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Abstract: Convolutional neural networks (CNNs) and digital holographic interferometry (DHI)
can be combined to improve the calculation efficiency and to simplify the procedures of many
DHI applications. In DHI, for the measurements of concentration differences between liquid samples,
two or more holograms are compared to find the difference phases among them, and then to estimate
the concentration values. However, liquid samples with high concentration difference values are
difficult to calculate using common phase unwrapping methods as they have high spatial frequencies.
In this research, a new method to skip the phase unwrapping process in DHI, based on CNNs,
is proposed. For this, images acquired by Guerrero-Mendez et al. (Metrology and Measurement
Systems 24, 19–26, 2017) were used to train the CNN, and a multiple linear regression algorithm was
fitted to estimate the concentration values for liquid samples. In addition, new images were recorded
to evaluate the performance of the proposed method. The proposed method reached an accuracy
of 0.0731%, and a precision of ±0.0645. The data demonstrated a high repeatability of 0.9986, with
an operational range from 0.25 gL−1 to 1.5 gL−1. The proposed method was performed with liquid
samples in a cylindrical glass.

Keywords: convolutional neural networks (CNNs); digital holographic interferometry (DHI);
phase difference; concentration

1. Introduction

A liquid sample can be classified using physical properties, such as concentration, color, boiling
temperature, and fusion point. In the case of concentration, this can be defined as the amount of solute
mass in the total volume of a solution [1]. There are many methods and tools for the estimation of
concentrations in liquid samples; however, most of them are invasive and destructive [2–4]. A technique
that is able to perform measurements of concentration differences with high accuracy, in a non-invasive
and non-destructive way, is digital holographic interferometry (DHI) [5].

DHI is a high precision, non-contact, non-invasive, non-destructive, and full-field optical metrology
technique [6,7]. DHI is able to measure, with a very high sensitivity, variations in the physical properties
of phase objects (i.e., a liquid sample in a glass container can be considered as a phase object), based
on the comparison of wavefronts recorded as holograms at different instants in times or states of
an object [8,9]. The holograms are recorded by an image sensor, and saved on a computer; then, a
reconstruction process can be performed using numerical methods [10–12]. The phase difference
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extracted from reconstructed object images is wrapped from −π to π. The accuracy of the DHI
depends on the accuracy with which the phase difference is estimated, which is usually noisy and
wrapped [13]. However, phase unwrapping methods require a robust algorithm [14–17]. In addition,
phase unwrapping methods have a trade-off between the computational cost and accuracy, i.e., a high
accuracy method requires more computational time [18].

The growth of new computer vision and open-source technologies can improve the trade-off

between computational cost and accuracy in phase difference estimation. A new promising technology
is the convolutional neural network (CNN). CNNs are mathematical algorithms that mimic the
functioning of the mammalian visual cortex using advanced operation blocks, and several layers of
neurons, due to the ability to approximate any continuous function accurately [19]. CNNs have been
applied to multiple tasks, including image classification, object detection, object tracking, and scene
labeling [20–26].

Specifically for the optical metrology techniques, CNNs have been applied as a phase demodulation
from a single fringe pattern in projection profilometry [27], as a phase and amplitude reconstructor
from a single hologram intensity pattern in holography [28], as an estimator of depth position
without multiple diffraction calculations in digital holography [29], and as an optical fringe pattern
denoising method in interferometry [30]. CNNs have also been applied in digital holographic
interferometry, including new phase unwrapping methods, e.g., Spoorthi et al. [31] proposed a
phase unwrapping method using the wrapped phase as input and wrap-count as a semantic label,
Zhang et al. [32] presented a phase unwrapping method based on a semantic segmentation algorithm,
and Zhang et al. [33] generated the unwrapped phase from the combination of a denoised wrapped
phase and a corrected integral multiple.

Therefore, in order to improve the calculation efficiency and simplify the procedures of phase
difference estimation, the aim of this research was to implement open sources and artificially intelligent
technologies for DHI in liquid samples. This research proposes to develop a new method that does not
need phase unwrapping to estimate concentrations with high sensitivity, high accuracy, and with a low
computational cost.

