
applied
sciences

Article

NICE: Superpixel Segmentation Using Non-Iterative
Clustering with Efficiency

Cheng Li 1, Baolong Guo 1,*, Geng Wang 1, Yan Zheng 1, Yang Liu 2 and Wangpeng He 1

1 Institute of Intelligent Control and Image Engineering, Xidian University, Xi’an 710071, Shaanxi, China;
licheng812@stu.xidian.edu.cn (C.L.); wanggeng1996@stu.xidian.edu.cn (G.W.);
yanzheng@stu.xidian.edu.cn (Y.Z.); hewp@xidian.edu.cn (W.H.)

2 GLI Technology Limited, Shenzhen 518057, Guangdong, China; yliu@glitech.com
* Correspondence: blguo@xidian.edu.cn; Tel.: +86-180-9280-1271

Received: 1 June 2020; Accepted: 24 June 2020; Published: 26 June 2020
����������
�������

Abstract: Superpixels intuitively over-segment an image into small compact regions with homogeneity.
Owing to its outstanding performance on region description, superpixels have been widely used
in various computer vision tasks as the substitution for pixels. Therefore, efficient algorithms for
generating superpixels are still important for advanced visual tasks. In this work, two strategies are
presented on conventional simple non-iterative clustering (SNIC) framework, aiming to improve
the computational efficiency as well as segmentation performance. Firstly, inter-pixel correlation is
introduced to eliminate the redundant inspection of neighboring elements. In addition, it strengthens
the color identity in complicated texture regions, thus providing a desirable trade-off between
runtime and accuracy. As a result, superpixel centroids are evolved more efficiently and accurately.
For further accelerating the framework, a recursive batch processing strategy is proposed to eliminate
unnecessary sorting operations. Therefore, a large number of neighboring elements can be assigned
directly. Finally, the two strategies result in a novel synergetic non-iterative clustering with efficiency
(NICE) method based on SNIC. Experimental results verify that it works 40% faster than conventional
framework, while generating comparable superpixels for several quantitative metrics—sometimes
even better.

Keywords: superpixel segmentation; acceleration; inter-pixel correlation; recursive processing

1. Introduction

Superpixels perceptually group similar pixels into region-level features while heavily reducing
the number of entities. Owing to the outstanding performance on region description, superpixel
segmentation gradually becomes a fundamental pre-processing step in advanced visual tasks.
Increasingly, many practical visual applications, such as image and video segmentation [1,2], target
tracking [3], saliency detection [4] and remote sensing classification [5], are developed based on
superpixels instead of pixel-wise features to achieve better performance.

Known as image over-segmentation [6], the target of superpixel segmentation is to generate a
coherent grouping of pixels [7]. A growing number of superpixel algorithms have been put forward
to improve the representative efficiency over the past two decades. Some prominent methods are
incorporated into the state-of-the-art in this field. Meanwhile, several properties are commonly
expected for good superpixels, such as accuracy, uniformity, compactness and efficiency [8]. Among
them is Simple Linear Iterative Clustering (SLIC) [9], which typically provides an eligibly balanced
trade-off between appearance homogeneity and shape regularity. Thanks to its concise yet enlightening
principle, SLIC becomes more appropriate for deployment and expansion than other approaches in
recent works [10–15]. Whereas in fact, deficiencies and shortcomings are also exposed in SLIC and its

Appl. Sci. 2020, 10, 4415; doi:10.3390/app10124415 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9491-3342
http://dx.doi.org/10.3390/app10124415
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/12/4415?type=check_update&version=2

Appl. Sci. 2020, 10, 4415 2 of 18

variants for their iterative clustering framework. Firstly, redundant computations in overlapping local
regions are repeated in more than an iteration. In addition, a split-and-merge heuristic is necessary
for region connectivity [16]. What’s worse, assignment and update steps within these methods are
performed separately, leading to detrimental convergence.

Theoretically, SLIC is an instructive approach that restricts k-means algorithm into small windows
to simplify the calculation of Centroidal Voronoi Tessellation (CVT) [17] in a 5-dimensional Euclidean
space. Combining 3-dimensional digital value and 2-dimensional space features as weighted vectors,
all pixels are repeatedly assigned to the nearest seeds till they all satisfy the convergence condition.
Similarly, Linear Spectral Clustering (LSC) [12] introduces weighted k-means into a 10-dimensional
feature space based on an elaborate kernel matrix. By preserving the global image properties, LSC
achieves more perceptually satisfactory segmentation results. Zhao et al., proposed Fast Linear Iterative
Clustering (FLIC) [15], in which a novel active search mechanism and a back-and-forth traversal
strategy based on neighboring continuity is applied. It takes the place of fixed search ranges in
other variants of SLIC and realizes rapid convergence of linear clustering. Intrinsic manifold SLIC
(IMSLIC) [16] extends SLIC by an elaborate distance measurement and a 2-dimensional manifold
feature space mapping. The new framework can make superpixels sensitive to image content without
post-processing to enforce connectivity. In [10], the deviation of cluster centers in each iteration is
adopted as a homogeneity cue to guide the convergence of candidate regions. Wherein the updating
step, only some instable SLIC superpixels are updated by the local k-means method. Therefore, much
redundant searching computation can be avoided. Superpixel Sampling Network (SSN) [11] proposes
a new differentiable model for SLIC that turns it into a differentiable algorithm by relaxing the nearest
neighbor constraints. In this way, conventional hand-crafted features can be trained by deep networks,
which shows a better development prospect for this field.

More recently, to overcome the underlying limitations induced from the iterative k-means
clustering within SLIC-like methods, Achanta et al., proposed simple non-iterative clustering (SNIC) [8]
algorithm as an optimization. As the name suggests, SNIC performs in a non-iterative way and
removes the limitations while it achieves desirable performance. However, SNIC overly relies on the
priority queue to achieve non-iterative optimization. In fact, that is a greedy strategy and is prone
to get trapped in a premature convergence problem than SLIC [18]. In addition, even if SNIC can be
performed with high efficiency, its theoretical complexity is not always lower than SLIC [19]. On the
other hand, SNIC adopts a rigid region growing method to generate superpixels, in which clustering
centroids are evolved using online averaging. Similar to some SLIC-like methods, SNIC may suffer
from the color-spatial compactness that goes against the local homogeneity, especially in complicated
texture and low contrast regions.

To fulfill the aforementioned requirements, this paper proposes a new superpixel segmentation
algorithm, referred to as non-iterative clustering with efficiency (NICE). It improves the conventional
SNIC in two aspects. Firstly, a new strategy termed Elimination of Inspection Redundancy (EIR) is
proposed. It introduces inter-pixel correlation as a local smooth cue to determine the priority for
pixels with similar appearance. Therefore, large amounts of repetitions during the inspection process
are avoided. By calculating neighboring information in this manner, weak boundaries between low
contrast regions could be well preserved. In addition, an Accelerated Implementation based on
Recursion (AIR) partially re-organizes the original SNIC. A last-in-first-out (LIFO) stack is introduced
to speed up sorting local pixels in the priority queue. During the joint online assignment and updating
step, a large number of pixels are processed in a batch, which gets rid of frequent push and pop
operations, thus it avoids repeated pixel inspecting and sorting. Eventually, NICE combines EIR and
AIR into SNIC framework in a subtle way, which inherits the desirable properties of original SNIC and
the property of the two strategies.

To the best knowledge of the authors, this work is the first trial to optimize the SNIC algorithm.
As its name indicates, the proposed NICE generates comparable superpixels with respect to boundary
recall, under-segmentation error and achievable segmentation accuracy. It is more efficient and achieves

Appl. Sci. 2020, 10, 4415 3 of 18

approximately 24 fps for a 481 × 321 image that exceeds SNIC’s 16 fps without any parallelization or
GPU processing.

This paper is organized as follows. The conventional SNIC framework is reviewed in the next
section. In Section 3, the proposed two strategies EIR and AIR, as well as the NICE framework are
presented in detail, respectively. Qualitative and quantitative analyses are explicated in Section 4.
Finally, Section 5 makes a brief conclusion.

2. Simple Non-Iterative Clustering

Since the proposed improvements mainly works on SNIC, the conventional principle is reviewed
at the beginning, as well as some notations and definitions in this paper. The basic idea of SNIC is
demonstrated as follows:

• An input 3-channel Lab image {Ii}
N
i=1 is uniformly partitioned by a set of evenly distributed

seeds {Sk}
K
k=1, where Ii represents the i th pixel in the image plane with N elements, Sk means k th

centroid of mass in grids with a step of s =
√

N/K and K is user-specified to expect the number
of superpixels;

• For a pixel Ii in the image plane, it can be represented as a 5-dimensional Euclidean feature vector
E(Ii) = [l(Ii), a(Ii), b(Ii), x(Ii), y(Ii)]. Specifically, E(Ii) is composed of a vector of the 3-channel
Lab digital values C(Ii) = [l(Ii), a(Ii), b(Ii)] and image position coordinates P(Ii) = [x(Ii), y(Ii)];

• In the initialization step each element of {Sk}
K
k=1 with unique labels are initialized on the uniform

grid in the image plane as original cluster centers. A priority queue Q with increasing order is
introduced which always returns the element Qmin with the minimum key value while it is not
empty. For each element Ii ∈ {Ii}

N
i=1, Q(Ii) is adopted to represent the distance to corresponding

cluster center, and then recorded as the key value for sorting in Q. Specially, for each seed Sk,
all information is included in a vector node [E(Sk), k, Q(Sk)] with Q(Sk) = 0. Then all seed vectors
are pushed on Q.

