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Abstract: Traumatic brain injury (TBI) is a major public health problem among children. The predominant
causes of TBI in young children are motor vehicle accidents, firearm incidents, falls, and child abuse.
The limitation of in vivo studies on the human brain has made the finite element modelling an important
tool to study brain injury. Numerical models based on the finite element approach can provide valuable
data on biomechanics of brain tissues and help explain many pathological conditions. This work reviews
the existing numerical models of a child’s head. However, the existing literature is very limited in
reporting proper geometric representation of a small child’s head. Therefore, an advanced 2-year-old
child’s head model, named aHEAD 2yo (aHEAD: advanced Head models for safety Enhancement And
medical Development), has been developed, which advances the state-of-the-art. The model is one of the
first published in the literature, which entirely consists of hexahedral elements for three-dimensional (3D)
structures of the head, such as the cerebellum, skull, and cerebrum with detailed geometry of gyri and
sulci. It includes cerebrospinal fluid as Smoothed Particle Hydrodynamics (SPH) and a detailed model
of pressurized bringing veins. Moreover, the presented review of the literature showed that material
models for children are now one of the major limitations. There is also no unambiguous opinion as to
the use of separate materials for gray and white matter. Thus, this work examines the impact of various
material models for the brain on the biomechanical response of the brain tissues during the mechanical
loading described by Hardy et al. The study compares the inhomogeneous models with the separation of
gray and white matter against the homogeneous models, i.e., without the gray/white matter separation.
The developed model along with its verification aims to establish a further benchmark in finite element
head modelling for children and can potentially provide new insights into injury mechanisms.
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TBI; DAI; brain; numerical simulation; aHEAD; vulnerable road user; paediatric model; child safety;
head kinematics; gray and white matter

Appl. Sci. 2020, 10, 4467; doi:10.3390/app10134467 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5114-5400
https://orcid.org/0000-0001-8081-8336
https://orcid.org/0000-0001-6980-315X
http://dx.doi.org/10.3390/app10134467
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/13/4467?type=check_update&version=2


Appl. Sci. 2020, 10, 4467 2 of 26

1. Introduction

Brain injuries are the leading cause of death among the paediatric population. Surveillance
data reveals that 1 in every 20 emergency department presentations at paediatric hospitals is for a
TBI (traumatic brain injury), making TBIs more common than burns or poisonings. For children,
such injuries represent a common interruption to the normal growing up [1].

Statistics show that 95% of all children who have suffered from TBI survive. In contrast, only 65%
of the children who have experienced severe TBI survive. The highest mortality occurs in children
who are less than 2 years old. TBI mortality rates are gradually decreasing to the age of 12, and then
the second peak in mortality is observed at the age of 15 years [2].

TBI overtakes other common paediatric fatal diseases such as congenital malformations and
oncological disease [3,4]. Recent studies have shown that the mortality rate of TBI was as high as 8.99
per 100,000 population by the end of the 20th century. It began to decrease in the next 15 years to 4.42
and since then, unfortunately, it increased up to the ratio of 5.17 [5]. Thanks to the implementation
of safety regulations, passive safety devices and the development of modern treatment methods, the
number has decreased, yet it still requires action for further improvement [6–9]. TBI can cause a serious
burden to a child’s life and even in cases of good recovery, long-lasting behavioural problems after
paediatric TBI can be found in up to 33% of the survivors [3,10,11]. It is not always evident if these
long-lasting posttraumatic changes are related to brain contusions or rather microinjuries to white
matter structure [12,13]. TBI also comes with higher treatment costs than any other kind of trauma,
and typically requires a longer time of treatment and rehabilitation. Patients more often need repeated
medical assistance and a higher number of hospital readmissions [14].

Apart from prevention of injuries, a method in case of severe medical conditions shall be
developed to enable medical professionals to have an early selection of patients who are at higher
risk of unfavourable progression of the disease. These patients would require intensive care and
monitoring from admission to hospital. Biomechanical simulations based on the finite element method
can be implemented to reconstruct the probable mechanism of injury [15]. However, as it provides
information of value in case of legal aspects, from daily medical practice, it is more important to provide
a reliable prognosis. Biomechanical testing may provide information on future trauma development
and pinpoint possible points of weakness after injury [16]. To foresee how the injury will develop
is of utmost importance and provides information as to whether intense clinical and radiological
monitoring may be necessary.

It should be noted that TBI in children is a serious social problem. At the same time, since there is
limited data obtained from radiological imaging (due to invasiveness and limited use of computed
tomography in the children population), recognition of mechanics of brain tissue damage is somewhat
hindered. Computed Tomography (CT) is rarely used in the infant population because it induces
high-dose radiation and consequently becomes almost the last resort.

At the same time, it should be emphasized that one of the best methods for biomechanical
assessment of human tissues is experimental research. However, it is obvious that obtaining human
cadaveric specimens, in particular children, is practically impossible or ethically biased. Animal
studies are an alternative. Due to some similarity in the structure of some brain tissues, pig specimens
are one of the most frequently used samples. Nevertheless, they do not allow a complete reference
to the human system. In addition, they do not provide a comprehensive insight into the tissues’
interactions under mechanical loads. Hence, numerical models are currently one of the best solutions
for biomechanical evaluation. However, a literature review shows that there is presently a serious
gap in the numerical head models of young children. This is due to the limited availability of medical
data of young children without pathologies. Moreover, the development of a child is highly nonlinear,
among others biased by genetics and its environment. The uncertainty of where to find the gathered
data within the broad range of the regional population increases the difficultness of validation or even
makes it impossible.
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Therefore, in this work, the authors present current problems, challenges, and opportunities
for modelling the head of a small child. Bearing in mind the current knowledge in the field of
numerical modelling, the authors present their original head model of a small child based on the finite
element (FE) approach. The model of a 2-year-old (2yo) child’s head is an outcome of interdisciplinary
research and it is a part of a holistic project, aHEAD (advanced Head models for safety Enhancement
and medical Development [17])—thus, it bears the name aHEAD 2yo. A method for verifying the
developed model was also proposed. The developed model along with its verification aims to establish
a further benchmark.