2. Materials and Methods

2.1. Experimental Setup

The optical system for concentration measurements was based on DHI. The principles and
mathematical equations of DHI are well known in the literature [5,6]. In DHI, phase difference maps
were obtained from the correlation between two holograms. The experimental setup we used to record
the holograms is shown in Figure 1. The optical system had a He-Ne laser light LA1 (CrystaLaser,
Reno, NV, USA) with a peak wavelength of λ = 543 nm, and with a maximum output power of 15 mW.
The laser beam was divided into two beams by a beam splitter BS1. One beam (object beam) was
sent to the L1 and L2 lenses to be expanded and collimated, respectively. Then, the object beam was
scattered by a diffuser D1, and passed through a common glass tube that contained the liquid sample
S1 to be analyzed.

The object beam passed through a rectangular aperture A1 and was collected by a positive lens L5.
Then, it was sent to a cubic beam splitter BS2 that was placed in front of an 8-bit charge-coupled
device camera (CCD) (Pixelink, Rochester, NY, USA). In addition, the liquid sample with respect to
the acquisition camera had a distance of 25 cm. Otherwise, the reference beam was reflected by the
M1 and M2 mirrors. Later, the reference beam was sent to the L3 and L4 lenses to be expanded and
collimated, and then, the output beam was sent to BS2 where it could interfere with the object beam,
which was right in front of the CCD camera.

A small angle fCX was introduced between the object and the reference beam on the Mach–Zehnder
configuration to achieve the off-axis holography geometry. The CCD was a monochromatic sensor with
1280 × 1024 pixels (1.3 MP) with an 8-bit dynamic range. The pixel size was 5.2 µm. The holograms
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were continuously recorded at 13 fps, while the liquid sample passed through the glass tube at a rate
of 12 mL/min. This allowed us to create a large image dataset by recording 13 different holograms
per second. The liquid sample was continuously injected by a syringe Infusion Pump KDS 200 (KD
Scientific Inc., Holliston, MA, USA).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 14 

 

holograms per second. The liquid sample was continuously injected by a syringe Infusion Pump KDS 94 
200 (KD Scientific Inc. Holliston, MA, USA). 95 

 96 

Figure 1. Schematic diagram of the experimental setup of digital holographic interferometry (DHI). 97 
LA1: laser; BS1 and BS2: cubic 50:50 beam splitters; M1 and M2: mirrors; L1, L2, L3, L4, and L5: lenses; 98 
D1: diffuser; S1: sample liquid (glass cylindrical tube; A1: rectangular aperture; CCD: charge-coupled 99 
device; : the spatial carrier frequency along the x direction of the sensor plane. 100 

2.2. Phase Difference Images 101 
Seven liquid samples were created by mixing 1 liter of distiller water with various masses of 102 

NaCl. The different masses of NaCl used are shown in Table 1. 103 

Table 1. Liquid samples used. 104 

 
Samples  

0 1 2 3 4 5 6 
NaCl (g) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 

In order to measure the concentration difference between two liquid samples, two holograms 105 
were recorded at different moments or states. A hologram is obtained from a wave-front. The wave-106 
front coming from certain liquid sample is represented as: 107 =  ( . ) ( , ) (1) 
where ( . ) is the amplitude,  is the phase of the wave-front, and ,  are the rectangular 108 
coordinates of the recording sensor plane. 109 

Then, a second hologram was obtained from a wave-front coming from another liquid sample 110 
or after slightly modifying the concentration of the liquid sample. The new wave-front is represented 111 
as: 112 =  ( . ) ( , ) (2) 

where  is the new phase that indicates a change in the optical path length, i.e., =  + Δ .  113 
The procedure continued with the calculation of the phase difference from the individual phase 114 

terms Δ =  + . A phase term depends on the transverse distances and the refractive index 115 
of the liquid mixture inside a glass tube. The refractive index difference is related to the change of 116 
concentration (CON) and the temperature (T) between liquid samples. In the case of aqueous salt 117 
mixtures, the liquid samples have a linear relationship between the refractive index and 118 
concentration (CON), which is considered to be constant at 1.71 × 10-3 at a temperature of 20°C. 119 
Therefore, the concentration difference between two liquid samples can be described as [5]: 120 