• In the joint assignment and updating step, {Sk}
K
k=1 is updated using online averaging of all clusters.

For an unlabeled neighboring pixel Ii, inspected by the currently popped pixel whose cluster
centered at Sk, the distance Q(Ii) is calculated by Equation (1) where it is identical to D(Ii, Sk).
Then Ii is pushed on Q.

D(Ii, Sk) =

√
‖C(Ii) −C(Sk)‖

2
2 + λ2‖P(Ii) − P(Sk)‖

2
2, (1)

where λ is the quotient of maximal C(Ii) and P(Ii) within this cluster to normalize color and
spatial proximity, and ‖ ‖2 represents the Euclidean metric;

• Followed by all neighboring pixels pushed around the frontier pixel, secondly, Qmin is acquired
by popping the top-most element from Q, which corresponds to a pixel Im containing the global
minimum distance in Equation (2)

Im = arg min D(Ii, Sk), i ∈ [1, N], k ∈ [1, K], (2)

that is, Qmin = Q(Im). Then a new label is assigned to Im in accordance with its nearest cluster
center, and Im turns into the frontier of its cluster. Meanwhile, the feature vector of the cluster
centroid is updated by

E
(
S̃k

)
=

∑
i∈Ωk

[C(Ii), P(Ii)] / |Ωk|, (3)

where Ωk means the cluster which is centered at Sk, and |Ωk|means the number of pixels in Ωk.
• The latter two procedures are repeated till Q is empty.

For further illustrating the principle of NICE vividly, as well as explaining the distinction from
SNIC, a dynamic segmentation procedure on one 10 × 10 polychrome map fragment is partitioned in
Figure 1. To keep it simple, four-quadrant initialization is adopted in following schematic diagrams.

Appl. Sci. 2020, 10, 4415 4 of 18

Appl. Sci. 2020, 10, 4415 4 of 18

• The latter two procedures are repeated till Q is empty.

For further illustrating the principle of NICE vividly, as well as explaining the distinction from

SNIC, a dynamic segmentation procedure on one 10 × 10 polychrome map fragment is partitioned in

Figure 1. To keep it simple, four-quadrant initialization is adopted in following schematic diagrams.

As shown in Figure 1b, four pixels are firstly pushed on the priority queue Q as initial seeds.

Since they are identical to the original cluster centers, all seeds share the same priority. According to

the order of entry, they are denoted by A, B, C and D from top to bottom, respectively. After that is

popping the top-most element A, which becomes the current frontier pixel and then clockwise

inspects its 4-neighbor elements.

Figure 1. Dynamic segmentation procedure of simple non-iterative clustering (SNIC). (a) Input image;

(b–g) execution of SNIC; (h) segmentation result. Among (b) to (g), each left column indicates the

priority queue Q , in which the upmost element has the highest priority. The number in each pixel

grid depicts the global order when it is inspected as a 4-neighbor element. Pixels with filled colors in

label maps indicate that they have acquired labels corresponding to their nearest cluster centers. Note

that the state of Q is one step earlier than the corresponding label map with pixel inspection and

label assignment.

Similarly, the other three seeds execute popping and inspecting successively. Notice that the

seeds hold the priority, thus they still anticipate any neighboring pixels. As shown in Figure 1c, a

preliminary label map is acquired after all seeds are popped. In addition, a total of 16 neighboring

pixels are pushed and sorted in Q as candidates.

Figure 1d,e demonstrate the jointly repeated assignment and updates step. The neighboring

elements 16th and 14th inspected by seed D are given as an example, respectively. After inspecting

in Figure 1c, 16th becomes the top-most element in Q . It is then assigned with the label of seed D

and treated as the frontier pixel of the cluster DS , as well as absorbed to perform an online update

of the centroid value. In Figure 1e, the newly inspected pixels, 17th, 18th and 19th are pushed before

popping 14th elements. In terms of priority by the global minimum distance, 14th falls behind 16th

but overtops any of the above latest pixels. Consequently, it performs a similar process as 16th. This

kind of repeated procedure is continued until Q is empty.

Figure 1f,g are the state of Q (note that “before”) as well as corresponding label map near and

in the end, respectively. Eventually, the outlines of superpixels in Figure 1h are determined by the

borders of pixel clusters with the same labels.

Since all superpixels are generated by seeds expanding that absorb surrounding pixels, SNIC

mimics a geodesic distance from cluster centers to their corresponding frontier pixels. Therefore, the

Figure 1. Dynamic segmentation procedure of simple non-iterative clustering (SNIC). (a) Input image;
(b–g) execution of SNIC; (h) segmentation result. Among (b) to (g), each left column indicates the
priority queue Q, in which the upmost element has the highest priority. The number in each pixel
grid depicts the global order when it is inspected as a 4-neighbor element. Pixels with filled colors
in label maps indicate that they have acquired labels corresponding to their nearest cluster centers.
Note that the state of Q is one step earlier than the corresponding label map with pixel inspection and
label assignment.

As shown in Figure 1b, four pixels are firstly pushed on the priority queue Q as initial seeds.
Since they are identical to the original cluster centers, all seeds share the same priority. According to
the order of entry, they are denoted by A, B, C and D from top to bottom, respectively. After that is
popping the top-most element A, which becomes the current frontier pixel and then clockwise inspects
its 4-neighbor elements.

Similarly, the other three seeds execute popping and inspecting successively. Notice that the seeds
hold the priority, thus they still anticipate any neighboring pixels. As shown in Figure 1c, a preliminary
label map is acquired after all seeds are popped. In addition, a total of 16 neighboring pixels are pushed
and sorted in Q as candidates.

Figure 1d,e demonstrate the jointly repeated assignment and updates step. The neighboring
elements 16th and 14th inspected by seed D are given as an example, respectively. After inspecting
in Figure 1c, 16th becomes the top-most element in Q. It is then assigned with the label of seed D
and treated as the frontier pixel of the cluster SD, as well as absorbed to perform an online update of
the centroid value. In Figure 1e, the newly inspected pixels, 17th, 18th and 19th are pushed before
popping 14th elements. In terms of priority by the global minimum distance, 14th falls behind 16th but
overtops any of the above latest pixels. Consequently, it performs a similar process as 16th. This kind
of repeated procedure is continued until Q is empty.

Figure 1f,g are the state of Q (note that “before”) as well as corresponding label map near and
in the end, respectively. Eventually, the outlines of superpixels in Figure 1h are determined by the
borders of pixel clusters with the same labels.

Since all superpixels are generated by seeds expanding that absorb surrounding pixels, SNIC
mimics a geodesic distance from cluster centers to their corresponding frontier pixels. Therefore,
the connectivity in the xOy coordinate space is guaranteed, and a post-processing step of split-and-merge
is omitted.

Appl. Sci. 2020, 10, 4415 5 of 18

3. Non-Iterative Clustering with Efficiency

This section introduces the proposed two strategies EIR and AIR, followed by the comprehensive
NICE for superpixel segmentation. EIR evolves superpixel centroids in a more efficient and accurate
way, which is based on inter-pixel correlation. In AIR, the new recursive implementation describes how
to improve the sorting efficiency. At the end of this section, the overall NICE segmentation framework
is summarized.

3.1. Elimination of Inspection Redundancy

In the procedure depicted in Figure 1, a large number of pixels are inspected several times since
they become 4-neighbor elements of frontier pixels more than once. For example, in the upper left of
Figure 2b, 62nd is newly inspected by 60th of the cluster that grows from B in green. Whereas it would
be checked again in the next step due to 61st is the second-most prior element in that time. A different
situation is boundary pixel such as 53rd in the upper right of Figure 2a, which is inspected by 21st,
22nd and 70th in different time. Particularly, in the orange regions of Figure 2c, 8th is inspected fully
four times (B, 25th, 50th and 78th) from beginning to end. Generally, in conventional SNIC, a pixel in
corners, boundaries and inner images is respectively inspected 2, 3 and 4 times, except it is labeled
very early. Different from the first two situations, there are huge repetitions of inspection on the main
internal pixels. It creates a large number of redundant elements in the priority queue that results in
great computation and memory cost.

Appl. Sci. 2020, 10, 4415 5 of 18

connectivity in the xOy coordinate space is guaranteed, and a post-processing step of split-and-

merge is omitted.

3. Non-Iterative Clustering with Efficiency

This section introduces the proposed two strategies EIR and AIR, followed by the

comprehensive NICE for superpixel segmentation. EIR evolves superpixel centroids in a more

efficient and accurate way, which is based on inter-pixel correlation. In AIR, the new recursive

implementation describes how to improve the sorting efficiency. At the end of this section, the overall

NICE segmentation framework is summarized.

3.1. Elimination of Inspection Redundancy

In the procedure depicted in Figure 1, a large number of pixels are inspected several times since

they become 4-neighbor elements of frontier pixels more than once. For example, in the upper left of

Figure 2b, 62nd is newly inspected by 60th of the cluster that grows from B in green. Whereas it would

be checked again in the next step due to 61st is the second-most prior element in that time. A different

situation is boundary pixel such as 53rd in the upper right of Figure 2a, which is inspected by 21st,

22nd and 70th in different time. Particularly, in the orange regions of Figure 2c, 8th is inspected fully

four times (B, 25th, 50th and 78th) from beginning to end. Generally, in conventional SNIC, a pixel in

corners, boundaries and inner images is respectively inspected 2, 3 and 4 times, except it is labeled

very early. Different from the first two situations, there are huge repetitions of inspection on the main

internal pixels. It creates a large number of redundant elements in the priority queue that results in

great computation and memory cost.