2. Injury Biomechanics of Small Children

2.1. Pediatric Anthropometry

The proportions of individual body regions change significantly from birth to adult age [18,19].
The shape of the head changes from birth to adulthood (Figure 1). For an infant, the face is a very
small part of the total head volume. The facial portion of the head at birth is smaller than the cranium,
having a face-to-cranium ratio of 1:8 compared to the ratio of 1:2.5 for adults [20]. Interestingly, at birth,
the head is often more than 1:4 of the total body length, whereas in the adult, it is approximately 1:7.
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2.2. Injury Types

The most common mechanisms of brain injury include falls, collisions, projectiles,
and punches [22,23]. Falls are the most common mechanism of TBI [24]. Short-distance falls
are a common cause of trauma in young children, and an important topic in forensic science in cases
of child abuse. This kind of injury results in impacts with high-magnitude and short-duration linear
and rotational acceleration [25]. Low compliance of hard impact surfaces (e.g., ground) must be taken
into consideration.

Coats et al. [26] showed that coronal rotation in similar cases was minimal and axial head
rotation resulted in higher peak angular accelerations than sagittal rotation, most probably due to
the convexity of the occipital region and neck’s laxity. Ibrahim et al. [27] pointed out that infants
sustained more skull fractures than toddlers (71% versus 39%) from short-distance falls. These resulted
in primary intracranial injury without soft tissue or skull injury in infants (6%) and toddlers (16%).
Sullivan et al. [28] indicated fall height and impact site as crucial conditions for predicting the extent
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of the injury. Impact on occipital and parietal areas produced greater angular velocities as the head
rebounded after impacts.

In comparison with falls and collisions, brain injuries induced by punches and projectiles are
characterized by lower effective mass and higher velocity [29]. Moreover, the compliance of the human
fist is greater than the compliance of hard surfaces [30]. Therefore, the velocity of the impacting object
and the impacted region have a determining role in such low-mass events. For example, the further
the impact lands outside of the centre of gravity, the greater the rotational acceleration will be, which is
a significant issue in most TBIs [31,32].

Intracranial haemorrhagic trauma is a result of short-duration events (5 ms) [28].
Overall, contusions and epidural hematomas (EDH) are more related to linear acceleration,
while subdural hematomas (SDH) and traumatic subarachnoid haemorrhage are more closely related
with rotational acceleration [33]. Diffuse axonal injury (DAI) is also rotationally dominant and present
especially in high acceleration-deceleration, with head rotation impacts such as traffic accidents [34–37].
In a paper by Ibrahim et al. [38], scaling rotational accelerations from the 4-week-old toddler piglets to
the 5-day-old infant animals by brain mass alone resulted in more severe subarachnoid haemorrhage
and white matter injury in the younger group. This is probably due to greater stiffness of the younger
brain, which requires three times lower strain to produce a similar haemorrhage [38].

Frequency of TBI in up to 4-year-old patients is twice the rate of TBI in the next most affected
population (15–24 years old) [39]. Most of these injuries are limited to mild TBI, mainly concussions,
which can be defined as a clinical syndrome of biomechanically induced alteration of brain function,
typically affecting memory and orientation, which may involve loss of consciousness. The occurrence
of concussion in children under 15 years old is 692/100,000 [39]. Most of the patients with mild TBI do
not present symptoms that necessitate further diagnostics, e.g., computed tomography (CT), therefore
most radiological data from the paediatric population comes from patients diagnosed with a medium
to severe trauma. Space occupying lesions, which are the result of primary injury of brain parenchyma
and injuries of major intracranial vessels, fall into this category.

Epidural bleeding, which is usually a result of middle meningeal artery rupture, is more common
in younger people than in the elderly. In children, epidural hematomas usually have a less severe course
than in young adults, and the hematomas tend to be relatively smaller in the paediatric population.
SDH is quite frequent in infants—especially in those suffering from domestic abuse [40]. In children,
similarly to adults, bridging veins are the origin of the bleeding. On the other hand, in a paper by
Raul et al. [40], in contrary to the elderly population, it was shown that enlargement of subdural
space in infants does not have a significant impact on the risk of SDH. Posttraumatic subarachnoid
haemorrhages are also commonly seen in paediatric patients.

2.3. Cases of Medical Injuries

Minor injuries come as about one-fifth of cases referring to emergency departments [41].
CT scanning cannot and should not be used in every case because of radiation exposure. But, even when
applied, the result cannot rule out all the uncertainty. Figure 2 presents two selected clinical cases
depicting the brain hematoma and skull fractures.
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Figure 2. (a) A case of a 3-year-old patient who suffered a low-height fall. It resulted in a hyperacute
EDH in the frontal region (inhomogeneous density), indicated by the arrow. The inhomogeneity is a
result of a very acute stage when not all the blood in the hematoma is aggregated. The middle panel
presents the post-surgery. Fast emergency diagnostics followed by rapid treatment allowed the patient
to undergo proper recovery. There are no visible secondary traumatic injuries of the brain in the post-op
images. (b) The CT of a 7-year-old boy hospitalized after politrauma from being crushed by a truck
wheel. A multi fracture is visible in the right frontotemporal region.

3. Numerical Models of Paediatric Heads—State-of-the-Art

Biomechanical systems of the human body are very difficult to model due to the complex geometry,
heterogeneity, nonlinear behaviour of the materials involved and complex boundary conditions [42–45].
It is particularly difficult to map the biomechanics of the head of a small child. This difficulty is caused
by a rapid change in the head geometry and changes in the mechanical properties of the child’s bone
and tissue structures with age. Due to the tightened legal regulations and very rare availability of
paediatric corpses, determining the mechanical parameters of tissues for this age group is considerably
difficult. This, in turn, is the main limiting factor in FE (finite element) models of paediatric heads.
Table 1 summarizes the current models of paediatric heads depicted in the literature.

To represent a paediatric head numerically, appropriate geometry, material properties,
and boundary conditions need to be defined. Analysing the current state of scientific articles
and comparing to adult versions, the low number of paediatric is noticeable.
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Table 1. Numerical models of paediatric heads presented in current literature.