Figure 1. Schematic diagram of the experimental setup of digital holographic interferometry (DHI).
LA1: laser; BS1 and BS2: cubic 50:50 beam splitters; M1 and M2: mirrors; L1, L2, L3, L4, and L5: lenses;
D1: diffuser; S1: sample liquid (glass cylindrical tube; A1: rectangular aperture; CCD: charge-coupled
device; fCX: the spatial carrier frequency along the x direction of the sensor plane.

2.2. Phase Difference Images

Seven liquid samples were created by mixing 1 liter of distiller water with various masses of NaCl.
The different masses of NaCl used are shown in Table 1.

Table 1. Liquid samples used.

Samples

0 1 2 3 4 5 6

NaCl (g) 0.00 0.25 0.50 0.75 1.00 1.25 1.50

In order to measure the concentration difference between two liquid samples, two holograms were
recorded at different moments or states. A hologram is obtained from a wave-front. The wave-front
coming from certain liquid sample is represented as:

U1 = u1(x.y) eiφ1(x,y) (1)

where u1(x.y) is the amplitude,φ1 is the phase of the wave-front, and x, y are the rectangular coordinates
of the recording sensor plane.

Then, a second hologram was obtained from a wave-front coming from another liquid sample or
after slightly modifying the concentration of the liquid sample. The new wave-front is represented as:

U2 = u2(x.y) eiφ2(x,y) (2)

where φ2 is the new phase that indicates a change in the optical path length, i.e., φ2 = φ1 + ∆φ2−1.
The procedure continued with the calculation of the phase difference from the individual phase

terms ∆φ2−1 = φ2 + φ1. A phase term depends on the transverse distances and the refractive index
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of the liquid mixture inside a glass tube. The refractive index difference is related to the change of
concentration (CON) and the temperature (T) between liquid samples. In the case of aqueous salt
mixtures, the liquid samples have a linear relationship between the refractive index and concentration
(CON), which is considered to be constant at 1.71 × 10−3 at a temperature of 20 ◦C. Therefore, the
concentration difference between two liquid samples can be described as [5]:

∆φ2−1(x, y) = k
{
di(x, y)[1.71× 10−3][CON2(x, y) −CON1(x, y)]

}
(3)

where k = π/2λ, λ is the wavelength, CON1 and CON2 are the concentration values of two liquid
samples, and di is the inner transversal distance of the glass tube.

Therefore, the wrapped phase difference images were obtained from the difference between two
holograms with different concentrations. The wrapped phase difference images were obtained from the
difference between the different samples and the sample with only distilled water (0 g of NaCl), which
did not require special preparation. In addition, six classes were created with different concentrations,
and they are shown in Table 2. The wrapped phase difference images for each class are shown in
Figure 2.

Table 2. Classes created from the correlations between each sample (1, 2, 3, 4, 5, and 6) and reference
sample (0).

Classes

1 2 3 4 5 6

Difference (gL−1) 0.25 0.50 0.75 1.00 1.25 1.50
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Figure 2. Wrapped phase difference images taken randomly of the dataset of this research for each
class created by subtracted holograms.

