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Abstract: Food chains and food webs describe the structure of communities and their energy flows,
and they present interactions between species. Recently, diverse methods have been developed
for both experimental studies and theoretical/computational studies on food webs as well as
species interactions. They are effectively used for various applications, including the monitoring
and assessment of ecosystems. This Special Issue includes six empirical studies on food chains
and food webs as well as effects of environmental factors on organisms in aquatic ecosystems.
They confirmed the usefulness of their methods including isotope, DNA-barcoding with gut contents,
and environmental DNA for biological monitoring and ecosystem assessment.
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1. Introduction

It is important to understand the role and function between organisms’ interactions in the food
web of the aquatic ecosystem. The key biological interaction in the aquatic food web is matter cycling
mediated by the food chain, and predation often works as a regulating factor for energy pathways,
as well as determining species composition in the ecosystem [1]. In particular, the food sources at
the species levels are critical components linking organisms with larger predatory species such as
crustaceans and fish within the grazing food chain: rotifers-copepods, micro/macroinvertebrates,
and larval/mature fish [2,3]. Consequently, they function as a channel for the flux of organic matter
within diverse organism assemblages organized in an intermediate position between the two different
food webs, and a way of transferring nutrients and energy from the prey species–predator species loop
to higher trophic levels. Thus, the biological prey–predation interactions in the food web are receiving
great attention to understand not only the interrelated biological relationships but also the structure
and function of aquatic food webs [4].

In recent years, genomic and next-generation sequencing (NGS) technologies have developed
rapidly and been applied to the ecological domain. Meta-barcoding techniques have accreted
the reliability of identifying specific taxonomic groups of organisms at both species and genus
level [5], and environmental DNA (eDNA) have enabled the detection of invisible species in various
situations [6,7]. The eDNA approaches have also been used to clarify and understand systematic ecology,
particularly biological trophic interaction in both aquatic habitat environments and food webs by
collecting information from food sources found in gut contents of species and the excrement of lived
organisms. This helps to overcome unidentified limitations of food source analyses, which were
based on microscopic analysis [8–11]. At present, it is necessary to develop a method to separate
pure gut content from target organisms for a wide range of applications of DNA technology in
food source identification. In addition, the most fundamental methodology is to produce a framed
“blocking primer”, which removes the DNA of the target species from the target gut contents.
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On the other hand, changes in temperature, salinity, and metal contamination could affect
the uptake, elimination, and biotransformation rates of common organisms [12]. Increasing water
temperatures can act as a stressor that impacts the immune and physical responses of aquatic organisms,
especially the cascading food chain network linking of plankton–invertebrates–fish communities.
Accordingly, a temperature change can significantly affect food chains’ related development and the
health of aquatic prey and predation organisms. Further, temperature is known to have a significant
effect on oxidative stress biomarkers for aquatic organisms. Due to the fact that climate change is
expected to result in more frequent and intense heat shock events, it is pertinent to investigate the
effect of increasing temperatures on the oxidative stress response of common aquatic organisms.

Oxidative stress is induced by a wide range of environmental components including temperature
changes, UV stress, chemical action and oxygen shortages, and an over-production of reactive oxygen
species (ROS) in relation to defense mechanisms [13]. The overproduction of ROS can generate
oxidative stress which leads to permanent cell damage. Thus, the intracellular accumulation of ROS
would not only disrupt the functions of specific tissues and organs but also lead to the premature death
of the entire organism [14]. Oxidative stress biomarkers have been widely used in the development of
ecological indices and in the assessment of the exposure of aquatic organisms to contaminants from
agricultural, industrial, and urban pollution [15]. Oxidative stress is also involved in many biological
and pathological processes and normal physiological development [13]. Currently, the study of many
molecular markers has been developed in order to understand the physiological response of organisms.
Superoxide dismutases (SODs) and catalase (CAT) are important antioxidant enzymes to protect the cell
from oxidative damage by ROS. Especially, heat shock protein 90 (HSP90), a highly conserved protein,
is a dimer that binds to several cellular proteins, including steroid receptors and protein kinases [16,17].
In aquatic animals, the induction of HSP90 genes and HSPs family has been widely reported in
response to cellular stress, including temperature elevation, osmotic stress, hormone stimulation,
herbicide toxicity, and viral infections [18,19].