Validation Material Law Mesh Elements Geometry FE Solver Age FE Mesh Reference

None

Linear viscoelastic brain,
linear elastic bone

(interpolated)/
suture/cerebrospinal

fluid (CSF)/scalp

6 -month-old: 69,324 solid
elements, 9187 shell elements

3-year-old: 23,000 solid
elements, 3500 shell elements

3D, CT Radioss 6 months/3 years

A
ppl. Sci. 2020, 9, x FO

R PEER
 REV

IEW
 

5 of 26 

 
(a) 

(b) 

 
 

 

Figure 2. (a) A
 case of a 3-year-old patient w

ho suffered a low
-height fall. It resulted in a hyperacute 

166 
ED

H
 in the frontal region (inhom

ogeneous density), indicated by the arrow
. The inhom

ogeneity is a 
167 

result of a very acute stage w
hen not all the blood in the hem

atom
a is aggregated. The m

iddle panel 
168 

presents the post-surgery. Fast em
ergency diagnostics follow

ed by rapid treatm
ent allow

ed the 
169 

patient to undergo proper recovery. There are no visible secondary traum
atic injuries of the brain in 

170 
the post-op im

ages. (b) The C
T of a 7-year-old boy hospitalized after politraum

a from
 being crushed 

171 
by a truck w

heel. A
 m

ulti fracture is visible in the right frontotem
poral region. 

172 

3. N
um

erical M
odels of Paediatric H

eads—
State-of-the-A

rt 
173 

Biom
echanical system

s of the hum
an body are very difficult to m

odel due to the com
plex 

174 
geom

etry, heterogeneity, nonlinear behaviour of the m
aterials involved and com

plex boundary 
175 

conditions [42–45]. It is particularly difficult to m
ap the biom

echanics of the head of a sm
all child. 

176 
This difficulty is caused by a rapid change in the head geom

etry and changes in the m
echanical 

177 
properties of the child's bone and tissue structures w

ith age. D
ue to the tightened legal regulations 

178 
and very rare availability of paediatric corpses, determ

ining the m
echanical param

eters of tissues for 
179 

this age group is considerably difficult. This, in turn, is the m
ain lim

iting factor in FE (finite elem
ent) 

180 
m

odels of paediatric heads. Table 1 sum
m

arizes the current m
odels of paediatric heads depicted in 

181 
the literature.  

182 
To represent a paediatric head num

erically, appropriate geom
etry, m

aterial properties, and 
183 

boundary conditions need to be defined. A
nalysing the current state of scientific articles and 

184 
com

paring to adult versions, the low
 num

ber of paediatric is noticeable. 
185 

Table 1. N
um

erical m
odels of paediatric heads presented in current literature. 

186 

Roth et al., 2007, 2009 [46,47] 

6 months/3 years 

Radioss 

3D, CT 
 

6 -month-old: 69,324 solid elements, 
9187 shell elements 

3-year-old: 23,000 solid elements, 
3500 shell elements 

Linear viscoelastic brain, linear 
elastic bone 

(interpolated)/suture/cerebrospinal 
fluid (CSF)/scalp 

None 

Roth et al., 2007,
2009 [46,47]

None
Linear viscoelastic brain,

linear elastic
bone/suture/CSF/scalp

not available 3D, CT LS-DYNA 6 months

A
ppl. Sci. 2020, 9, x FO

R PEER
 REV

IEW
 

6 of 26 

 
DeSantis Klinich, Hulbert, 
and Schneider, 2002 [48] 

(Desantis Klinich, Hulbert, 
and Schneider 2002) 

 

6 months 

LS-DYNA 

3D, CT 

not available 

Linear viscoelastic 
brain, linear elastic 

bone/suture/CSF/scalp 

None 

Coats, Margulies, and Ji, 
2007 [49] 

 

1.5 months 

ABAQUS/Explicit 

3D CT, Magnetic Resonance 
Imaging (MRI), 
suture geometry 

11,066 tetrahedral solid 
elements, 624 hexagonal 

solid elements, 18,706 
shell elements, 2485 
membrane elements 

Ogden brain, orthotropic 
linear elastic bone, linear 
elastic suture and scalp 

Skull fracture location as 
predicted by ultimate 

stress 

Margulies and 
Thibault 2000 

[50] 

1 month 

ANSYS/LSDYN
A3D 

3D Idealised 

12,772 
elements 

Linear viscoelastic 
brain, linear 

elastic 
bone/suture 

None 

Prange, 
Kiralyfalvi, and 
Margulies, 1999 

[51]  

 

2 weeks 

PATRAN 

Pseudo 3D 

5834 
elements 

Ogden brain, 
Rigid skull and 

falx 

None 

Reference 

FE Mesh 

Age 

FE solver 

Geometry 

Mesh 
Elements 

Material law 

Validation 

 
187 

3.1. Validation and Verification of Com
putational Paediatric M

odels 
188 

V
erification and validation of developed num

erical m
odels is the final possibility for researchers 

189 
to prove and state the applicability and m

eaningfulness of their w
ork by reflecting and presenting 

190 
the real biological response. In a different outcom

e, this step m
ight also reveal a gap, w

hich helps to 
191 

realise and point out an approach’s lim
itations. The general path for this is based on an accurately 

192 
represented geom

etry in the discrete m
odel w

ith an accordingly approved m
esh quality. A

 
193 

consecutive step is the im
plem

entation of case-specific inform
ation such as boundary conditions and 

194 
m

echanical properties. This is based on both appropriate testing procedures and specim
ens. The 

195 
verification or validation of paediatric num

erical m
odels faces at this point a significant lim

itation, 
196 

w
hich is found in tw

o aspects: the availability of specim
ens as w

ell as clear experim
ental data for 

197 

DeSantis Klinich,
Hulbert, and Schneider,

2002 [48] (Desantis
Klinich, Hulbert,

and Schneider 2002)

Skull fracture
location as

predicted by
ultimate stress

Ogden brain,
orthotropic linear elastic

bone, linear elastic
suture and scalp

11,066 tetrahedral solid
elements, 624 hexagonal solid

elements, 18,706
shell elements, 2485
membrane elements

3D CT, Magnetic
Resonance Imaging

(MRI), suture
geometry idealised

ABAQUS/Explicit 1.5 months

A
ppl. Sci. 2020, 9, x FO

R PEER
 REV

IEW
 

6 of 26 

 

DeSantis Klinich, Hulbert, 
and Schneider, 2002 [48] 

(Desantis Klinich, Hulbert, 
and Schneider 2002) 

 

6 months 

LS-DYNA 

3D, CT 

not available 

Linear viscoelastic 
brain, linear elastic 

bone/suture/CSF/scalp 

None 

Coats, Margulies, and Ji, 
2007 [49] 

 