2.3. Proposed Method

A simple and highly modularized network architecture for image classification is ResNeXt [34].
ResNeXt is an improvement of a previous version of ResNet due to its cardinality of 32. This next
dimension is known as cardinality. A high cardinality value is a more effective way of gaining
accuracy in image classifications. That is to say, ResNeXt is built by the repetition of building blocks
that add a set of transformations with the same topology, which allows for greater accuracy [35].
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ResNeXt architecture currently has the lowest Top-1 and Top-5 errors among Torchvision package
models [36]. The input size for ResNeXt is 224 × 224 RGB images. Therefore, the characteristics of
the ResNeXt model with transfer learning (TL) principles are ideal for use in this research. The main
principle of TL is that a CNN model that has been previously trained for a certain task is reused, and
trained again to learn a new task. This is possible by modifying the last fully connected layer according
to the new number of classes to classify in the new task, and using the process of fine-tuning, which
essentially retrains the whole model by unfreezing the convolutional base layers, and allows the weight
and bias to be recalculated (updating all of the model parameters). Figure 3 shows the TL process in a
CNN, where the last fully connected layer was changed, from classifying general images to classifying
the interferogram dataset collected in this research.
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Figure 3. Representation of the transfer learning (TL) process and the fine-tuning of the convolutional
neural network (CNN). The last fully connected layer of the CNN was changed from classifying general
objects to classifying the new dataset of wrapped phase images.

In this research, a ResNeXt model was used to extract implicit information from a dataset and
to then use the extracted information to create a feature vector. This feature vector was used to fit
a multiple linear regression (Regressor) to predict the concentration measurements from wrapped
phase images. The final layer in the ResNeXt model was the logits layer, which returns raw probability
values in a feature vector. The Regressor was fitted with the feature vector or logits vector, and an
equation was made. The equation relates the feature vector, obtained from the training dataset used to
fit the Regressor, with a new feature vector obtained from a new image. Figure 4 shows the generation
of the multiple linear regression from logits vectors obtained by the trained CNN. In addition, Figure 5
shows the general operation of the proposed method, where an unknown hologram was used as an
input image, and its logits vector obtained by the CNN was associated with the logits vector (used to
fit the Regressor) to estimate the concentration measurement.
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layer of the CNN was changed from classifying general objects to classifying the dataset collected in
this research.
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In addition, CNNs have a hierarchical organization in layers, which increases their
processing capacity. A CNN has the ability to learn low and high levels of features, and the
learned features are used to categorize the input image. A useful tool to understand how neural
networks categorize the input images is a saliency map. Saliency maps analyze the learned features and
offer a visualization of what the CNN uses to categorize. Saliency maps in computer vision can give
indications of the image regions that have more impact on the final decision of the CNN. A gradient
across the RGB output channel appears because the CNN works using three different filters, one for
each RGB color. Then, the backpropagation step used by the CNN gives classification clues when it
calculates the max gradient of the input image. In a saliency map, the dots in the max gradients are not
noise, they indicate the pixels in the image that contribute to the output classification. The higher dot
density in the phase difference maps is the central region, which strongly contributes to the CNN image
classification. Figure 6 shows some saliency maps randomly taken from this research. The saliency
maps show that the CNN model is focused in the image lines due to the phase differences, and not on
the noise generated by the high spatial frequencies.
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2.4. Training Process

A total of 7200 images of six different classes were recorded. To create the train images dataset
(1000 images per class), 6000 images were randomly taken. The remaining 1200 images were used to
build the validation dataset (200 images per class). In addition, 1000 new images were recorded with
intermediate concentration samples, which were used to prove the proposed method, and they were
not used to train the CNN. The intermediate concentration samples were made with NaCl masses of:
0.375 g, 0.625 g, 0.875 g, 1.125 g, and 1.625 g.

The image size registered by the CCD camera was 1280 × 1024 pixels, however, the images were
center cropped at 224 × 224 pixels, according to the input layer of the CNN.

The training process was developed and implemented using Google Colaboratory, a free cloud
service for machine learning education. It provides a virtual machine on a GPU (graphics processing
unit) of a Nvidia Tesla K80 with 2496 CUDA cores. ResNeXt was extracted from PyTorch torchvision
package. For the training of the CNN, the algorithm executed a total training of 100 epochs with the
optimizer of stochastic gradient descent (SGD). The epoch number was selected by analyzing the loss
of training according to previous executions of the training process. The network was trained with a
momentum of 0.9, and a stochastic gradient descent. The batch size was 40. The hyperparameters
used in the experiment are listed in Table 3.

Table 3. Hyperparameters used in the training process. Stochastic gradient descent (SGD).