Figure 2. Local inspecting processes of SNIC in detail. Three representative pixels are shown as

examples of inspection redundancy when they are labeled for the first time. (a) Boundary pixel 53rd;

(b) corner pixel 62nd; (c) internal pixel 8th. Solid arrows stand for popping and labeling in

corresponding label map. Notice that there are more than one identical elements with the top-most

element in each priority queue.

Fundamentally, in the joint assignment and updating step of conventional SNIC, only the

distance metric (),j kD I S in Equation (1) is adopted to sort priority of jI in Q . It neglects the

connection relationship of jI and its corresponding frontier iI . Afterwards, follow-up inspections

on jI may create other distance metrics as new elements of Q . When jI becomes the top-most, it

pops the minimum distance and other identical elements in Q are then meaningless for their

corresponding clusters.

As a matter of fact, not the entire inspections on a neighboring element is necessary for its final

attribution. In Figure 2, for example, based on the spatial label context, it is apparent by which cluster

the isolated unlabeled pixels are eventually absorbed [20]. In other words, a newly inspected

neighboring element would probably be assigned the same label as the corresponding frontier pixel,

especially in some homogeneous regions. Thus, additional 1–3 inspections merely renew the

minimum value of ()jQ I so that, more or less, it advances the assignment order of jI in Q . Only

Figure 2. Local inspecting processes of SNIC in detail. Three representative pixels are shown as
examples of inspection redundancy when they are labeled for the first time. (a) Boundary pixel
53rd; (b) corner pixel 62nd; (c) internal pixel 8th. Solid arrows stand for popping and labeling in
corresponding label map. Notice that there are more than one identical elements with the top-most
element in each priority queue.

Fundamentally, in the joint assignment and updating step of conventional SNIC, only the distance
metric D

(
Ij, Sk

)
in Equation (1) is adopted to sort priority of Ij in Q. It neglects the connection relationship

of I j and its corresponding frontier Ii. Afterwards, follow-up inspections on I j may create other distance
metrics as new elements of Q. When I j becomes the top-most, it pops the minimum distance and other
identical elements in Q are then meaningless for their corresponding clusters.

As a matter of fact, not the entire inspections on a neighboring element is necessary for its final
attribution. In Figure 2, for example, based on the spatial label context, it is apparent by which
cluster the isolated unlabeled pixels are eventually absorbed [20]. In other words, a newly inspected
neighboring element would probably be assigned the same label as the corresponding frontier pixel,
especially in some homogeneous regions. Thus, additional 1–3 inspections merely renew the minimum
value of Q

(
I j
)

so that, more or less, it advances the assignment order of I j in Q. Only in the controversial
regions, such as the boundaries of objects in Figure 1f, multiple inspections may classify the pixels into
clusters more reasonably.

Based on the above analysis, this subsection proposes a simple yet effective inspection strategy
to eliminate the redundant creation of neighboring elements. The inter-pixel correlation between

Appl. Sci. 2020, 10, 4415 6 of 18

adjacent pixels is taken into consideration, along with the distance relationship of pixel inspection and
cluster center.

In what follows, the strategy referred to as Elimination of Inspection Redundancy (EIR) is
described in more detail. Firstly in Figure 3a,b, the direction of 4-neighbor inspection is modified from
clockwise rotation to cross where a frontier is the intersection. An intrinsic interaction on position is
then enhanced for two pairs of partner pixels of unidirection (namely, left Il to right Ir and up Iu to
down Id). As shown in Figure 3c, during the process of neighboring inspection on In, if Il is newly
checked and then labeled the same as In before Ir is assigned, Ir would be checked only once when

Dc(Il, Ir) = ‖C(Il) −C(Ir)‖2 < σQ(In), (4)

where the parameter σ is a threshold of color similarity. Here, Dc can be considered a digital value
component of the distance metric in Equation (1), in which the difference in spatial distance can be
omitted since the two elements are very spatially close. Similar calculations can be done for the pair of
Iu to Id. In other words, if the 4-neighbor elements of a frontier pixel satisfy Equation (4), two of them
may be inspected in the current loop, and be omitted by other frontier pixels in the main clustering.

Appl. Sci. 2020, 10, 4415 6 of 18

in the controversial regions, such as the boundaries of objects in Figure 1f, multiple inspections may

classify the pixels into clusters more reasonably.

Based on the above analysis, this subsection proposes a simple yet effective inspection strategy

to eliminate the redundant creation of neighboring elements. The inter-pixel correlation between

adjacent pixels is taken into consideration, along with the distance relationship of pixel inspection

and cluster center.

In what follows, the strategy referred to as Elimination of Inspection Redundancy (EIR) is

described in more detail. Firstly in Figure 3a,b, the direction of 4-neighbor inspection is modified

from clockwise rotation to cross where a frontier is the intersection. An intrinsic interaction on

position is then enhanced for two pairs of partner pixels of unidirection (namely, left lI to right rI

and up uI to down dI). As shown in Figure 3c, during the process of neighboring inspection on

nI , if lI is newly checked and then labeled the same as
nI before rI is assigned, rI would be

checked only once when

() () () ()
2

, ,c l r l r nD I I C I C I Q I= − (4)

where the parameter is a threshold of color similarity. Here,
cD can be considered a digital

value component of the distance metric in Equation (1), in which the difference in spatial distance

can be omitted since the two elements are very spatially close. Similar calculations can be done for

the pair of uI to dI . In other words, if the 4-neighbor elements of a frontier pixel satisfy Equation

(4), two of them may be inspected in the current loop, and be omitted by other frontier pixels in the

main clustering.

Figure 3. Elimination of Inspection Redundancy (EIR)-based inspecting and labeling processes of

SNIC. (a) Inspection in clockwise rotation; (b) inspection in cross; (c) local inspecting process in a

homogeneous region by EIR. Elements with the yellow box indicates that they are similar in color and

satisfy Equation (4).

Theoretically in conventional SNIC, the similarity of each pixel with a cluster is determined by

a joint digital value-spatial distance in Equation (1). It leads to unequal values for pixels that are in

different positions due to the constraint of shape compactness, while they are in an identical color

and adjacent positions. What is worse, it may accumulate the bias of a cluster that absorbs wrongly

labeled pixels, causing a detrimental effect on center convergence. On the other hand, the proposed

strategy strengthens the label correlation of pixels in the opposite position. It is based on the

observation that if a neighboring pixel is associated with a certain cluster, its counterpart also highly

tends to belong to that cluster. Therefore, it results in some boundary pixels merged by clusters that

are more similar in the color feature, especially when they are in low contrast regions or complicated

texture regions.

3.2. Accelerated Implementation Based on Recursion

The priority queue in SNIC is essentially a minimum heap, which is implemented by a complete

binary tree in a logical structure and an array in physical storage. It adopts heapsort to sequence the

Figure 3. Elimination of Inspection Redundancy (EIR)-based inspecting and labeling processes of
SNIC. (a) Inspection in clockwise rotation; (b) inspection in cross; (c) local inspecting process in a
homogeneous region by EIR. Elements with the yellow box indicates that they are similar in color and
satisfy Equation (4).

Theoretically in conventional SNIC, the similarity of each pixel with a cluster is determined by
a joint digital value-spatial distance in Equation (1). It leads to unequal values for pixels that are in
different positions due to the constraint of shape compactness, while they are in an identical color and
adjacent positions. What is worse, it may accumulate the bias of a cluster that absorbs wrongly labeled
pixels, causing a detrimental effect on center convergence. On the other hand, the proposed strategy
strengthens the label correlation of pixels in the opposite position. It is based on the observation that if
a neighboring pixel is associated with a certain cluster, its counterpart also highly tends to belong to
that cluster. Therefore, it results in some boundary pixels merged by clusters that are more similar in
the color feature, especially when they are in low contrast regions or complicated texture regions.

3.2. Accelerated Implementation Based on Recursion

The priority queue in SNIC is essentially a minimum heap, which is implemented by a complete
binary tree in a logical structure and an array in physical storage. It adopts heapsort to sequence
the elements that always returns the minimum value in the root node. A potential optimization is
to improve the sorting efficiency of the priority queue in dynamic processes. Given a new inspected
neighboring element, if its corresponding cluster distance is less than that of the frontier, it can be
assigned directly without enqueueing and dequeueing. Thus, a subtle LIFO stack is embedded into
the non-iterative clustering framework to achieve the acceleration in a recursive manner. This is

Appl. Sci. 2020, 10, 4415 7 of 18

the so-called Accelerated Implementation based on Recursion (AIR). In addition, for an intuitive
comparison of SNIC with and without AIR, the abovementioned EIR is not introduced in this subsection.

Figure 4 depicts the local inspecting and labeling processes from 48th to 50th in detail. Figure 5
illustrates the internal data structure updating of Q in Figure 4, aiming to explain the additional
computation cost by redundant sorting. In a complete binary tree in Figure 5a, only the root node 48th
is removed at a time, which is then replaced by the last leaf node 13th. Next, recursive adjustments
occur in each subtree to keep the current roots minimum. The detailed operations are that a parent node
interchanges with the smaller of its two child nodes till it is smaller than all leaf nodes. In Figure 5b,
49th is inspected after 48th is popped from Q, therefore it acts as the newly last leaf and update in a
similar way to 13th. Since 49th takes precedence over 21st, it becomes the root of the tree temporarily
as shown in Figure 5c. In the following step in Figure 5d, the tree adjusts itself in a similar manner as
Figure 5a,b. These occurrences also suit for the upcoming 50th in Figure 5e,f. Notice that, 11th, 25th,
29th and 35th are duplicated respectively since they are checked twice. For simplicity, they are shown
only once in the complete binary trees and the third time inspection on 25th between Figure 5d,e
is omitted by 49th.