1.5 months 

ABAQUS/Explicit 

3D CT, Magnetic Resonance 
Imaging (MRI), 
suture geometry 

11,066 tetrahedral solid 
elements, 624 hexagonal 

solid elements, 18,706 
shell elements, 2485 
membrane elements 

Ogden brain, orthotropic 
linear elastic bone, linear 
elastic suture and scalp 

Skull fracture location as 
predicted by ultimate 

stress 

Margulies and 
Thibault 2000 

[50] 

1 month 

ANSYS/LSDYN
A3D 

3D Idealised 

12,772 
elements 

Linear viscoelastic 
brain, linear 

elastic 
bone/suture 

None 

Prange, 
Kiralyfalvi, and 
Margulies, 1999 

[51]  

 

2 weeks 

PATRAN 

Pseudo 3D 

5834 
elements 

Ogden brain, 
Rigid skull and 

falx 

None 

Reference 

FE Mesh 

Age 

FE solver 

Geometry 

Mesh 
Elements 

Material law 

Validation 

 
187 

3.1. Validation and Verification of Com
putational Paediatric M

odels 
188 

V
erification and validation of developed num

erical m
odels is the final possibility for researchers 

189 
to prove and state the applicability and m

eaningfulness of their w
ork by reflecting and presenting 

190 
the real biological response. In a different outcom

e, this step m
ight also reveal a gap, w

hich helps to 
191 

realise and point out an approach’s lim
itations. The general path for this is based on an accurately 

192 
represented geom

etry in the discrete m
odel w

ith an accordingly approved m
esh quality. A

 
193 

consecutive step is the im
plem

entation of case-specific inform
ation such as boundary conditions and 

194 
m

echanical properties. This is based on both appropriate testing procedures and specim
ens. The 

195 
verification or validation of paediatric num

erical m
odels faces at this point a significant lim

itation, 
196 

w
hich is found in tw

o aspects: the availability of specim
ens as w

ell as clear experim
ental data for 

197 

Coats, Margulies, and Ji,
2007 [49]

None
Linear viscoelastic brain,

linear elastic
bone/suture

12,772 elements 3D Idealised ANSYS/LSDYNA3D 1 month

A
ppl. Sci. 2020, 9, x FO

R PEER
 REV

IEW
 

6 of 26 

 

DeSantis Klinich, Hulbert, 
and Schneider, 2002 [48] 

(Desantis Klinich, Hulbert, 
and Schneider 2002) 

 

6 months 

LS-DYNA 

3D, CT 

not available 

Linear viscoelastic 
brain, linear elastic 

bone/suture/CSF/scalp 

None 

Coats, Margulies, and Ji, 
2007 [49] 

 

1.5 months 

ABAQUS/Explicit 

3D CT, Magnetic Resonance 
Imaging (MRI), 
suture geometry 

11,066 tetrahedral solid 
elements, 624 hexagonal 

solid elements, 18,706 
shell elements, 2485 
membrane elements 

Ogden brain, orthotropic 
linear elastic bone, linear 
elastic suture and scalp 

Skull fracture location as 
predicted by ultimate 

stress 

Margulies and 
Thibault 2000 

[50] 

1 month 

ANSYS/LSDYN
A3D 

3D Idealised 

12,772 
elements 

Linear viscoelastic 
brain, linear 

elastic 
bone/suture 

None 

Prange, 
Kiralyfalvi, and 
Margulies, 1999 

[51]  

 

2 weeks 

PATRAN 

Pseudo 3D 

5834 
elements 

Ogden brain, 
Rigid skull and 

falx 

None 

Reference 

FE Mesh 

Age 

FE solver 

Geometry 

Mesh 
Elements 

Material law 

Validation 

 
187 

3.1. Validation and Verification of Com
putational Paediatric M

odels 
188 

V
erification and validation of developed num

erical m
odels is the final possibility for researchers 

189 
to prove and state the applicability and m

eaningfulness of their w
ork by reflecting and presenting 

190 
the real biological response. In a different outcom

e, this step m
ight also reveal a gap, w

hich helps to 
191 

realise and point out an approach’s lim
itations. The general path for this is based on an accurately 

192 
represented geom

etry in the discrete m
odel w

ith an accordingly approved m
esh quality. A

 
193 

consecutive step is the im
plem

entation of case-specific inform
ation such as boundary conditions and 

194 
m

echanical properties. This is based on both appropriate testing procedures and specim
ens. The 

195 
verification or validation of paediatric num

erical m
odels faces at this point a significant lim

itation, 
196 

w
hich is found in tw

o aspects: the availability of specim
ens as w

ell as clear experim
ental data for 

197 

Margulies and Thibault
2000 [50]

None Ogden brain, Rigid
skull and falx 5834 elements Pseudo 3D PATRAN 2 weeks

A
ppl. Sci. 2020, 9, x FO

R PEER
 REV

IEW
 

6 of 26 

 

DeSantis Klinich, Hulbert, 
and Schneider, 2002 [48] 

(Desantis Klinich, Hulbert, 
and Schneider 2002) 

 

6 months 

LS-DYNA 

3D, CT 

not available 

Linear viscoelastic 
brain, linear elastic 

bone/suture/CSF/scalp 

None 

Coats, Margulies, and Ji, 
2007 [49] 

 

1.5 months 

ABAQUS/Explicit 

3D CT, Magnetic Resonance 
Imaging (MRI), 
suture geometry 

11,066 tetrahedral solid 
elements, 624 hexagonal 

solid elements, 18,706 
shell elements, 2485 
membrane elements 

Ogden brain, orthotropic 
linear elastic bone, linear 
elastic suture and scalp 

Skull fracture location as 
predicted by ultimate 

stress 

Margulies and 
Thibault 2000 

[50] 

1 month 

ANSYS/LSDYN
A3D 

3D Idealised 

12,772 
elements 

Linear viscoelastic 
brain, linear 

elastic 
bone/suture 

None 

Prange, 
Kiralyfalvi, and 
Margulies, 1999 

[51]  

 

2 weeks 

PATRAN 

Pseudo 3D 

5834 
elements 

Ogden brain, 
Rigid skull and 

falx 

None 

Reference 

FE Mesh 

Age 

FE solver 

Geometry 

Mesh 
Elements 

Material law 

Validation 

 
187 

3.1. Validation and Verification of Com
putational Paediatric M

odels 
188 

V
erification and validation of developed num

erical m
odels is the final possibility for researchers 

189 
to prove and state the applicability and m

eaningfulness of their w
ork by reflecting and presenting 

190 
the real biological response. In a different outcom

e, this step m
ight also reveal a gap, w

hich helps to 
191 

realise and point out an approach’s lim
itations. The general path for this is based on an accurately 

