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Abstract: Sweet bell peppers are a Solanaceous fruit belonging to the Capsicum annuum L. species whose
consumption is popular in world gastronomy due to its wide variety of colors (ranging green, yellow,
orange, red, and purple), shapes, and sizes and the absence of spicy flavor. In addition, these fruits
have a characteristic flavor and nutritional attributes that include ascorbic acid, polyphenols,
and carotenoids. A quality criterion for the harvest of this fruit is maturity; this attribute is visually
determined by the consumer when verifying the color of the fruit’s pericarp. The present work
proposes an artificial vision system that automatically describes ripeness levels of the bell pepper
and compares the Fuzzy logic (FL) and Neuronal Networks for the classification stage. In this
investigation, maturity stages of bell peppers were referenced by measuring total soluble solids (TSS),
◦ Brix, using refractometry. The proposed method was integrated in four stages. The first one consists
in the image acquisition of five views using the Raspberry Pi 5 Megapixel camera. The second one
is the segmentation of acquired image samples, where background and noise are removed from
each image. The third phase is the segmentation of the regions of interest (green, yellow, orange
and red) using the connect components algorithm to select areas. The last phase is the classification,
which outputs the maturity stage. The classificatory was designed using Matlab’s Fuzzy Logic
Toolbox and Deep Learning Toolbox. Its implementation was carried out onto Raspberry Pi platform.
It tested the maturity classifier models using neural networks (RBF-ANN) and fuzzy logic models
(ANFIS) with an accuracy of 100% and 88%, respectively. Finally, it was constructed with a content of
◦ Brix prediction model with small improvements regarding the state of art.
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1. Introduction

Native to the Americas, sweet bell peppers are a Solanaceous fruit belonging to the
Capsicum annuum L. species. It is a non-pungent fruit that is valued for its color, flavor, and nutritional
attributes including ascorbic acid, polyphenolics, and various carotenoids. It comes in a wide variety
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of colors (ranging green, yellow, orange, red, and purple), shapes, and sizes, as well as because it has a
high content of ascorbic acid, polyphenols, and other antioxidants. Nowadays, bell peppers are widely
consumed in various ways, dehydrated, preserved, frozen, or raw for packaged salads. Generally,
the harvest of bell peppers is determined by the size, color, and texture of the fruit. Traditionally,
the harvest of this fruit is done by reaching physiological mute when the pericarp becomes thick and
the fruit reaches the typical size. However, estimating pepper maturity at the green stage can be
difficult even for fruit with similar physical attributes [1]. Under certain conditions, bell peppers can
begin to ripen during shipping. Partially ripened fruit, classified as chocolate or suntan, have lower
market values than at the solid color stage.

The bell peppers reach their optimum state of maturity for use in the kitchen when they are
in solid color. Consumers prefer this fruit in its best stage of maturity more so than its physical
appearance and nutritional content [2]. Dutch researchers specializing in the sensory area, reported
that study groups have considered that more ripeness of bell peppers is sweeter and has a red pepper
aroma, while those in the green stage were rated for bitterness and aroma of herbs and cucumber [3].
On the other hand, ripe peppers are more expensive to produce, due to the longer time required for
ripening and the greater likelihood of damage from insects or disease. Furthermore, ripe peppers
are more susceptible to physical damage during transport. In addition, they have a shorter shelf life
due to the stage of maturity at which they are harvested. These fruits are non-climacteric regarding
postharvest respiratory patterns. At the mentioned stage, bell peppers will progress through the
normal ripening process to degrade chlorophyll while simultaneously synthesizing a variety of red
and yellow carotenoids. The red and yellow varieties are the peppers most on demand by consumers,
followed by the orange and purple varieties [4].

Bell pepper contains provitamin A, carotenoids, and xanthophylls. Many studies have focused
on improving retention of these compounds during processing and storage [5–10] that increase their
concentration as the fruit reaches a major state of maturity. Bell peppers also contain high concentrations
of ascorbic acid (0.15–2.0 mg·g−1 fresh weight) compared to other fruits and vegetables [11–30].
The production of ascorbic acid in peppers and other fruits are related to glucose metabolism and
light exposure, and concentrations of both ascorbic acid and sugar reduction typically increases
with the stage of maturity [14]. Polyphenolics are also an important chemical component in bell
peppers and impart functional properties to the plant such as disease resistance and potential health
benefits to consumers. Some studies found that total phenolics, including the flavonoid quercetin,
decrease with increased maturity for yellow bell peppers, but increased for other pepper varieties [6].
Estrada et al. [31] also demonstrated a decrease in free phenolic concentrations in peppers over five
stages of maturity. Pepper growers could reduce field production costs by hastening the fruit ripening
rate on the plant or by harvesting the fruit before attaining full color and completing the ripening
process during storage without appreciable loss in quality or phytochemical attributes. An important
criterion for consumers of sweet pepper is its sweetness, commonly estimated with the content of
soluble solids (SSC) [22]. This parameter is associated with the different stages of fruit maturity [24–28].
The measurement of SSCs is traditionally a destructive test, to perform it, the most used instrument is
the refractometer. This is an optical instrument that measures the refractive index of the juice from the
sample [29,30].