Appl. Sci. 2020, 10, 4415 7 of 18

elements that always returns the minimum value in the root node. A potential optimization is to

improve the sorting efficiency of the priority queue in dynamic processes. Given a new inspected

neighboring element, if its corresponding cluster distance is less than that of the frontier, it can be

assigned directly without enqueueing and dequeueing. Thus, a subtle LIFO stack is embedded into

the non-iterative clustering framework to achieve the acceleration in a recursive manner. This is the

so-called Accelerated Implementation based on Recursion (AIR). In addition, for an intuitive

comparison of SNIC with and without AIR, the abovementioned EIR is not introduced in this

subsection.

Figure 4 depicts the local inspecting and labeling processes from 48th to 50th in detail. Figure 5

illustrates the internal data structure updating of Q in Figure 4, aiming to explain the additional

computation cost by redundant sorting. In a complete binary tree in Figure 5a, only the root node

48th is removed at a time, which is then replaced by the last leaf node 13th. Next, recursive

adjustments occur in each subtree to keep the current roots minimum. The detailed operations are

that a parent node interchanges with the smaller of its two child nodes till it is smaller than all leaf

nodes. In Figure 5b, 49th is inspected after 48th is popped from Q , therefore it acts as the newly last

leaf and update in a similar way to 13th. Since 49th takes precedence over 21st, it becomes the root of

the tree temporarily as shown in Figure 5c. In the following step in Figure 5d, the tree adjusts itself

in a similar manner as Figure 5a,b. These occurrences also suit for the upcoming 50th in Figure 5e,f.

Notice that, 11th, 25th, 29th and 35th are duplicated respectively since they are checked twice. For

simplicity, they are shown only once in the complete binary trees and the third time inspection on

25th between Figure 5d,e is omitted by 49th.

Figure 4. Detailed local inspecting and labeling processes from 48th to 50th sequentially of SNIC.

Solid arrows stand for popping and labeling in corresponding label maps, while dotted arrows

represent inspecting and pushing for the next step.

Figure 4. Detailed local inspecting and labeling processes from 48th to 50th sequentially of SNIC. Solid
arrows stand for popping and labeling in corresponding label maps, while dotted arrows represent
inspecting and pushing for the next step.

Comparing Figure 5a with Figure 5d, as well as Figure 5c with Figure 5f, two states of the binary
tree are almost the same except for the roots. That is, for several pixels described in Figure 5, a number
of data updating computations exist, which turn out to be redundant for sequential frontier pixels
labeling and inspecting.

Aiming to the problem above, a last-in-first-out (LIFO) stack is introduced to pre-process the
newly inspected pixels in advance, instead of pushing them on the priority queue directly. As shown
in Figure 6, the priority queue is presented as an ordinary array, which is indeed a transposition of
the column vector in Figure 4 before 43rd is popped. Unlike continuous queueing in Figure 4, this
stack is embedded to the head of the array so that several pixels whose cluster distances are monotonic
decreasing are processed in the batch.

Figure 6 demonstrates the array structure updating processes from 48th to 50th sequentially of
SNIC. Specifically, in Figure 6b, 48th stays in the array head when 49th is inspected and pushed.
After 49th acts as the current frontier pixel, it is superimposed on 48th and becomes the stack top.
Then the newly inspected 25th and 50th perform a similar procedure to Figure 6b, while the former
is filtered out by the LIFO stack and pushed on the priority queue. Finally, 48th to 50th in the stack
are popped in batch. In the above process, only 25th and 48th are involved in global priority sorting
after enqueueing, while the other two pixels derive from 48th and directly inherit its label without any
additional computation.

Appl. Sci. 2020, 10, 4415 8 of 18

Appl. Sci. 2020, 10, 4415 8 of 18

(a) (d)

(b) (e)

(c) (f)

Figure 5. Heap structure updating processes of the priority queue from 48th to 50th sequentially in

SNIC. (a) Popping 48th from Q ; (b) pushing 49th on Q ; (c) a temporary state after sorting 49th in

Q ; (d) Popping 49th from Q ; (e) pushing 50th on Q ; (f) a temporary state after sorting 50th in Q .

Solid elements indicate that they are newly inspected and pushed in the current step, and their storage

location is redirected by solid arrows. Other hollow nodes represent the elements that are inspected

before but not labeled. Note that 13th is the last leaf node which recursively executes a sift-up or sift-

down operation to modify the structure redirected by dotted arrows, as well as some of hollow nodes

with dotted outlines.

Comparing Figure 5a with 5d, as well as 5c with 5f, two states of the binary tree are almost the

same except for the roots. That is, for several pixels described in Figure 5, a number of data updating

computations exist, which turn out to be redundant for sequential frontier pixels labeling and

inspecting.

Aiming to the problem above, a last-in-first-out (LIFO) stack is introduced to pre-process the

newly inspected pixels in advance, instead of pushing them on the priority queue directly. As shown

in Figure 6, the priority queue is presented as an ordinary array, which is indeed a transposition of

the column vector in Figure 4 before 43rd is popped. Unlike continuous queueing in Figure 4, this

stack is embedded to the head of the array so that several pixels whose cluster distances are

monotonic decreasing are processed in the batch.

(a) (b)

(c) (d)

Figure 6. Array structure updating processes in the priority queue from 48th to 50th sequentially in

SNIC. (a) Popping 43rd from Q before pushing 25th and 48th; (b) pushing 49th on Q ; (c) pushing

25th and 49th on Q ; (d) popping 48th to 50th from Q before pushing 8th and 51th. The sequence of

elements is corresponding to the minimum heap in Figure 5. Solid elements indicate that they are

newly inspected and pushed in the current and next step. A last-in-first-out (LIFO) stack with dotted

arrows means that the elements are popped in the batch. Notice that there is more than one 25th in

each array that is inspected by different pixels.

13

35

38

25

17 11

4

48

8

2

6 24

42

45 20

21

18

1

46 39

7

10 36

22

19

3 44

15

40 29 13

35

38

25

17 11

4

49

8

2

6 24

42

45 20

21

18

1

46 39

7

10 36

22

19

3 44

15

40 29

49

35

38

25

17 11

4

21

8

2

6 24

42

45 20

19

18

1

46 39

7

10 36

3

22

13 44

15

40 29 50

35

38

25

17 11

4

21

8

2

6 24

42

45 20

19

18

1

46 39

7

10 36

3

22

13 44

15

40 29

13

35

38

25

17 11

4

49

8

2

6 24

42

45 20

21

18

1

46 39

7

10 36

22

19

3 44

15

40 29 13

35

38

25

17 11

4

50

8

2

6 24

42

45 20

21

18

1

46 39

7

10 36

22

19

3 44

15

40 29

13 … 7 … 28 … 25 2 … 21 252550 484943 25 13 … 25 … 28 … 25 2 … 21 252550 494948

13 … 25 … 28 … 25 2 … 21 48 252550 5049 4913 … 25 … 25 … 25 2 … 21 48 82550 51

Figure 5. Heap structure updating processes of the priority queue from 48th to 50th sequentially in
SNIC. (a) Popping 48th from Q; (b) pushing 49th on Q; (c) a temporary state after sorting 49th in Q;
(d) Popping 49th from Q; (e) pushing 50th on Q; (f) a temporary state after sorting 50th in Q. Solid
elements indicate that they are newly inspected and pushed in the current step, and their storage
location is redirected by solid arrows. Other hollow nodes represent the elements that are inspected
before but not labeled. Note that 13th is the last leaf node which recursively executes a sift-up or
sift-down operation to modify the structure redirected by dotted arrows, as well as some of hollow
nodes with dotted outlines.

Appl. Sci. 2020, 10, 4415 8 of 18

(a) (d)

(b) (e)

(c) (f)

Figure 5. Heap structure updating processes of the priority queue from 48th to 50th sequentially in

SNIC. (a) Popping 48th from Q ; (b) pushing 49th on Q ; (c) a temporary state after sorting 49th in

Q ; (d) Popping 49th from Q ; (e) pushing 50th on Q ; (f) a temporary state after sorting 50th in Q .

Solid elements indicate that they are newly inspected and pushed in the current step, and their storage

location is redirected by solid arrows. Other hollow nodes represent the elements that are inspected

before but not labeled. Note that 13th is the last leaf node which recursively executes a sift-up or sift-

down operation to modify the structure redirected by dotted arrows, as well as some of hollow nodes

with dotted outlines.

Comparing Figure 5a with 5d, as well as 5c with 5f, two states of the binary tree are almost the

same except for the roots. That is, for several pixels described in Figure 5, a number of data updating

computations exist, which turn out to be redundant for sequential frontier pixels labeling and

inspecting.

Aiming to the problem above, a last-in-first-out (LIFO) stack is introduced to pre-process the

newly inspected pixels in advance, instead of pushing them on the priority queue directly. As shown

in Figure 6, the priority queue is presented as an ordinary array, which is indeed a transposition of

the column vector in Figure 4 before 43rd is popped. Unlike continuous queueing in Figure 4, this

stack is embedded to the head of the array so that several pixels whose cluster distances are

monotonic decreasing are processed in the batch.