192 
represented geom

etry in the discrete m
odel w

ith an accordingly approved m
esh quality. A

 
193 

consecutive step is the im
plem

entation of case-specific inform
ation such as boundary conditions and 

194 
m

echanical properties. This is based on both appropriate testing procedures and specim
ens. The 

195 
verification or validation of paediatric num

erical m
odels faces at this point a significant lim

itation, 
196 

w
hich is found in tw

o aspects: the availability of specim
ens as w

ell as clear experim
ental data for 

197 
Prange, Kiralyfalvi,

and Margulies, 1999 [51]



Appl. Sci. 2020, 10, 4467 7 of 26

3.1. Validation and Verification of Computational Paediatric Models

Verification and validation of developed numerical models is the final possibility for researchers
to prove and state the applicability and meaningfulness of their work by reflecting and presenting the
real biological response. In a different outcome, this step might also reveal a gap, which helps to realise
and point out an approach’s limitations. The general path for this is based on an accurately represented
geometry in the discrete model with an accordingly approved mesh quality. A consecutive step is the
implementation of case-specific information such as boundary conditions and mechanical properties.
This is based on both appropriate testing procedures and specimens. The verification or validation
of paediatric numerical models faces at this point a significant limitation, which is found in two
aspects: the availability of specimens as well as clear experimental data for comparison. As mentioned,
the highly non-linear nature of development of a child can be found also in the material properties.
Consequently, it is the missing dataset over the entirety of the population which intensifies the problem
to define an age-dependent average for material properties in this early stage of life. Moreover, while
real-world experiments are strongly connected to ethical questions, the rarely available specimen
tend to be from the upper range of the age span. In a consequence, real-world accident data and
reconstruction by human surrogates is widely used as a substitutional path. Nonetheless, biofidelity
might be not given by this approach in detail and covers partially the clear view on the basing injury
mechanisms. Furthermore, scaling adult anthropometry for paediatric models has been applied many
times in FEHMs, but is denied for the clear research about paediatric-specific injury biomechanics [52].
Nonetheless, the bottleneck is established by the missing or limited evidential material and experimental
data over the entirety of the population. Therefore, researchers proposed a substitutional approach.
Thereby, the strict requirement of implementing an appropriate in-detail geometry and quality within
the mesh is accepted as a base, meaning that further developed models should decrease the current
simplifications. Then, with an intense focus on the appropriate interpretation and discussion of the
simulative results, a contribution to the scientific research can be achieved. The rigorous comparison
of the achieved simulations to real-world (accident) cases is another supportive asset.

3.2. Mechanical Properties of the Brain Tissue Structures

During biological human development, the structures undergo significant physical changes.
Therefore, the mechanical properties of brain tissues in individual age groups may show significant
differences. These can be most visible up to an age of six [53]. Currently, there is little data in
the literature regarding differences in mechanical properties in individual age groups during child
development. The studies, which have been presented so far, have shown that brain tissue is a very
soft non-linear viscoelastic solid material, with a very low linear viscoelastic strain limit in the range of
0.1–0.3%. In addition, brain tissue is strain rate-dependent. This soft tissue increases its stiffness as the
deformation rate increases [54,55]. Depending on the type of load, tissue damage occurs at 25–100%
strain. However, it should be noted that still, little is known about the mechanical properties of brain
tissue due to inconsistent data presented in the current literature. Although it is known that brain tissue
is anisotropic, the anisotropy of the axonal fibre bundle of white matter has not been comprehensively
established. Between grey and white matter, there might be some differences in mechanical properties,
which is associated with their structural difference (Table 2). Grey matter contains a densely packed
network of neural cell bodies and associated glial cells. In contrast, white matter contains myelinated
axonal tracts, relatively few neuronal cell bodies, and a supporting environment of glial cells.

In addition, some researchers have shown that there are regional differences in mechanical
properties in individual regions. Conversely, it should be kept in mind that between individual authors,
there are significant differences in the description of the mechanical properties of brain tissues [56–58].
This phenomenon may be associated with a different methodological approach, including the freshness
and hydration of the tested samples.



Appl. Sci. 2020, 10, 4467 8 of 26

Table 2. Brain tissue composition [59–61].

Water (wt%) Ash (wt%) Lipid (wt%) Protein (wt%)

Whole brain 76.3–78.5 (77.4) 1.4–2 (1.5) 9–17 8–12

Grey matter 83–86 1.5 5.3 8–12

White matter 68–77 1.4 18 11–12

It should be noted that few scientists have studied the mechanical properties of brain tissue
depending on age. Nevertheless, they showed that the mechanical properties of the tissue differ
significantly between age groups. The average weight of a human brain after birth is usually 350
to 450 g and continues to grow rapidly up to about 2 years. Prange and Margulies [57] took fresh
samples of the cerebral cortex of grey matter from a 5-year-old and tested it within 3 h of its collection.
For comparison, this cerebral cortex was also collected from an adult. This study showed that the
brains of 5-year-olds were stiffer than the brains of adults.

At the same time, Sack et al. [62] performed magnetic resonance elastography (MRE) on using
in vivo samples and found that the brain tissue modulus decreases with age, from early adulthood to old
age. It is worth noting that the authors came to similar conclusions by conducting animal experiments
and comparing results from young and older individuals. Significantly higher brain tissue stiffness was
observed in juveniles [57,63,64]. However, it should be noted that the mechanical properties between
different animal species can differ significantly. Nevertheless, the differences between the measured
properties of brain tissue have been discussed for decades (Table 3). Some studies show immediate
significant decreases in brain stiffness after death [65–68].

Table 3. Mechanical properties of brain tissues from paediatric heads.