At present, the food industry has demanded the use of non-invasive high precision measuring
equipment that determines the external and internal quality parameters of the fruits [32]. In this respect,
one of the disciplines that has had a great impact on fruit quality control is computational vision
(VC). This has the characteristic that emulates the functionality of human vision and allows spatial
and optical information from the captured image of the sample. Different investigations have been
reported with VC focused on determining the degrees of ripeness of various fruits such as persimmon,
strawberries, pomegranate, and tomato [33–35]. The present work aims to implement an artificial
vision system that automatically describes the ripeness levels of the bell pepper.
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More recently, total soluble solids (TSS) or Brix grades are a classical tool to determine the
maturity of the fruits in the food industry even though it is a destructive technique. The content
of TSS consists of 80–95% sugars and the measure of TSS is associated with the dissolved sugars in
cell juice [36]. These authors affirmed that the quantity of sugars in the fruit depends mainly on the
variety, the assimilatory yield of the leaves, the leaf/fruit ratio, the climatic conditions during the
development of the fruit, the state of development, and the maturity. The accumulation of sugars is
associated with the development of optimum quality for consumption. Although the sugars can be
transported to the fruit by the sap, they are also contributed by the splitting of the starch reserves of
the fruits [36]. When the fruits in general have their highest sugar content, they have reached their
physiological maturity, which coincides with what was investigated in relation to the bell peppers
and their greater ripeness [37]. The TSS content showed a constant increase as the fruit maturity
status increased, which could be seen with an increase in color fastness in the sample bell peppers.
The ascending behavior of TSS content is consistent with that reported in the literature [37]. Kays [38]
explained that, when the fruit is ripening in the plant, the sugars increase their concentration by the
translocation of sucrose from the leaves, which occurs in most species. However, there is also the
recycling of the respiratory substrate from the carbon stored in the fruit. Overall, highly significant
positive correlations of soluble solids content were found with this research. The measurement of the
TSS was done in triplicate with two different refractometers, an ATAGO Refractometer (MASTER-M
model, Tokyo, Japan), Brix measurement scale of 0.0–33.0%, with a minimum of 0.2%, an accuracy of
±0.2%, and repeatability of ±0.1%; and a HANNA brand refractometer, model HI 96802 (Woonsocket,
RI, USA), Brix measurement scale of 0.0–85.0%, with a temperature range of 0–80 ◦C, an accuracy of
±0.2%, and repeatability of ±0.1%.

Figure 1 shows the distribution of Brix grades of soluble solids content in the four stages of
maturity of the fruit. This allowed us to establish that the grouping of the samples contemplates
different stages of maturity of the bell pepper. This describes an increase in sugars from maturity Stage
1 to Stage 3 and the maximum sugar content is in State 4.
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Figure 1. Distribution of Brix Grades in different stages of maturity.

2. Related Work

Currently, the high demand in the food industry has created the need for a fast and effective
way to control the quality of products, which has led to the application of intelligent systems such
as artificial vision that helps determine the internal and external properties of the fruits resulting in
the stage of maturity. Different authors have focused on determining the maturity of various fruits
such as apricot, nightshade, citrus, coffee, and mango. It is worth mentioning several studies that have
focused on determining the maturity of bell peppers and estimating total soluble solids [39].
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Harel et al. [40] classified their maturity using the random forest algorithm, which identified four
classes: fully green, partially colored immature, mature partially colored, and colored.

Elhariri et al. [41] used an algorithm based on a support vector machine (SVM) for classification.
This identified five maturity classes associated with green and red shades.

Shamili et al. [42] proposed a polynomial regression model that estimated the soluble solids
content of mango. The descriptor that he proposed was the normal values of * a of the images captured
from five types of mangoes; the samples he used had different percentages of skin coloration of 0%,
20%, 25%, 50%, and more than 50%.