(a) (b)

(c) (d)

Figure 6. Array structure updating processes in the priority queue from 48th to 50th sequentially in

SNIC. (a) Popping 43rd from Q before pushing 25th and 48th; (b) pushing 49th on Q ; (c) pushing

25th and 49th on Q ; (d) popping 48th to 50th from Q before pushing 8th and 51th. The sequence of

elements is corresponding to the minimum heap in Figure 5. Solid elements indicate that they are

newly inspected and pushed in the current and next step. A last-in-first-out (LIFO) stack with dotted

arrows means that the elements are popped in the batch. Notice that there is more than one 25th in

each array that is inspected by different pixels.

13

35

38

25

17 11

4

48

8

2

6 24

42

45 20

21

18

1

46 39

7

10 36

22

19

3 44

15

40 29 13

35

38

25

17 11

4

49

8

2

6 24

42

45 20

21

18

1

46 39

7

10 36

22

19

3 44

15

40 29

49

35

38

25

17 11

4

21

8

2

6 24

42

45 20

19

18

1

46 39

7

10 36

3

22

13 44

15

40 29 50

35

38

25

17 11

4

21

8

2

6 24

42

45 20

19

18

1

46 39

7

10 36

3

22

13 44

15

40 29

13

35

38

25

17 11

4

49

8

2

6 24

42

45 20

21

18

1

46 39

7

10 36

22

19

3 44

15

40 29 13

35

38

25

17 11

4

50

8

2

6 24

42

45 20

21

18

1

46 39

7

10 36

22

19

3 44

15

40 29

13 … 7 … 28 … 25 2 … 21 252550 484943 25 13 … 25 … 28 … 25 2 … 21 252550 494948

13 … 25 … 28 … 25 2 … 21 48 252550 5049 4913 … 25 … 25 … 25 2 … 21 48 82550 51

Figure 6. Array structure updating processes in the priority queue from 48th to 50th sequentially in
SNIC. (a) Popping 43rd from Q before pushing 25th and 48th; (b) pushing 49th on Q; (c) pushing
25th and 49th on Q; (d) popping 48th to 50th from Q before pushing 8th and 51th. The sequence of
elements is corresponding to the minimum heap in Figure 5. Solid elements indicate that they are
newly inspected and pushed in the current and next step. A last-in-first-out (LIFO) stack with dotted
arrows means that the elements are popped in the batch. Notice that there is more than one 25th in
each array that is inspected by different pixels.

Therefore, the main idea of AIR can be briefed as follows. In general, for a pixel Inew inspected by
one of its 4-neighbor elements that previously becomes the frontier pixel In, it can be directly assigned
the same label k as the latter, only if

D(Inew, S′k) ≤ D(In, Sk), (5)

where Sk and S′k is the cluster before and after updated by merging In in Equation (3), respectively.
The above equation can also be simply denoted as Q(Inew) ≤ Q(In). Recursively, for a subsequently
inspected pixel I′new derived from Inew, it can be directly assigned when Q(I′new) < Q(Inew), wherein

Appl. Sci. 2020, 10, 4415 9 of 18

the cluster is updated after merging Inew. The strategy also explains the reason why it fails to form a
batch in Figure 6a (Q(I25th) > Q(I48th) > Q(I43th)) and 6d (Q(I51th) > Q(I8th) > Q(I50th)), respectively.

In addition to the single chained derivation demonstrated in Figure 4, a more complex situation
is multi-pixels inspection with very similar priorities. Assuming that Q(I8th) < Q(I51st) < Q(I50th) in
Figure 6d (actually, the inequations in this paragraph are not satisfied), both two elements 8th and 51st
fit Equation (5), they must be treated separately. Otherwise, if these two elements are together pushed
onto the stack, some pixels supposed to be derived from 8th would be orphaned. Thus, only 8th with a
higher priority is selected into the stack. Furthermore, since Q(I51st) < Q(I21st), for maintaining the
logic of priority queue in conventional SNIC, 51st must be the new top-most element of Q before
sorting the neighboring elements of 8th. That is, AIR must run in a single chained recursion that at
most one neighboring element can be pushed on the stack. When the recursion originated from 8th
is finished, 48th, 49th, 50th and 8th along with its derivations are all pushed in the batch with the
label of 48th. Thus, the question turns into sorting in a priority queue that the top-most element is
51st. The above process runs in a recursive manner that the newly top-most element becomes the first
element in the stack and inspects its neighbor in the next loop.

Another long-term example is 10 sequentially derived elements from 57th to 66th that originated
from 1st. However in this process, only 4 of them (57th, 59th, 62nd and 65th) are pushed on the priority
queue for sorting. For natural images, it is frequent to accumulate such a batch among adjacent pixels,
especially in some homogeneous regions. It is worth noting, in theory, that the acceleration strategy of
AIR maintains the global order of all pixels when they are inspected as 4-neighbor elements. Moreover,
it adopts the intrinsic method of SNIC to assign the labels. Therefore, superpixels generated by the
two methods would be consistent that only differ in computation cost. See Section 4 for qualitative and
quantitative evaluations.

3.3. NICE Superpixel Segmentation Framework

A primary insight of the proposed NICE is to improve the efficiency of priority queue in dynamic
processes, which can be generalized in two aspects. Firstly, a large number of repetitions during the
inspection process is avoided by EIR. It introduces inter-pixel correlation as a local smooth cue to
determine the priority for pixels with same digital values. Since the feature distance Q(Ii) for sorting is
no longer updated by other frontier pixels, the ultimate label of a neighboring element Ii is actually
identified. Therefore, the assignment is just a matter of order. In addition, the non-iterative clustering
framework is modified by AIR. It adopts an LIFO stack to the head of the priority queue and processes
pixels in batch, thus meaningless enqueueing and dequeuing are reduced.

In practice, when σ is appropriate, early identified neighboring elements by EIR could promote
AIR more outstanding. For example in Figure 6, if the relationship of 25th and 24th satisfies
Equation (4) around 5th, there would be continuous queueing during this period, without sorting
25th twice. As a result, the combination of the above two strategies could significantly accelerate
the non-iterative clustering framework. Moreover, the problem that digital value identical pixels are
labeled differently by cluster updating and shape constraint is effectively alleviated, which achieves a
desirable trade-off between runtime and accuracy. The integrated NICE superpixel segmentation
framework is summarized in Algorithm 1.

Appl. Sci. 2020, 10, 4415 10 of 18

Algorithm 1 NICE superpixel segmentation framework

Input: the Lab image I, the expected number K, the default normalization factor λ = 10
Output: the label map of I
/* Initialization */
initialize cluster centers and assign starting labels similar to conventional SNIC.
initialize a priority queue Q with increasing order, and a LIFO stack S.
/* Joint assignment and updating */
for each cluster center Sk do

create a vector node [E(Sk), k, 0].
push the node on Q.

end for
while Q is not empty do

while S is not empty do
pop the top-most node [E(Im), k, Q(Im)] corresponding to Im from S.
goto AIR

end while
pop the top-most node [E(Im), k, Q(Im)] corresponding to Im from Q.

AIR:

Appl. Sci. 2020, 10, 4415 10 of 19

iterative clustering framework is modified by AIR. It adopts an LIFO stack to the head of the priority

queue and processes pixels in batch, thus meaningless enqueueing and dequeuing are reduced.

In practice, when is appropriate, early identified neighboring elements by EIR could

promote AIR more outstanding. For example in Figure 6, if the relationship of 25th and 24th satisfies

Equation (4) around 5th, there would be continuous queueing during this period, without sorting

25th twice. As a result, the combination of the above two strategies could significantly accelerate the

non-iterative clustering framework. Moreover, the problem that digital value identical pixels are

labeled differently by cluster updating and shape constraint is effectively alleviated, which achieves

a desirable trade-off between runtime and accuracy. The integrated NICE superpixel segmentation

framework is summarized in Algorithm 1.

Algorithm 1 NICE superpixel segmentation framework

Input: the Lab image I , the expected number K , the default normalization factor =10

Output: the label map of I

/* Initialization */

initialize cluster centers and assign starting labels similar to conventional SNIC.

initialize a priority queue Q with increasing order, and a LIFO stack S .

/* Joint assignment and updating */

for each cluster center
kS do

create a vector node (), ,0kE S k .

push the node on Q .

end for

while Q is not empty do

while S is not empty do

pop the top-most node () (), ,m mE I k Q I corresponding to
mI from S .

goto AIR

end while

pop the top-most node () (), ,m mE I k Q I corresponding to
mI from Q .

AIR:

if
mI is not labeled before then

assign the label of
kS to

mI .

update the cluster
kS by Equation (3).

set the global minimal pushed distance ()min mQ Q I= .

for all 4-neighboring unlabeled elements without EIR identification n nI I of
mI do

compute
nI with the minimal pushed distance in nI .

compute the EIR correlation by Equation (4).

if () minnQ I Q then

push the corresponding node () (), ,n nE I k Q I on S .

set the global minimal pushed distance ()min nQ Q I = .

else

push () (), ,n nE I k Q I on Q .

end if

push the corresponding node () (), ,n nE I k Q I on Q .

end for

end if

end while

return the label map of I

end if
end while
return the label map of I

4. Experiments and Analysis

Owing to its high performance, SNIC outperforms many other state-of-the-art methods such
as [12] on execution time and accuracy [8]. Therefore, this section follows the experimental style in [20]
that mainly focuses on the comparison of the proposed NICE and conventional SNIC. In addition,
EIR-based Non-Iterative Clustering (ENIC) and AIR-based Non-Iterative Clustering (ANIC) that only
adopt one strategy on SNIC are also implemented for comparison. The performance of the proposed
approach is evaluated on the Berkeley Segmentation Data Set 500 (BSDS500) [21]. It contains 500 images
with the size of 481× 321 that are divided into three image sets, training (100), validation (200) and
testing (200). The experiments are all evaluated on the test set using the benchmark toolbox proposed
in [22] and implemented on an Intel Core i7-5500U laptop with a 2.4 GHz CPU.