Reference Tissue Research Method Mechanical Properties Age

Prange and Margulies,
2002 [57]

Brain (temporal
cortex)

Shear
stress–relaxation

Instantaneous shear
modulus: 304 Pa 5 years

Kriewall et al., 1983;
Bylski et al., 1986 [69,70] Dura

Axisymmetric
tension

Biaxial tension

Stiffness:
3.377 ± 1.052 N/m
1.814 ± 590 N/m

30–42 weeks gest

Meaney, 1991 [71] Bridging veins Uniaxial tension

Stiffness:
235 ± 199 N/m
Ultimate stress:
12.02 ± 5.9 MPa

Stretch ratio:
1.67 ± 0.27

3–9 years

4. Materials and Methods

Several stages are necessary to develop a high-fidelity numerical model of the human head,
from medical imaging to geometry segmentation, ending with the development of the FE model and
its validation, as seen in the literature [72–76]. Depending on the degree of complexity and desired
accuracy, this methodology can go from an almost straightforward task to an extremely time-consuming
work, e.g., when aiming for the detailed modelling of the central nervous system (CNS) structures.
In this section, the authors present their numerical model of a young child’s head. Its development
was carried out in five well-defined stages (Figure 3):

I Medical data acquisition and craniometry verification/measurement
II Computer-aided design—3D modelling and structural segmentation/separation
III Finite element modelling supported on experimental and sub-model testing
IV Detailed model of CNS structures
V Verification tests
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Figure 3. Development of a numerical model of a small child’s head depicted in five stages.

The first stage consists of gathering medical data and extracting the regions of interest for
geometry generation. For a model to fit a wider population, it needs to respect the mean craniofacial
anthropometric values. Therefore, in this work, 12 medical imaging sets from healthy individuals were
considered and their craniometry assessed, selecting the case with a higher degree of similarity with the
regional mean values. The selected dataset also included the contrast series and the angiographic CT
series. This series includes at least 2/3 of the head within the scan, which would help recognize cerebral
vessels. The main structures were segmented, and their geometry extracted. It is very important to add
that the chosen DICOM (Digital Imaging and Communications in Medicine) set was based only on the
MRI (Magnetic Resonance Imaging). Unlike for adults, where CTs are a common clinical approach,
the MRI is a preferable medical approach for young children. However, extracting bone structures
such as a skull from an MRI is a much more time-consuming procedure compared to the CT-based
extraction or a combined MRI-CT approach. At this point, it should be noted that several years of
intensive research have not been successful in establishing a generally accepted and undoubtedly
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functioning segmentation algorithm that could automatically perform an MRI-based task for the brain
instances. Therefore, mainly manual methods, as preferred in practice, are still used [77].

In stage II, with the aid of CAD (computer-aided design) tools, CATIA and Meshmixer software,
3D geometries were developed for the skull and brain, including their structural segmentation
(e.g., white versus grey matter). These 3D geometries were then imported to a FE software to model
the referred head structures (stage III).

In stage III, a mesh-sensitive study is carried out, varying the type of element and their size.
Triangular and tetrahedral elements, commonly used in FE head models, are associated with poor
performance issues, such as the constant-strain triangle [78,79], which is an issue in head modelling
due to the existence of strain gradients. Therefore, there is the necessity of employing quadrilateral and
hexahedral elements to eliminate artificial behaviours, which is not an easy task due to the complexity
of some intracranial structures, leading meshing algorithms to fail in its generation. In this work,
novel algorithms were used for the generation of high-quality, entirely hexahedral meshes, including
both soft and hard tissues. The same arguments are valid for fluid modelling, which is usually
oversimplified by employing solid tetrahedral or hexahedral elements. The aHEAD model employs
fluid–structure interaction (FSI) by smoother particle hydrodynamics (SPH), being able to simulate the
CSF (cerebrospinal fluid) flow during an impact, which is not properly done with conventional models
with solid elements and simple (n = 1) hyper-elastic material models [80].

Additionally, sub-models were developed to understand the feasibility of the modelling strategy
of each component and the constitutive modelling strategy. These sub-models also make it possible
to efficiently identify possible modelling issues that would be hard to diagnose in the full model.
As already referred, experiments were also carried out in order to identify suitable material models.

The penultimate stage IV was dedicated to the modelling of several intracranial structures of the
CNS. This stage demands meticulous actions in order to guarantee precise modelling of intracranial
structures, such as the superior sagittal sinus (SSS) and the bridging veins (BV) as well as the falx
cerebri and tentorium cerebelli. The final aHEAD 2-year-old child model is depicted in Figure 4.
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The final stage V, due to the inexistence of experimental child head impact data for the numerical
model validations, consists in a verification stage by simulating several tests where loading conditions,
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objects and impact regions are varied to impose several impact conditions, such as different degrees of
strain rate on the brain tissue.

4.1. Materials and Nomenclature

Analysing publications in the field of head numerical modelling and head biomechanics during
road accidents, Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety
(THUMS) models are the most popular [81,82]. Even though they are representatives of the group of
full-body response models, the grade of details is high concerning their implemented head models.
Moreover, unlike other models available in the literature, more recent versions of these models have a
division into grey and white matter. Medical cases show that most brain damage occurs at the interface
between grey matter and white matter, e.g., diffuse axonal injury. This is because these structures have
a different structure, which in turn must affect their mechanical properties.

Due to the fact that currently children’s models presented in the literature do not distinguish
between grey and white matter, the authors based their model on the material properties available for
global models GHBMC and THUMS as well as Ogden’s model.

The approach of this study is to use the above models of materials for either homogeneous
brain structure —i.e., without white/grey matter separation—or inhomogeneous brain structure —i.e.,
with white (W) and grey (G) matter. Thus, for a homogeneous brain model, the whole brain is modelled
by the white matter (W), whereas for an inhomogeneous model, the authors used different parameters
for both grey and white matter (W/G).

Therefore, the nomenclature of the materials used in this publication is as follows:

a. Hyper-elastic Ogden Rubber is MAT_HYPERELASTIC (W)
b. Viscoelastic GHBMC is MAT_VISCOELASTIC 1 (W or W/G)
c. Viscoelastic THUMS is MAT_VISCOELASTIC 2 (W or W/G)

The mechanical properties used for this study are tabularized in Table 4, whereas are:
ν—Poisson’s ratio, G0—shear modulus, G1—Long-time (G∞) shear modulus, Mu1—first shear
modulus, and alpha-1—first exponent for Ogden Rubber (Hyper-elastic) model material in LS-DYNA
code [81].
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Table 4. Mechanical properties of brain tissues from paediatric heads; units: t/mm/s/MPa.

Structure Reference Density
(t/m3)

Young’s Modulus or
Bulk Modulus (MPa)

Other Material
Parameters

Type
No. of FEs Image of Structure

White Matter—left/right
hemisphere

Fernandes 2017 [83,84]
- MAT_HYPERELASTIC 1.04 × 10−9 –

N = 0.49999
Mu1 = 0.0012

Alpha1 = 5.05007

hexa 233,760/245,830
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Table 4. Cont.

