–214. [CrossRef]

25. Cullinan, V.I.; Matzner, S.; Duberstein, C.A. Classification of birds and bats using flight tracks. Ecol. Inform.
2015, 27, 55–63. [CrossRef]

26. Fristrup, K.M.; Watkins, W.A. Marine Animal Sound Classification; No. WHOI-94-13; Woods Hole
Oceanographic Institution: Falmouth, MA, USA, 1993.

http://dx.doi.org/10.1016/j.sigpro.2012.04.023
http://dx.doi.org/10.1109/PROC.1979.11328
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1007/978-3-540-69905-7_27
http://dx.doi.org/10.1016/j.asoc.2016.12.024
http://dx.doi.org/10.1007/s11042-017-5539-3
http://dx.doi.org/10.1016/j.ecoinf.2017.04.003
http://dx.doi.org/10.1016/j.ecoinf.2009.06.005
http://dx.doi.org/10.1016/j.ecoinf.2015.03.004

Appl. Sci. 2020, 10, 4176 16 of 17

27. Pandeya, Y.; Kim, D.; Lee, J. Domestic Cat Sound Classification Using Learned Features from Deep Neural
Nets. Appl. Sci. 2018, 8, 1949. [CrossRef]

28. Cao, Z.; Principe, J.C.; Ouyang, B.; Dalgleish, F.; Vuorenkoski, A. Marine animal classification using combined
CNN and hand-designed image features. In Proceedings of the Oceans 2015-MTS/IEEE Washington,
Washington, DC, USA, 19–22 October 2015; pp. 1–6.

29. Salamon, J.; Bello, J.P.; Farnsworth, A.; Kelling, S. Fusing shallow and deep learning for bioacoustic bird
species classification. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing, New Orleans, LA, USA, 5–9 March 2017; pp. 141–145.

30. Nanni, L.; Brahnam, S.; Lumini, A.; Barrier, T. Ensemble of local phase quantization variants with ternary
encoding. In Local Binary Patterns: New Variants and Applications; Springer: Berlin/Heidelberg, Germany,
2014; doi:10.1007/978-3-642-39289-4_8. [CrossRef]

31. Edgington, D.R.; Cline, D.E.; Davis, D.; Kerkez, I.; Mariette, J. Detecting, tracking and classifying animals in
underwater video. In Proceedings of the Oceans 2006, Boston, MA, USA, 18–21 September 2006; pp. 1–5.

32. Wang, A. An Industrial Strength Audio Search Algorithm; ISMIR: Washington, DC, USA, 2003; Volume 2003,
pp. 7–13.

33. Haitsma, J.; Kalker, T. A Highly Robust Audio Fingerprinting System; ISMIR: Washington, DC, USA, 2002;
Volume 2002, pp. 107–115.

34. Manocha, P.; Badlani, R.; Kumar, A.; Shah, A.; Elizalde, B.; Raj, B. Content-based Representations of audio
using Siamese neural networks. In Proceedings of the 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 3136–3140.

35. Şaşmaz, E.; Tek, F.B. Animal Sound Classification Using A Convolutional Neural Network. In Proceedings
of the 2018 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo,
Bosnia-Herzegovina, 20–23 September 2018; pp. 625–629.

36. Oikarinen, T.; Srinivasan, K.; Meisner, O.; Hyman, J.B.; Parmar, S.; Fanucci-Kiss, A.; Desimone, R.; Landman,
R.; Feng, G., Deep convolutional network for animal sound classification and source attribution using dual
audio recordings. J. Acoust. Soc. Am. 2019, 145, 654–662. [CrossRef] [PubMed]

37. Agrawal, A. Dissimilarity learning via Siamese network predicts brain imaging data. arXiv 2019,
arXiv:1907.02591.

38. Sekhar, C.; Mukherjee, P.; Guru, D.S.; Pulabaigari, V. OSVNet: Convolutional Siamese Network for Writer
Independent Online Signature Verification. In Proceedings of the International Conference on Document
Analysis and Recognition (ICDAR), Sydney, Australia, 20–25 September 2019. [CrossRef]

39. Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature verification using a “siamese” time delay
neural network. Adv. Neural Inf. Process. Syst. 1994, 7, 737–744.

40. Chopra, S.; Hadsell, R.; LeCun, Y. Learning a similarity metric discriminatively, with application to face
verification. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA,
20–25 June 2005; pp. 539–546.

41. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition.
In Proceedings of the 32nd International Conference on Machine Learning (ICML), Lille, France,
6–11 July 2015.

42. Droghini, D.; Vesperini, F.; Principi, E.; Squartini, S.; Piazza, F. Few-shot siamese neural networks employing
audio features for human-fall detection. In Proceedings of the International Conference on Pattern
Recognition and Artificial Intelligence (PRAI 2018). Association for Computing Machinery, New York,
NY, USA, 15–17 August 2018; pp. 63–69.

43. Zhang, Y.; Pardo, B.; Duan, Z. Siamese style convolutional neural networks for sound search by vocal
imitation. IEEE/ACM Trans. Audio, Speech, Lang. Process. 2018, 27, 429–441. [CrossRef]

44. David, A.; Vassilvitskii, S. K-means++: The Advantages of Careful Seeding. In Proceedings of the SODA ‘07:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA,
USA, 7–9 January 2007; pp. 1027–1035.

45. Pandeya, Y.R.; Lee, J. Domestic cat sound classification using transfer learning. Int. J. Fuzzy Log. Intell. Syst.
2018, 18, 154–160. [CrossRef]

http://dx.doi.org/10.3390/app8101949
http://dx.doi.org/10.1007/978-3-642-39289-4_8
http://dx.doi.org/10.1121/1.5087827
http://www.ncbi.nlm.nih.gov/pubmed/30823820
http://dx.doi.org/10.1109/ICDAR.2019.00236
http://dx.doi.org/10.1109/TASLP.2018.2868428
http://dx.doi.org/10.5391/IJFIS.2018.18.2.154

Appl. Sci. 2020, 10, 4176 17 of 17

46. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 7–12 June 2015; pp. 1–9.

47. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

48. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE conference on computer vision and pattern recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255.

49. Zhou, B.; Lapedriza, A.; Xiao, J.; Torralba, A.; Oliva, A. Learning deep features for scene recognition using
places database. In Proceedings of the 27th International Conference on Neural Information Processing Systems
(NIPS’14) 2014; MIT Press: Cambridge, MA, USA, 2014; Volume 1, pp. 487–495.

50. Nanni, L.; Costa, Y.M.G.; Lumini, A.; Kim, M.Y.; Baek, S.R. Combining visual and acoustic features for music
genre classification. Expert Syst. Appl. 2016, 45, 108–117. [CrossRef]

51. Zhang, S.; Zhao, Z.; Xu, Z.; Bellisario, K.; Pijanowski, B.C. Automatic Bird Vocalization Identification Based
on Fusion of Spectral Pattern and Texture Features. In Proceedings of the 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, 15–20 April 2018; pp. 271–275.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2015.09.018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Approach
	Siamese Neural Network Training
	Prototype Selection
	Projection in the Dissimilarity Space
	Support Vector Machine Training and Prediction

	Siamese Neural Network
	Clustering
	K-Means
	K-Medoids
	Hierarchical
	Spectral

	Experimental Results
	Conclusions
	References