Hyperparameters Value

Algorithm optimizer SGD
Number of epochs 100.0

Learning rate 0.001
Momentum 0.900
Batch size 40.00

2.5. Performance Metrics of the Proposed Method

The performance metrics were carried out in two stages. The first stage evaluated the performance
of the CNN as an image classifier, and the second stage evaluated the performance of the Regressor as
a concentration estimator.

2.5.1. Performance Metrics of the CNN

The confusion matrix is a metric for the evaluation of the CNN as image classifier. A confusion
matrix is defined by four terms, which are: true positive (TP, elements predicted as elements that
belong to a particular class, and that belong to that class); true negative (TN, elements predicted as
elements that do not belong to a particular class, and that do not belong to that class); false positive
(FP, elements predicted as elements that belong to a particular class, and that do not belong to that
class ); false negative (FN, elements predicted as elements that do not belong to a particular class, and
that belong to that class).

The accuracy is defined as the percentage of the total number of predictions that were correctly
classified and is calculated as:

Accuracy = (TP + FN)/N (4)

where N is the total number of elements to be classified.
The precision is the ability to predict an element according to the class it belongs to and is defined as:

Precision = TP/(TP + FP) (5)
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The recall is the ability of the classifier to label all the positive cases and is calculated as:

Recall = TP/(TP + FN) (6)

The specificity is the ability of the classifier to label all the negative cases and is defined as:

Speci f icity = TN/(TN + FP) (7)

The F-Score determines the precision of our classifier and is calculated as:

F− Score = (2 ∗ Precision ∗Recall)/(Precision + Recall) (8)

The receiver operating characteristic (ROC) is a graph of Recall versus Specificity. This graph
characterizes the ability of a CNN to identify positive cases as positive, and negative cases as negative.
Thereby, the area under the ROC curve (AUC) is the probability that a couple of positive and negative
cases chosen at random are correctly classified.

2.5.2. Performance Metrics of the Regressor

The coefficient of determination (R2) determines the quality of the model to replicate results. It is
described as:

R2 = 1− (
∑n

i=1 (y_truei − y_predicted))2/(
∑n

i=1 (y_truei − y_mean))2 (9)

where y_predicted is the predicted value; y_true is the true value, and y_mean is the average value of
the y true data.

The mean absolute error (MAE) is the mean of the difference between the true values and the
predicted values. It is calculated as:

MAE = (
n∑

i=1

abs(y_truei − y_predictedi))/n (10)

where n is the total number of data.
The mean square error (MSE) is a statistical measure of the goodness of fit or reliability of the

model according to the data. It is determined as:

MSE = (
n∑

i=1

(y_truei − y_predictedi)
2)/n (11)

3. Experimental Results and Discussion

The performance metrics were evaluated with the validation dataset, which consisted of six
classes with 200 images in each class. For the CNN evaluation as the image classifier, a perfect
classification was reached in the confusion matrix. The confusion matrix reached is shown in Figure 7.
The confusion matrix obtained was a diagonal matrix, where the main diagonal elements reached the
maximum classification percentage, i.e., the CNN correctly classified 100% of the images according
with their classes.
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Therefore, the performance metrics of the CNN as classifier reached the maximum score in
accuracy, precision, recall, specificity, F-score, ROC, and AUC. The values of the performance metrics
are shown in Table 4, and the ROC in Figure 8.

Table 4. Performance metrics of the CNN as classifier.

Metrics Value

Accuracy 1.0000
Precision 1.0000

Recall 1.0000
Specificity 1.0000

F-score 1.0000
Training time (min) 918.520
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The performance of the Regressor as a phase difference estimator was also calculated, and the
results obtained are shown in Table 5. The Regressor presented a high coefficient of determination (R2)
of 0.9986, which indicates that it is a high-quality model. Also, the Regressor presented low values of
MAE and MSE errors, which indicates that the model presented a good capacity to estimate. It is noted
that the regressor reached a high performance, however, there are errors that guarantee that the CNN
was not overfitted (the CNN did not memorize the images).