Li et al. [43] used hyperspectral imaging in the visible and near-infrared (VNIR) and short-wave
near-infrared (SWIR) regions focused on measuring maturity, firmness, and suspended sediment
concentration (SSC). This research showed that there is a strong correlation between the SSC and the
average spectra obtained from one or two opposite sides of the fruit in the SWIR region.

Another similar work was carried out by Teerachaichayut et al. [44], who proposed several
models for limes to determine total soluble solids (TSS) and titratable acidity (TA) using partial least
square regression.

3. Materials and Methods

3.1. Samples

A sample set of 50 bell peppers produced in the Laja-Bajió region, Guanajuato, Mexico was
analyzed. The selected sample attributes consider different maturity degrees and homogeneous
size [45]. For the training of the vision system, fruits with homogeneous and defined colors were
chosen. Therefore, samples showing heterogeneous colors with various spots in the pericarp were
excluded for this stage but were included for general testing. The bell peppers were classified into
four classes, as shown in Figure 2. Class 1 grouped ten green samples. Class 2 was made up of seven
yellow fruits. Class 3 was fourteen orange pigmented fruits. In Class 4, nineteen samples with a red
hue were grouped.
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3.2. General Structure of Artificial Vision System

Figure 3 shows the proposed method for predicting the sugar content of bell pepper. The first
step of the proposed method was the acquisition of the image samples using computer vision system
(VCS). The second step was the segmentation of the fruit in the image, where the background and the
supersaturated pixels were removed. The third step was the masking step to identify the regions of
interest with green (GPOI), yellow (YPOI), orange (OPOI), and red (RPOI) pixels. These were obtained
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by means of four masks that use the red, green, blue (RGB) components of the segmented images.
The fourth step was to obtain the areas of each region of interest (GAROI, YAROI, OAROI and RAROI).
The fifth step was the classification of the fruit with the areas from the filters. The last step was the
prediction of ◦ Brix, which was done with the class and the areas determined by the masks.
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3.3. Image Acquisition

Five images per fruit were captured, as shown in Figure 4. The image format was JPG with a
resolution of 768 × 1366 × 3. The acquisition was made with a computational vision system (VSC) that
operates with OpenCV-Python language. This was integrated by the isolation, lighting, image capture,
and image processing subsystems. The insulation subsystem consisted of a black cabinet of dimensions
38 cm × 38 cm × 43 cm, which allowed the reduction of variations in lighting. The architecture used by
the lighting subsystem was a 5.4 W led ring configuration placed 30 cm above sample. The image
capture was performed with Raspberry camera module (8 megapixels), and the processing platform
was Raspberry Pi 3 card [33].
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3.4. Automatic Sample Classification

In the second phase, the degrees and averages of the RGB channels of the segmented images of
each fruit were mapped, as shown in Figure 5. G (green) corresponds to samples belonging to Class 1,
Y (yellow) label to samples of Class 2, O (orange) label to samples of Class 3, and R (red) label to the
samples of Class 4. In the last phase, the regions of interest corresponding to the green, yellow, orange,
and red tones were carried out.

1 

 

 

Figure 5 

 

Figure 5. Mapping averages of the red, green, blue (RGB) channels for four classes of bell peppers.

3.5. Obtaining Regions of Interest

Obtaining regions of interest used the methodology proposed by Goel et al [32], as shown in
Figure 6. (i) The first step required the binarization of the captured images, which was done using
the Hue, Saturation, Value (HSV) color space model. This change in the color space model allowed
obtaining the frequency of each color in the visible spectrum with component H, the purity of color
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with component S, and the proximity of the pixel to black and white with component V. The thresholds
used to segment the background of the samples were 122 ≤ H ≤ 255, 127 ≤ S ≤ 255, and −0 ≤ V ≤ 255
using a range from 0 to 255. (ii) The second step was segmentation of images of each view of bell
pepper using a component connection algorithm, and later all the small regions smaller than 400 pixels
that did not correspond to the binarized image of the sample were discriminated. (iii) The last step was
to use respective masks to obtain regions of interest due to its color. Table 1 shows the four ranges of
the Hue parameters to identify the pixel areas with green (47 ≤ H ≤ 118), yellow (32 ≤ H ≤ 46), orange
(15 ≤ H ≤ 32), and red (155 ≤ H ≤ 241) hue of the images. Most of the masks except the red mask one
used the range from 0 to 255 for the S and V components to identify the different color regions. The red
mask used a smaller range of the S component that allowed the areas with orange and red pixels to be
correctly identified. These thresholds were obtained using the 50 samples where each of its segmented
images was analyzed. These masks identify the pixels corresponding to the green, yellow, orange,
and red shades.
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Figure 6. Pre-processing of images: (i) binarization of the image captured from the fruit; (ii) segmentation
of the image and discrimination of areas; (iii) obtaining segmented sample applying the green mask
of interest region; (iv) obtaining segmented sample applying the yellow mask of interest region;
(v) obtaining segmented sample applying the orange mask of interest region; and (vi) obtaining
segmented sample applying the red mask of interest region.