Structure Reference Density
(t/m3)

Young’s Modulus or
Bulk Modulus (MPa)

Other Material
Parameters

Type
No. of FEs Image of Structure

Bridging veins
Delye et al. 2006; LLC

Elemance 2014; Monea et al.
2014 [86–88]

1.13 × 10−9 30 0.48000
tri shell 410
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4.2. Boundary Conditions

The boundary conditions for the simulations were set following Hardy et al. [93], where the
measurements were recorded using a 6-axis accelerometer, which registered both linear and angular
acceleration. The output data from the accelerometer, with six different acceleration functions in time,
was used in the numerical simulations as the input load function applied to the skull’s centre of mass
(Figure 5). The geometric and material verifications were carried out based on the correlation with
Hardy’s research, which was based on the measurement of the relative displacement of the brain in
relation to the skull. The test with the identifier C755-T2 was selected for this research due to the
circumstance that it has been widely used in literature for Finite Element Head Models (FEHMs).
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Figure 5. Boundary conditions—linear and angular acceleration loading of skull Centre of Gravity
(CoG) according to Hardy et al. test C755-T2 [94]—marker numbers depicted for the frontal A (anterior)
and rear columns P (posterior). Below: coordinates of the node numbers (markers) relative to CoG of
the skull used for the simulations

In this study, the effect of the selection of the material model on the relative displacement
of the brain was investigated. The intracranial motion was compared between homogeneous
(just white matter—W) and inhomogeneous brain (different mechanical properties for white and grey
matters—W/G). Importantly, all markers (FE nodes) except for a5, are located in the white matter of
the brain.
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5. Results and Discussion

We commenced five simulations, where the model was subjected to the same acceleration loading
in accordance with the C755-T2 test:

� 2 simulations for MAT_VISCOELASTIC 1 (W and W/G)
� 2 simulations for MAT_VISCOELASTIC 2 (W and W/G)
� 1 simulation for MAT_HYPERELASTIC (W), as the data for grey matter is missing in the literature

for this model of material.

As the craniocerebral injuries arise as a result of the relative displacement of the brain relative
to the skull, we hypothesized that depending on the mechanical properties of the brain tissue,
the displacements may be significantly different. In practice, this can change the degree of brain tissue
damage. Thus, the study presents to what extent the application of the material model affects the
displacement of brain tissue. At the same time, the effect of grey matter and white matter separation in
the model on brain displacement is investigated.

The research results showed that depending on the material model used, the brain kinematics are
different. This phenomenon can be observed in Figures 6–11, where displacements as a function of
time for different groups of materials is presented.
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Figure 6. Displacement-in-time characteristics of the markers in the rear (p) and frontal (a) columns in
the X-direction using the homogeneous MAT_HYPERELASTIC (W) for the brain.
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Figure 7. Displacement-in-time characteristics of the markers in the rear (p) and frontal (a) columns in
the X-direction using the homogeneous MAT_VISCOELASTIC 1 (W) for the brain.
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Figure 8. Displacement-in-time characteristics of the markers in the rear (p) and frontal (a) columns in
the X-direction using the homogeneous MAT_VISCOELASTIC 1 (W/G) for the brain.
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Figure 9. Displacement-in-time characteristics of the markers in the rear (p) and frontal (a) columns in
the X-direction using the homogeneous MAT_VISCOELASTIC 2 (W/G) for the brain.

The obtained results for MAT_VISCOELASTIC 1 showed that taking into account the distinction
in the numerical model of white and grey matter may have a significant impact on brain displacement,
as shown in Figure 10, which depicts the markers placed in the brain model with only white matter (W)
and the brain model with the separation between white and grey matter (W/G). It should be noted that
in this simulation, both angular and linear velocities were implied as the mechanical loading. At this
point, it should be mentioned that angular acceleration is the main cause of DAI.

Interestingly, for MAT_VISCOELASTIC 2, the W/G matter separation does not significantly
influence the kinematics of the 10 selected markers (FE nodes). The overlapping displacement-in-time
characteristics for homogeneous and inhomogeneous MAT_VISCOELASTIC 2 are depicted in Figure 11.
This issue needs some further research, yet the authors’ hypothesis is that the Kelvin/Maxwell
relaxation/decay constant plays a significant role. When the relaxation/decay constant parameter
is lower, then tendency for relaxation behaviour in time increment is lower. Therefore, relaxation
strain is much lower for both grey and white matter. As a consequence, the strain difference
between grey and white matter do not expose such distinction in homogeneous and inhomogeneous
MAT_VISCOELASTIC 2 models.

Figure 12 depicts the relative resultant displacement of the brain for the C755-T2 test for the
MAT_VISCOELASTIC 1 (W/G) inhomogeneous brain model. We can observe that the most displaced
finite elements are located in the brain cortex as they are subjected to the highest angular acceleration.
It is worth to notice again that DAI is usually caused by high rotational accelerations, leading to shear
loads in the brain tissue [33]. A similar phenomenon is observed for all the considered configurations
in this paper.
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Figure 10. Comparison between homogeneous and inhomogeneous for the displacement-in-time
characteristics of the markers in the rear (p) and frontal (a) columns and in the X and Z-direction
MAT_VISCOELASTIC 1 for the brain.
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Due to the novel introduction SPH approach as the CSF, we obtained biofidelic interference 431 
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Figure 12. Relative resultant displacement (mm) of the brain in relation to skull CoG in 100 ms
intervals for inhomogeneous MAT_VISCOELASTIC 1 (W/G). The video is under the link https:
//youtu.be/-xbyx-nCMOI.

In all the respective simulations, we can see a noticeable pressure gradient at 10 ms after the
loading, i.e., just after the 20 g linear acceleration inducement. The occurrence of brain contusions
is associated with pressure gradients, correlated with linear acceleration during a head impact [95].
To a degree, traumatic brain hematoma is in a continuum with brain contusions and cortex lacerations
and can be secondary to those lesions in some cases. These lesions are usually seen in orbitofrontal
and temporal pole regions. Often, these lesions occur on the opposite area of the brain—so-called
contrecoup injuries, often more severe than coup lesions [39]. In Figure 13, the coupe phenomenon is
visible in the frontal lobe for all the studied models.
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Figure 13. Contours of hydrostatic pressure in (MPa) on the cortex approximately 10 ms after the loading
for (a) MAT_VISCOELASTIC 1 (W/G), (b) MAT_VISCOELASTIC 2 (W/G), and (c) MAT_VISCOELASTIC
1 (W)—the coupe phenomenon is visible in the frontal lobe.