Table 5. Performance metrics of the Regressor. Mean absolute error (MAE), mean square error (MSE).

Metrics Value

R2 0.9986
MAE 0.0125
MSE 0.0002

Standard deviation 0.4238

The training accuracy and training loss curves are shown in Figures 9 and 10, respectively.
The CNN obtained a high value of accuracy of 90% in its first epochs; however, the CNN accuracy
presented fluctuations until the epoch 55 reached the maximum numerical score of accuracy.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14 
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The concentration values estimated by the proposed method with all the validation dataset are
shown in Table 6. The error relative between the true and predicted values, the standard deviation
(STD), the mean absolute error (MAE), and the mean square error (MSE) per class are also listed in
Table 6.

Table 6. Concentration estimated by the proposed method. Standard deviation (STD).

Values
Classes

1 2 3 4 5 6

True value 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000
Predicted value 0.2503 0.5031 0.7568 1.0002 1.2406 1.4942

Error 0.0003 0.0031 0.0068 0.0002 0.0094 0.0058
STD 0.0184 0.0141 0.0108 0.0115 0.0133 0.0201
MAE 0.0148 0.0116 0.0101 0.0090 0.0131 0.0166
MSE 0.0003 0.0002 0.0002 0.0001 0.0002 0.0004

According to the validation dataset, and the classes with which the CNN was trained, the proposed
method presents a precision of ±0.0147, and an accuracy of 0.0043%.

In addition, five new classes with different phases of difference were used to verify the proposed
method. The difference phases estimated by the proposed method are shown in Table 7. Also, the new
holograms are shown in Figure 11. These holograms were not used before in the training process.

Table 7. The estimated concentration of extra recorded holograms with the proposed method.

Values
Classes

7 8 9 10 11

True value 0.3750 0.6250 0.8750 1.1250 1.3750
Predicted value 0.4647 0.7167 0.9134 1.0776 1.2766

Error (%) 0.0897 0.0917 0.0384 0.0474 0.0984
STD 0.1219 0.0330 0.0569 0.0361 0.0746

It should be noted that the errors in Table 6 are smaller than the values obtained with the
conventional DHI method [5]. However, in Table 7 the errors are slightly higher; however, the precision
can be improved if the image dataset is increased.
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Therefore, the proposed method can calculate concentration ranges from 0.25 gL−1L to 1.5 gL−1,
with a precision of ±0.0645, and accuracy of 0.0731% based on data and classes that were not used to
train the CNN.

4. Conclusions

In this paper, a new method to skip the phase unwrapping process in DHI based on CNNs is
proposed. The CNN and the Regressor were used to estimate the concentrations of liquid samples
in a cylindrical glass, using the images obtained with digital holographic interferometry. Using DHI
to measure difference concentration values in liquid samples, large differences created phase map
differences with high-frequency fringes, and the fringes appeared as noise. In addition, the liquid
samples needed to be fragmented to create minor concentration liquid values, which created phase
difference maps that could be correctly mapped by the sensor, and could be unwrapped with
common methods.

Using a CNN, the concentration liquid samples were estimated using the phase map difference,
and the unwrapping process was omitted. This method directly estimated the concentration values in
liquid samples associated with difference phases, without the necessity of common phase unwrapping
processes due to the CNN that was trained to quantify the phase wrapped images. In other words, the
proposed method was able to estimate the concentration values from an input image based on the spatial
distribution of the phase wrapped image without using the conventional phase equations. Although the
differences among the image samples for each class could be obvious to the eye, their classification
and quantification is not, and the CNN must be trained to estimate the sample concentrations that are
different from those it was trained with.

In other words, our proposed method was able to estimate the concentration values for classes that
were unknown based on the central region of the input image. The results showed a performance with
high accuracy and precision. Once the CNN was trained and the Regressor was fitted, the proposed
method was able to calculate the concentration values directly, with classes that were not used in
the training process, as long as the values were in the operational range. As further work, a range
extension could be performed, and a different form of the unwrapping phase based on CNNs could
be analyzed.
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