Appl. Sci. 2020, 10, 4415 11 of 18

4.1. Visual Comparisons of Superpixel Results

Figure 7 illustrates several subjective results for visual comparison of superpixels obtained by the
above four algorithms. Benefiting from the outstanding performance of conventional SNIC, ANIC,
ENIC and NICE all present relatively compact and uniform partitions. Theologically, the results of
ANIC and SNIC, as well as ENIC and NICE are supposed to be the same, since AIR merely speeds
up the sorting efficiency without any modification on clustering. Intuitively, it is hard to find a clear
difference between them. Whereas some neighboring pixels with the same feature distance are pushed
by a different order, the fluctuations in the convergence process may result in local bias on several
superpixels (e.g., the worm tail). In addition, EIR alleviates the inevitably shape regulation in SNIC by
color correlation. Therefore, both ENIC and NICE superpixels provide more accurate outline detection
on complex object shape and weak boundaries.

Appl. Sci. 2020, 10, 4415 12 of 19

(a) (b) (c) (d)

Figure 7. Visual comparison of superpixels with =200K on BSDS500. (a) SNIC; (b) Accelerated

Implementation based on Recursion (AIR)-based Non-Iterative Clustering (ANIC); (c) EIR-based

Non-Iterative Clustering (ENIC); (d) non-iterative clustering with efficiency (NICE). Alternating rows

show each segmented image followed by local details of each image.

4.2. Quantitative Evaluation by Metrics

To objectively evaluate the performance of segmentation results, three evaluation metrics in [22]

are taken into account, namely boundary recall (BR), under-segmentation error (UE) and achievable

segmentation accuracy (ASA). All of them are commonly used in superpixel segmentation methods

Figure 7. Visual comparison of superpixels with K = 200 on BSDS500. (a) SNIC; (b) Accelerated
Implementation based on Recursion (AIR)-based Non-Iterative Clustering (ANIC); (c) EIR-based
Non-Iterative Clustering (ENIC); (d) non-iterative clustering with efficiency (NICE). Alternating rows
show each segmented image followed by local details of each image.

Appl. Sci. 2020, 10, 4415 12 of 18

4.2. Quantitative Evaluation by Metrics

To objectively evaluate the performance of segmentation results, three evaluation metrics in [22]
are taken into account, namely boundary recall (BR), under-segmentation error (UE) and achievable
segmentation accuracy (ASA). All of them are commonly used in superpixel segmentation methods
with emphasis on edge and region consistency, as well as the performance of subsequent visual
tasks, respectively. More formally, let Ω = {Ωk}

K
k=1 and G = {Gm}

M
m=1 be the calculated superpixels

and the ground truth of the same image {Ii}
N
i=1, respectively. These metrics will be described in

detail subsequently.
As mentioned above, there is little difference between SNIC and ANIC, as well as ENIC and NICE,

thus the raw data of metrics in Tables 1–3 are more precise than figures (the curves are too close to
distinguish visibly). The difference of values caused by AIR is marked in which blue and red indicate
amelioration and deterioration, respectively. In the following tables and Figure 8, σ is set to 0.03 that
merely verifies the effectiveness of EIR, and it would be covered in more detail in the next subsection.

Table 1. Comparison of SNIC and the proposed three algorithms in terms of boundary recall (BR).

Algorithm
User-Expected Number of Superpixels

50 100 150 200 250 300 350 400 450 500

SNIC 0.6740 0.7921 0.8428 0.8668 0.8985 0.9059 0.9195 0.9311 0.9387 0.9493
ANIC 0.6740 0.7922 0.8428 0.8669 0.8985 0.9060 0.9195 0.9311 0.9386 0.9493
ENIC 0.6757 0.7957 0.8457 0.8694 0.9010 0.9085 0.9213 0.9334 0.9405 0.9506
NICE 0.6757 0.7957 0.8457 0.8694 0.9010 0.9084 0.9212 0.9334 0.9405 0.9506

Table 2. Comparison of SNIC and the proposed three algorithms in terms of under-segmentation
error (UE).

Algorithm
User-Expected Number of Superpixels

50 100 150 200 250 300 350 400 450 500

SNIC 0.1753 0.1100 0.0898 0.0809 0.0706 0.0680 0.0645 0.0603 0.0578 0.0545
ANIC 0.1751 0.1100 0.0897 0.0809 0.0706 0.0680 0.0645 0.0603 0.0578 0.0546
ENIC 0.1751 0.1089 0.0894 0.0806 0.0702 0.0675 0.0643 0.0603 0.0574 0.0544
NICE 0.1751 0.1088 0.0894 0.0807 0.0702 0.0675 0.0643 0.0603 0.0574 0.0544

Table 3. Comparison of SNIC and the proposed three algorithms in terms of achievable segmentation
accuracy (ASA).

Algorithm
User-Expected Number of Superpixels

50 100 150 200 250 300 350 400 450 500

SNIC 0.8379 0.8962 0.9142 0.9222 0.9318 0.9344 0.9379 0.9413 0.9436 0.9464
ANIC 0.8379 0.8962 0.9142 0.9222 0.9318 0.9344 0.9379 0.9413 0.9436 0.9464
ENIC 0.8383 0.8966 0.9145 0.9225 0.9322 0.9347 0.9380 0.9416 0.9439 0.9465
NICE 0.8383 0.8967 0.9145 0.9225 0.9322 0.9347 0.9380 0.9416 0.9439 0.9465

Boundary recall (BR) is a standard boundary-detection and segmentation evaluation criterion.
It can be described mathematically as the ratio of ground truth boundaries covered by superpixel
boundaries [1]

BR =

∑
i∈Gb

Π
(
min j∈Ωb‖P(Ii) − P

(
I j
)
‖

2
< r

)
Gb

, (6)

where Ωb and Gb represent boundary pixels in Ω and G, respectively. The indicator function Π()

returns the logic value whether the expression is true. In addition, the coverage radius r is set to
2 pixels in this paper. Therefore, the higher the value of BR, the better boundary adherence the
algorithm performs. In Table 1, performance difference with and without AIR are ignorable, while
ENIC and NICE benefits from EIR and outperform SNIC and ANIC, respectively. The reason is that

Appl. Sci. 2020, 10, 4415 13 of 18

EIR introduces color context information to pixels that are adjacent to a common frontier inspector.
Therefore, as depicted in Figure 3c, three pixels into a line with similar colors may be assigned an
identical label. It efficiently alleviates the risk of shape constraint in complex boundaries. In addition,
rather than AIR, EIR still plays a positive role in the non-iterative clustering framework, which also
can be verified by the following two metrics.

Appl. Sci. 2020, 10, 4415 13 of 18

NICE 0.1751 0.1088 0.0894 0.0807 0.0702 0.0675 0.0643 0.0603 0.0574 0.0544

Table 3. Comparison of SNIC and the proposed three algorithms in terms of achievable

segmentation accuracy (ASA).

Algorithm
User-Expected Number of Superpixels

50 100 150 200 250 300 350 400 450 500

SNIC 0.8379 0.8962 0.9142 0.9222 0.9318 0.9344 0.9379 0.9413 0.9436 0.9464

ANIC 0.8379 0.8962 0.9142 0.9222 0.9318 0.9344 0.9379 0.9413 0.9436 0.9464

ENIC 0.8383 0.8966 0.9145 0.9225 0.9322 0.9347 0.9380 0.9416 0.9439 0.9465

NICE 0.8383 0.8967 0.9145 0.9225 0.9322 0.9347 0.9380 0.9416 0.9439 0.9465

(a) (b) (c)

Figure 8. Comparison of runtime in milliseconds. (a) Time required for superpixels of increasing

number in BSDS500; (b) time required for size-fixed superpixels of increasing size in multiple

resolution image sets; (c) time required for number-fixed superpixels of increasing size in multiple

resolution image sets. Green boxes show the local details of curves in (b) and (c).

Boundary recall (BR) is a standard boundary-detection and segmentation evaluation criterion.

It can be described mathematically as the ratio of ground truth boundaries covered by superpixel

boundaries [1]

() ()()
2

min
BR= ,

bb
j i ji G

b

P I P I r

G

 −

 (6)

where b and bG represent boundary pixels in and G , respectively. The indicator function

() returns the logic value whether the expression is true. In addition, the coverage radius r is

set to 2 pixels in this paper. Therefore, the higher the value of BR, the better boundary adherence the

algorithm performs. In Table 1, performance difference with and without AIR are ignorable, while

ENIC and NICE benefits from EIR and outperform SNIC and ANIC, respectively. The reason is that

EIR introduces color context information to pixels that are adjacent to a common frontier inspector.

Therefore, as depicted in Figure 3c, three pixels into a line with similar colors may be assigned an

identical label. It efficiently alleviates the risk of shape constraint in complex boundaries. In addition,

rather than AIR, EIR still plays a positive role in the non-iterative clustering framework, which also

can be verified by the following two metrics.