This Special Issue (“Food Chains and Food Webs in Aquatic Ecosystems”) aims to share recent
information on the study for food chains and food webs in aquatic ecosystems focusing on biological
monitoring and assessment of aquatic ecosystems.

2. Papers in This Special Issue

The six papers included in this Issue focus on food chains and food webs in aquatic ecosystems as
well as on effects of environmental factors.

To test a hypothesis that differences in invertebrate and fish assemblages in lakes characterized
by different trophic conditions determine patterns of variation in the trophic niche width of the fish
species depending on their specific feeding habits, Caputi et al. [20] studied the feeding behavior of
two omnivorous species (Anguilla anguilla and the seabream Diplodus annularis), which are ecologically
and economically important, using the stable isotope analysis of carbon (δ13C) and nitrogen (δ15N).
They found that A. anguilla was a generalist in the eutrophic lake, whereas D. annularis became more
specialist, suggesting that changes in macroinvertebrate and fish community composition affect the
trophic strategies of high-trophic level consumers.

Identification of gut contents is helpful to analyze the food source of animals. However, it has
several limitations such as small size and fragmentation of gut materials. To overcome these limitations,
recently, genomic approaches have been applied to understand the biological interaction including
food webs [9,10,21]. Oh et al. [21] proposed a pretreatment method for DNA-barcoding to analyze
gut contents of rotifers to provide a better understanding of rotifer food sources and showed that the
proposed method is useful to identify food sources of small organisms.

Jo et al. [22] and Kim et al. [23] presented the application of eDNA in costal aquatic ecosystems.
Jo et al. [22] determined aquatic community taxonomic composition using eDNA based on an NGS
and analyzed the community spatial distribution with regard to environmental parameters and the
habitat types. Meanwhile, Kim et al. [23] compared water sampling between the eDNA method and
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conventional microscopic identification for plankton community composition related to ecological
monitoring and assessment of aquatic ecosystems. They found that the eDNA approach provides
a wider variety of species composition, while conventional microscopic identification depicts more
distinct plankton communities in sites, suggesting that the eDNA approach is a valuable alternative
for biological monitoring and diversity assessments in aquatic ecosystems.

Kim et al. [24] assessed the spatial distribution of benthic macroinvertebrate communities
responding to their environment such as land use and water quality, and concluded that
information such as land use which is easily available characterized effectively the distribution
of benthic macroinvertebrates.

To evaluate the toxic effects of di-2-ethylhexyl phthalate (DEHP) on cellular protection in
Macrophthalmus japonicus crabs, Park et al. [25] identified two stress-related genes and investigated
the genomic structure, phylogenetic relationships with other homologous heat shock proteins (HSPs),
and transcriptional responses of HSPs under DEHP stress. Their results suggested that DEHP toxicity
could disrupt cellular immune protection through transcriptional changes to HSPs in the test organisms.

3. Conclusions

Food chains and food webs describe the structure of communities and their energy flows, and they
present interactions between species. Recently, diverse methods have been developed for both
experimental studies and theoretical/computational studies. They improve our fundamental ecological
knowledge and are effectively used for various applications, including the monitoring and assessment
of ecosystems. In particular, ecological monitoring and assessment have advanced in recent decades.
Along with the progress of molecular and eDNA techniques, the process of monitoring and assessment
has become rapid and accurate. A wide variety of ecological disturbances associated with temperature
and salinity changes and other environmental factors are being recognized as threats to the food chain
functions of freshwater and marine ecosystems.

This Special Issue included empirical studies on food chains and food webs in aquatic ecosystems.
They confirmed the usefulness of their methods including isotope, DNA-barcoding with gut contents,
and eDNA for biological monitoring and ecosystem assessment. In further studies, however,
theoretical and computational approaches including food web modelling and network analyses are
expected to characterize quantitatively the interactions among species as well as ecosystem structures
and dynamics through the collaborative works between experimental and computational scientists.
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