Table 1. Segmentation mask thresholds.

Green Mask

H min H max S min S max V min V max

47 118 0 255 0 255

Yellow Mask

H min H max S min S max V min V max

32 46 0 255 0 255

Orange Mask

H min H max S min S max V min V max

15 32 0 255 0 255

Red Mask

L min L min L min L min L min L min

241 155 11 247 0 255
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3.6. Maturity Status Estimator

3.6.1. Artificial Neural Network (ANN)

Artificial neural networks (ANN) are mathematical models that emulate the functioning of
biological neural networks. This was used in this study for its structural simplicity, learning skills,
and its application for the approach, classification, and pattern recognition. Figure 7 presents the ANN
architecture that was used to estimate the ◦ Brix content of the fifty samples presented in Figure 1.
Its architecture consisted of an input layer, three hidden layers, and an output layer. The input layer
is used to present the training and test patterns that correspond to the GAROI, YAROI, OAROI,
and RAROI regions of interest. The hidden first layer used radial base-type activation functions,
each of its neurons calculating the similarity between the input and its training set. The second hidden
layer adds the values of each neuron from the first hidden layer that are multiplied by their weight
associated with each neuron to obtain the class that the sample belongs to. The third layer of neurons
employs neurons with sigmoidal-type firing functions where the sample classification information and
the four regions of interest were weighted. The output layer is of the linear type, allowing the Brix
content to be estimated using the weights associated with the neurons of the third hidden layer.
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One of the ANNs most used in classification tasks is radial basis function ANN (RBF-ANN),
as shown in Figure 8. Its architecture uses an input layer, hidden layers, and output layer. The input
layer is used to present the training and test patterns. The hidden layer is made up of radial (Gaussian)
functions that are completely interconnected between all its nodes with the input layer, which are
activated by this function. The output layer is activated by the linear functions that determine the
classification and is interconnected with all the nodes of the hidden layer.
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Figure 8. RBF-ANN maturity classifier.

The proposed RBFNN classification models were developed with Matlab’s Deep Learning Toolbox.
The main difference between them is the number of neurons that the hidden layer contains, as shown in
Table 2. The inputs used by each classifier are the interest regions with shades of green, yellow, orange,
and red and the outputs are the four classes. The model design used 70% of the data for training,
20% for validation, and the rest for the testing stage.
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Table 2. RBF-ANN maturity classifier.

Inputs Number of Neurons in the Hidden Layer Output Epochs Accuracy

Model 1 4 4 4 10 92%
Model 2 4 5 4 10 98%
Model 3 4 8 4 10 100%
Model 4 4 10 4 10 100%
Model 5 4 15 4 10 100%

Together, three models of two-layer feed-forward network with sigmoid hidden neurons and
linear output neurons (Fitnet) are proposed. Figure 9 presents the architecture of the implemented
model to predict the ◦ Brix content of bell peppers. Three models were proposed where their main
difference is the number of neurons in the hidden layer, as shown in Table 3; the precision of each
model to predict the ◦ Brix was different.
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Table 3. Models using neural network Feedback prediction of Brix degrees.

Inputs Number of Neurons in
the Hidden Layer Output Epochs Mean Squared

Error (MSE)
Pearson Correlation

Coefficient (R)

Model 6 4 4 1 10 0.5483 0.68659

Model 7 4 5 1 10 0.5013 0.50130

Model 8 4 8 1 10 0.5016 0.73176

Model 9 4 10 1 10 0.4676 0.75910

Model 10 4 15 1 10 0.3888 0.79543

3.6.2. Fuzzy Logic

Fuzzy Logic (FL) is a discipline of Artificial Intelligence that analyzes real-world information on a
scale between true and false. This is integrated by three stages: fuzzification, the inference that uses a
series of linguistic rules, and defuzzification. Figure 10 shows a structure of the fuzzy classification
system proposed to classify bell peppers. It has four inputs and one output.