Under-segmentation error (UE) measures how each superpixel overlaps with only one object

()|
1UE= ,

k k m

M

kG
m

N

N

=

 −
 (7)

Figure 8. Comparison of runtime in milliseconds. (a) Time required for superpixels of increasing
number in BSDS500; (b) time required for size-fixed superpixels of increasing size in multiple resolution
image sets; (c) time required for number-fixed superpixels of increasing size in multiple resolution
image sets. Green boxes show the local details of curves in (b,c).

Under-segmentation error (UE) measures how each superpixel overlaps with only one object

UE =

M∑
m=1

(∑
Ωk |Ωk∩Gm,φ|Ωk|

)
−N

N
, (7)

where || means the number of pixels in a superpixel. Compared with BR, it utilizes segmentation
regions instead of boundaries for measurement. For large superpixels, theoretically, there is a serious
penalty if they have only a small overlap with the ground truth segment. Thus in Table 2, as the number
of superpixels grows, the values of UE for all four algorithms decrease. From another perspective,
irregular superpixels tend to yield a higher UE since they may straddle over multiple object regions [1].
Therefore, the trade-off between runtime and accuracy by EIR can be accepted.

Achievable segmentation accuracy (ASA) is introduced to quantify the accuracy achievable by
subsequent steps, such as image segmentation and object recognition. Mathematically, ASA can be
computed by

ASA =

K∑
k=1

argmaxm|Ωk ∩Gm|

M∑
m=1
|Gm|

. (8)

Similar to UE, it uses region information to evaluate the performance. A higher ASA value
indicates the performance of superpixels in subsequent is unaffected. Similar to BR and UE, as a whole
in Table 3, ASA becomes better along with the increasing number of superpixels. It also indicates
that, in Figure 7, the visual difference caused by AIR mainly exists in the background, while the target
contour is almost the same.

4.3. More Discussions on the Performance

The proposed NICE framework with two strategies allows conventional SNIC to be more efficient,
therefore, some key factors that influence the performance are analyzed together. Figure 8 demonstrates

Appl. Sci. 2020, 10, 4415 14 of 18

the comparison of execution time (ET) on four algorithms. The performance on the BSDS500 dataset
with respect to different expected superpixel numbers is shown in Figure 8a. In addition, a number of
supplementary natural images ranging from 720 × 576 to 1920 × 1080 with multiple characteristics,
are packed into 6 sets to measure the efficiency in various image sizes. Figure 8b,c adopt a fixed size of
superpixel (about 1600 pixels per region on average) and a fixed superpixel number (expect 1000 per
image on average) to partition different size of images, respectively.

Theoretically, the time complexity of conventional SNIC is O(N log(n)), wherein log(n) refers to
the logarithm of the priority queue length. It means that the computational time is nearly linear in
the number of pixels N in the image (as shown in Figure 8b). On the other hand, if there are a large
number of unassigned elements in the priority queue, its sorting efficiency decreases significantly.
For example, in Figure 8a, with the increasing expected number of superpixels, more unassigned
neighboring pixels are inspected by additional seeds. It results in accumulation on the priority queue.
It also can be proved by Figure 8b,c, where the difference of expected superpixel number is about 300
on 1920× 1080 images.

As a parameter-free strategy in the non-iterative clustering framework, AIR exhibits a scale-sensitive
property for accelerating. If there are a small amount of pixels in each superpixels on average, AIR fails
to show a significant promotion on SNIC. On the contrary, as the size of input images grows, the average
pixel number of each superpixels becomes greater, it gradually becomes the main contributor for NICE.
On 1920× 1080 images with about 1300 superpixels in Figure 8b, 24.2% of queueing operations are
eliminated by AIR on average, which improves the efficiency by a 14% reduction in execution time.

Different from AIR, the result of EIR is determined by the parameter σ in Equation (4). As analyzed
above, there is a balanced trade-off between runtime and accuracy by a proper σ. In other words,
efficiency boosting is contradictory with other evaluation metrics. Since AIR scarcely affects the
accuracy of ANIC and NICE, a more comprehensive discussion between SNIC and ENIC is expanded
based on the value of σ.

Table 4 shows the difference in terms of several metrics under various values of σ on BSDS500
images with fixed superpixel number 200. Apparently, when σ = 0, ENIC is equivalent to SNIC. Once σ
becomes positive, EIR starts to promote the non-iterative clustering framework and dramatically
reduce the repetitions of inspection. On the other hand, it would worsen the performance due to an
accumulation of digital value causing color bias σ grows larger. In this experiment, σ = 0.08 can be
regarded as a balance for the abovementioned trade-off, which speeds up by 25% while preserves the
accuracy of conventional SNIC.

Table 4. Differences of SNIC and ENIC in BR, UE, ASA and ET. “+/-” indicate the value of ENIC is
greater/smaller than SNIC. Last row shows the ratio of neighboring inspection omitted by EIR.

Metrics
Parametric Value of σ

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

BR +0.0037 +0.0032 +0.0026 +0.0021 +0.0015 +0.0011 +0.0005 +0.0002 −0.0003 −0.0006
UE −0.0003 −0.0003 -0.0003 −0.0002 −0.0001 −0.0001 0 0 0 +0.0001

ASA +0.0003 +0.0003 +0.0003 +0.0002 +0.0001 +0.0002 +0.0001 +0.0001 +0.0002 +0.0002
ET (msec) −7 −8 −9 −10 −11 −11 −12 −12 −13 −13

EIR ratio +40.1% +45.3% +48.5% +51.1% +52.9% +54.4% +55.7% +56.7% +57.6% +58.5%

It is notable that, for the resultant NICE, its speed-up ratio is greater than that sum of ANIC
and ENIC. This indicates AIR together with EIR generates a synergetic effect that achieves more
significant speed enhancement. Therefore, NICE only reduces the computation cost on small images,
but lowers the slope of the required time for increasing image size. Given σ = 0.08 for EIR in Table 4,
the execution time on BSDS500 images can be reduced to 42 milliseconds which is approximately 40%
faster than SNIC.

To further verify the synergetic NICE, the performance is compared with SLIC, FLIC and SNIC on
another benchmark dataset NYUv2 [23]. The dataset is converted by [7] for superpixel evaluation,

Appl. Sci. 2020, 10, 4415 15 of 18

which contains 399 test images with size 608 × 448. For fair comparison, the default parameters of
original code released online is used in other three algorithms, while σ is still set to 0.03 in NICE.

Figures 9 and 10 show the qualitative and quantitative performance of four methods on NYUv2,
respectively. As shown in Figure 10, the iterative label updating methods SLIC and FLIC almost
outperform the non-iterative label expansion methods SNIC and NICE on three metrics. Since the size
of images of NYUv2 is larger than those in BSDS500, and the expected superpixel number K is limited
in [50, 500], the average superpixel size in NYUv2 is greater than in BSDS500. Therefore, 2s× 2s search
region for each seed in SLIC provides more context information than SNIC, which easily gets into
local optimum with a step s× s in grid initialization. Moreover, FLIC assumes that neighboring pixels
have natural continuity, which is similar to inter-pixel correlation in EIR of NICE. Therefore, the active
search strategy avoids the clusters being limited in fixed range in space, thus achieves more desirable
boundary adherence. On the other hand, it results in less effect of compactness on controlling the
regularity. As shown in Figure 9b, FLIC performs the worst in shape uniformity, which is too sensitive
to maintain compact outlines among neighboring superpixels, even they all belongs to a homogeneous
region (e.g., the floor and the wall). On the contrary, superpixels generated by SNIC and NICE are
regular in both size and shape, while the former pays more attention to weak boundaries without
apparent distortion. In addition, curves of metric on SLIC and FLIC tend to level off, whereas SNIC
and NICE becomes better with the increasing of superpixel number.

Appl. Sci. 2020, 10, 4415 16 of 19

Figures 9 and 10 show the qualitative and quantitative performance of four methods on NYUv2,

respectively. As shown in Figure 10, the iterative label updating methods SLIC and FLIC almost

outperform the non-iterative label expansion methods SNIC and NICE on three metrics. Since the

size of images of NYUv2 is larger than those in BSDS500, and the expected superpixel number K is

limited in [50, 500] , the average superpixel size in NYUv2 is greater than in BSDS500. Therefore,

2 2s s search region for each seed in SLIC provides more context information than SNIC, which

easily gets into local optimum with a step s s in grid initialization. Moreover, FLIC assumes that

neighboring pixels have natural continuity, which is similar to inter-pixel correlation in EIR of NICE.

Therefore, the active search strategy avoids the clusters being limited in fixed range in space, thus

achieves more desirable boundary adherence. On the other hand, it results in less effect of

compactness on controlling the regularity. As shown in Figure 9b, FLIC performs the worst in shape

uniformity, which is too sensitive to maintain compact outlines among neighboring superpixels, even

they all belongs to a homogeneous region (e.g., the floor and the wall). On the contrary, superpixels

generated by SNIC and NICE are regular in both size and shape, while the former pays more

attention to weak boundaries without apparent distortion. In addition, curves of metric on SLIC and

FLIC tend to level off, whereas SNIC and NICE becomes better with the increasing of superpixel

number.

(a) (b) (c) (d)

Figure 9. Visual comparison of superpixels with K = 200 on NYUv2. (a) SNIC; (b) FLIC; (c) SNIC;
(d) NICE. Alternating columns show each segmented image followed by local details of each image.