Due to the novel introduction SPH approach as the CSF, we obtained biofidelic interference
between the brain and skull without a compromise of the simplifications often seen in the literature,
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such as node cortex-CSF-skull node sharing. Thus, in the aHEAD model, the particles can flow around
the brain and create soft support for brain tissue. This approach allows the authors to simulate proper
interaction between the skull and brain, as is depicted in Figure 14.
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The paediatric head trauma depends on many factors, such as environment and age. The most
common cause of injury among the paediatric population seems to be motor vehicle accidents. Falls tend
to be more common among the youngest, up to 5 years old [10,96–101]. Head injuries are the most
frequent trauma at this age range [96,102] and have the highest impact on adolescence life comparing
all age groups followed by injury repetition. After major head trauma, CT scans reveal skull fractures
of different magnitudes in over 50% of clinically not silent lesions [103], followed by a similar number
of brain concussions and brain edema. Less often, a posttraumatic SDH and EDH are found [103,104].
Due to the difficulty of obtaining CT images from healthy children, the authors only had magnetic
resonance images. This fact constitutes a certain difficulty in creating the skull model. The model of the
brain divided into segments allows us to accurately characterize the formation of the DAI mechanism
and makes it possible to determine the stress distribution at the white matter and grey matter junction.
Based on the presented research, the further the tissues are from the skull’s CoG, the bigger the relative
displacements are. This effect can be observed for markers a3, a4, a5, p3, p4, and p5 for all considered
material models.

In 2013, Bharat K. Soni et al. wrote: “( . . . ) little attention has been paid to detailed modelling
of the brain, which lags the complexity of currently published adult brain models. None of the
published paediatric head models have utilised different properties to represent grey and white
matter, although this distinction has been reported to influence injury prediction in the adult” [21].
Thus, the current approach goes beyond the state-of-the-art in this field. Numerical modelling related
to the biomechanics of head injuries can provide a quick and inexpensive way to predict how external
mechanical loads affect individual craniocerebral tissues. It should be noted that simulations using the
finite element method provide a much more accurate representation of the tissue biomechanics system
than multibody simulations. Nevertheless, preparing an accurate model with this level of complexity
is significantly labour-intensive and time-consuming. Models need a high level of representation of
anatomy, providing paediatric-specific data on head mechanical properties and of the environment of
injury. Many of the current models simplify the anatomy, due to the finite element meshing limitations.
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In that case, a vast propagation of injury energy can be seen, that does not necessarily represent the
true nature of the lesion and how the brain reacts to it in real life.

In every research method, there is a question with assessing the reliability of the obtained results.
The issue is to determine the mechanical properties of human’s body parts, including the tissues that
constitute the analysed anatomical region. Paediatric head models in impact biomechanics can offer
useful information to researchers, but it is currently difficult to consider quantitative results from the
models due to a lack of rigorous validation. Especially, due to the uncertainty, if the gathered data
can refer statistically to a wider group of patients with the same or similar age, or if the data simply
represents the underlying patient. It makes the data to a resilient choice of data from a limited set of
available real-world cases. What remains is the complex interpretation of numerical results. It helps to
reveal injury mechanisms while trying to prove the robustness of the data.

6. Conclusions

The limitation of in vivo studies on the human brain made the finite element modelling an
important tool to study head injuries. The numerical modelling might provide additional data about
brain injury propagation (occurrence of secondary brain trauma), and therefore have some input to
medical practice in the treatment of certain trauma cases. It might point to potential lesions, which are
not yet visible in radiological imaging, or not obvious on the initial examination. Compared with the
adult FEHM, relatively few studies have been reported for modelling paediatric impact biomechanics.
What is more, the degree of anatomical detail has been lagging behind that of the adult models. Scaling
down an adult head to obtain a child head in testing should not be used and specific child geometry is
needed to investigate child injury mechanisms.

The aHEAD 2yo model of a small child is very advanced in its structure and material compared
to the models currently available in the literature. The authors believe this comprehensive work
will push the state-of-the-art of paediatric head models. Although validation is limited due to the
inherent difficulties of obtaining experimental data, a new high-quality model is presented, and the
intracranial motion is assessed. These results will make it possible to further comparisons between
future numerical paediatric head models. Thus, the authors believe that this model may serve as the
benchmark model as all material data and the model structure have been revealed and referred.

It should be mentioned that in the presented model, the space for cerebrospinal fluid was filled
with the smoothed-particle hydrodynamics meshfree method. This approach allows cerebrospinal
fluid to have complex dynamics, which was presented in the paper. On the other hand, modelling
of local quasi-flow by implementing low shear-modulus by solid elements may inherit a significant,
yet not intended, support for the brain within the skull. Nevertheless, the vast majority of FEHMs have
set the cerebrospinal fluid as solid finite elements, which may not sufficiently reflect the biomechanics
of the tissue. In addition, the aHEAD model consists only of hexahedral elements for 3D structures.
However, in order for paediatric FEHMs to realise their full potential, extensive cadaveric or tissue
tests need to be performed. Since this is unlikely to occur, mainly due to ethical responses, some new
techniques and methods, such as the ones described in this study, must be developed to bridge the
gaps in the state-of-the-art.

The study showed that the use of the material model has a significant impact on the biomechanical
response of the brain during impact. At the same time, it has been presented that the differentiation
of white and grey matter may significantly affect brain displacement under the mechanical loading.
It can be interpreted that the model divided into grey and white matter more accurately reflects the
brain response in the real world compared to the unsegmented model. As a result, the biomechanics
of destruction in the interface of grey/white matter can be better investigated. It should be noted
that material models should be improved by conducting further experimental research on children’s
tissues. In particular, we still know very little about how the material characteristics change during
brain development. During this period, the mechanical properties and tissue proportions including
grey matter to white matter can change significantly. It is important to emphasize that currently,
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there is a lack of data for validation of children’s head models. To date, the current validation of
numerical models consists mainly of comparing acceleration and deflection force diagrams for fall and
compression tests.

Overall, the numerical biomechanics research has made a significant contribution to understanding
the mechanisms and tolerances of adult traumatic brain injury, and it continues to play a crucial role in
forming guidelines for adult motor vehicle occupancy, sports safety, and other fields where TBI or DAI
might occur.
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