Appl. Sci. 2020, 10, 4415 16 of 18

Appl. Sci. 2020, 10, 4415 16 of 18

(a) (b) (c) (d)

Figure 9. Visual comparison of superpixels with =200K on NYUv2. (a) SNIC; (b) FLIC; (c) SNIC; (d)

NICE. Alternating columns show each segmented image followed by local details of each image.

(a) (b) (c)

Figure 10. Performance comparison of four algorithms in terms of three quantitative metrics on

NYUv2. (a) BR; (b) UE; (c) ASA.

Table 5 shows the execution time (ET) of four algorithms. Owing to the fast convergence by

active search strategy, FLIC runs over 50% faster than SLIC and becomes one of the fastest state-of-

the-art methods. As a synergetic effect of AIR and EIR, NICE maintains stable acceleration of SNIC

on NYUv2 that exceeds FLIC more than 20%. Thus, it is accepted that the proposed NICE makes a

reasonable trade-off between performance and efficiency.

Table 5. Comparison of four algorithms in terms of ET (msec) on NYUv2.

Figure 10. Performance comparison of four algorithms in terms of three quantitative metrics on NYUv2.
(a) BR; (b) UE; (c) ASA.

Table 5 shows the execution time (ET) of four algorithms. Owing to the fast convergence by active
search strategy, FLIC runs over 50% faster than SLIC and becomes one of the fastest state-of-the-art
methods. As a synergetic effect of AIR and EIR, NICE maintains stable acceleration of SNIC on NYUv2
that exceeds FLIC more than 20%. Thus, it is accepted that the proposed NICE makes a reasonable
trade-off between performance and efficiency.

Table 5. Comparison of four algorithms in terms of ET (msec) on NYUv2.

Algorithm
User-Expected Number of Superpixels

50 100 150 200 250 300 350 400 450 500

SLIC 123 124 124 124 126 126 128 129 130 130
FLIC 75 77 77 79 79 80 80 82 83 84
SNIC 69 71 73 75 76 76 77 80 80 81
NICE 62 63 64 65 66 66 67 68 69 70

5. Conclusions

In this paper, an accelerated non-iterative clustering framework that combines two strategies is
proposed for an efficient and accurate generation algorithm of superpixels. The first strategy referred
to as Elimination of Inspection Redundancy (EIR) deals with the redundant creation during neighbor
inspection via the inter-pixel correlation between adjacent pixels. It also alleviates the inevitably shape
regulation in complex boundaries thus efficiently generating desirable superpixels in both size and
shape. The second strategy Accelerated Implementation based on Recursion (AIR) carries out the
non-iterative clustering framework in a recursive manner. It introduces a subtle LIFO stack to directly
assign the elements whose cluster distances are monotonic decreasing. Therefore, a large number of
redundant sorting operations can be avoided without apparent deterioration of accuracy. A more
efficient framework is integrated by EIR and AIR in a subtle way. The resultant NICE algorithm
generates a synergetic effect and performs significantly better than conventional SNIC as well as the
combination with any one of the strategies. Experimental results demonstrate that NICE is 40% faster
than SNIC with comparable quantitative metrics on the BSDS500 dataset.

For further improving the performance of non-iterative clustering framework, more effective
initialization methods are desired, which would overcome the limitation of grid sampling and
cover more small objects and strip areas. It is also worth exploring size and compactness adaptive
segmentation algorithms, which could conform to the varying content of images more reasonably.

Author Contributions: All the authors contributed to this study. C.L.: conceptualization, investigation and
writing of the original draft; B.G.: funding acquisition and project administration; G.W. and Y.Z.: software and
data curation; Y.L.: resources; W.H.: supervision and writing of review and editing. All authors have read and
agreed to the published version of the manuscript.

Appl. Sci. 2020, 10, 4415 17 of 18

Funding: This research is supported financially by National Natural Science Foundation of China (Grant No.
61571346 and 51805398).

Acknowledgments: The authors would like to thank the editor and anonymous reviewers for their valuable
comments on this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, L.; Luo, B.; Pei, Z.; Qin, K. PFS: Particle-filter-based superpixel segmentation. Symmetry 2018, 10, 143.
[CrossRef]

2. Boemer, F.; Ratner, E.; Lendasse, A. Parameter-free image segmentation with SLIC. Neurocomputing 2018, 277,
228–236. [CrossRef]

3. Yeo, D.; Son, J.; Han, B.; Han, J. Superpixel-based tracking-by-segmentation using Markov chains.
In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 511–520.

4. Liu, Z.; Zou, W.; Meur, O. Saliency tree: A novel saliency detection framework. IEEE Trans. Image Process. (TIP)
2014, 23, 1937–1952.

5. Zou, H.; Qin, X.; Zhou, S.; Ji, K. A likelihood-based SLIC superpixel algorithm for SAR images using
generalized gamma distribution. Sensors 2016, 16, 1107. [CrossRef] [PubMed]

6. Baatz, M.; Schäpe, A. Multiresolution segmentation: An optimization approach for high quality multi-scale
image segmentation. In Proceedings of the Symposium for Applied Geographic Information Processing,
Karlsruhe, Germany, 5–7 July 2000; pp. 12–23.

7. Stutz, D.; Hermans, A.; Leibe, B. Superpixels: An evaluation of the state-of-the-art. Comput. Vis. Image Underst.
2018, 166, 1–27. [CrossRef]

8. Achanta, R.; Susstrunk, S. Superpixels and polygons using simple non-iterative clustering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 4895–4904.

9. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Susstrunk, S. SLIC superpixels compared to state-of-the-art
superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]

10. He, W.; Li, C.; Guo, Y.; Wei, Z.; Guo, B. A two-stage gradient ascent-based superpixel framework for adaptive
segmentation. Appl. Sci. 2019, 9, 2421. [CrossRef]

11. Jampani, V.; Sun, D.; Liu, M.; Yang, M.; Kautz, J. Superpixel sampling networks. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 363–380.

12. Chen, J.; Li, Z.; Huang, B. Linear spectral clustering superpixel. IEEE Trans. Image Process. 2017, 26, 3317–3330.
[CrossRef]

13. Giraud, R.; Ta, V.; Papadakis, N. Robust superpixels using color and contour features along linear path.
Comput. Vis. Image Underst. 2018, 170, 1–13. [CrossRef]

14. Liu, Y.; Yu, C.; Yu, M.; He, Y. Manifold SLIC: A fast method to compute content-sensitive superpixels.
In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 651–659.

15. Zhao, J.; Hou, Q.; Ren, B.; Cheng, M.; Rosin, P. FLIC: Fast linear iterative clustering with active search.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), New Orleans, LA, USA, 2–7 February
2018; pp. 7574–7581.

16. Liu, Y.; Yu, M.; Li, B.; He, Y. Intrinsic manifold SLIC: A simple and efficient method for computing
content-sensitive superpixels. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 653–666. [CrossRef]

17. Du, Q.; Faber, V.; Gunzburger, M. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev.
1999, 41, 637–676. [CrossRef]

18. Wu, C.; Zhang, L.; Zhang, H.; Yan, H. Superpixels using fuzzy simple linear iterative clustering and fast
precise number control. arXiv 2018, arXiv:1812.10932.

19. Kang, X.; Zhu, L.; Ming, A. Dynamic random walk for superpixel segmentation. IEEE Trans. Image Proce
2020, 29, 3871–3884. [CrossRef] [PubMed]

20. Choi, K.; Oh, K. Subsampling-based acceleration of simple linear iterative clustering for superpixel
segmentation. Comput. Vis. Image Underst. 2016, 146, 1–8. [CrossRef]

http://dx.doi.org/10.3390/sym10050143
http://dx.doi.org/10.1016/j.neucom.2017.05.096
http://dx.doi.org/10.3390/s16071107
http://www.ncbi.nlm.nih.gov/pubmed/27438840
http://dx.doi.org/10.1016/j.cviu.2017.03.007
http://dx.doi.org/10.1109/TPAMI.2012.120
http://dx.doi.org/10.3390/app9122421
http://dx.doi.org/10.1109/TIP.2017.2651389
http://dx.doi.org/10.1016/j.cviu.2018.01.006
http://dx.doi.org/10.1109/TPAMI.2017.2686857
http://dx.doi.org/10.1137/S0036144599352836
http://dx.doi.org/10.1109/TIP.2020.2967583
http://www.ncbi.nlm.nih.gov/pubmed/31995488
http://dx.doi.org/10.1016/j.cviu.2016.02.018

Appl. Sci. 2020, 10, 4415 18 of 18

21. Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 898–916. [CrossRef]

22. Wang, M.; Liu, X.; Gao, Y.; Ma, X.; Soomro, N. Superpixel segmentation: A benchmark. Signal Process.
Image Commun. 2017, 56, 28–39. [CrossRef]

23. Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor segmentation and support inference from RGBD images.
In Proceedings of the European Conference on Computer Vision (ECCV), Florence, Italy, 7–13 October 2012;
pp. 746–760.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1016/j.image.2017.04.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Simple Non-Iterative Clustering
	Non-Iterative Clustering with Efficiency
	Elimination of Inspection Redundancy
	Accelerated Implementation Based on Recursion
	NICE Superpixel Segmentation Framework

	Experiments and Analysis
	Visual Comparisons of Superpixel Results
	Quantitative Evaluation by Metrics
	More Discussions on the Performance

	Conclusions
	References