The regions of interest of each shade correspond to the input and are used to identify the degree
of maturity associated with the output fuzzy system. It is used to identify segments or regions of
interest with shades of green, yellow, orange, and red. The output has different ranges for each class.
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Fuzzification of the input variables was carried out with membership functions of triangular type,
which are characterized by their easy implementation in hardware. The linguistic variables used were
low, medium, and high, as shown in Figures 11–14. The mathematical functions of each membership
function are described in Equations (1)–(12). Together, the different pixel areas were used to increase
the sensitivity of the fuzzy system to infer maturity changes.

LowGARO = {
50−GAROI

50
0 < GAROI ≤ 50 050 < GAROI ≤ 100 (1)

MediumGAROI{
GAROI

50
0 < GAROI ≤ 50

100−GAROI
50

50 < GAROI ≤ 100 (2)

HighGAROI = {00 < GAROI ≤ 50
GAROI − 50

50
50 < GAROI ≤ 100 (3)

LowYAROI = {
29.09−YAROI

29.09
0 < YAROI ≤ 16.48 016.48 < YAROI ≤ 34.73 (4)

MediumYAROI = {
YAROI
29.09

0 < YAROI ≤ 29.09
58.17−YAROI

29.08
V < YAROI ≤ 58.17 (5)

HighYAROI = 00 < YAROI ≤ 29.09
YAROI − 29.09

29.09
29.09 < YAROI ≤ 58.17 (6)

LowOAROI = {
16.48−OAROI

16.48
0 < OAROI ≤ 16.48

OAROI − 34.73
18.25

16.48 < OAROI ≤ 34.37 (7)

MediumOAROI = {
16.48−OAROI

16.48
0 < OAROI ≤ 16.48

OAROI − 34.73
18.25

16.48 < OAROI ≤ 34.37 (8)

HighOAROI = {
16.48−OAROI

16.48
0 < OAROI ≤ 16.48

OAROI − 34.73
18.25

16.48 < OAROI ≤ 34.37 (9)
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Low RROI =
{ 16.48−RROI

16.48 0 < RROI ≤ 16.48
RROI−34.73

18.25 16.48 < RROI ≤ 34.37
(10)

Medium RROI =
{ 16.48−RROI

16.48 0 < RROI ≤ 16.48
RROI−34.73

18.25 16.48 < RROI ≤ 34.37
(11)

High RROI =
{ 16.48−RROI

16.48 0 < RROI ≤ 16.48
RROI−34.73

18.25 16.48 < RROI ≤ 34.37
(12)

 

2 

 

Figure 11 Figure 11. Membership functions of GAROI input.
 

3 

 

Figure 12 Figure 12. Membership functions of YAROI input.
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Figure 13 Figure 13. Membership functions of OAROI input.
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Figure 14 Figure 14. Membership functions of RAROI input.

Figure 15 shows the fuzzy Takagi–Sugeno model used for the development of the classifier;
this was selected for its low computational cost unlike the Mandami model. It uses 81 inference rules
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obtained from using fuzzy values of interest regions. The transforming fuzzy values of classification
output was carried out using Equation (13). The final output is determined by rules using Zi levels of
output and weight wi of the rule.

Final Output =
∑N

i=1 wiZi∑18
i=1 wi

(13)

 

6 

 

 

Figure 15 

Figure 15. Operation of Takagi–Sugeno rules to classify maturity of bell peppers.

Five fuzzy classification models were designed using the Matlab R2014a Fuzzy Logic Toolbox.
Its training used a set of 50 vectors consisting of areas the interest regions in shades of green, yellow,
orange, and red and their label corresponding to their maturity. The training used 10 epochs. The main
difference between the models is the number of membership functions. Table 4 shows the number of
membership functions used by each model and their training error.

Table 4. Classification models.

Number of GROI
Membership

Functions

Number of YROI
Membership

Functions

Number of OROI
Membership

Functions

Number of RROI
Membership

Functions
Training Error
RMSE 1 × 10−6

Model 11 2 2 2 2 930.46

Model 12 3 2 2 3 479.86

Model 13 2 3 3 2 19.466

Model 14 3 3 3 3 9.8679

Model 15 4 4 4 4 2.0339

Three models were proposed where their main difference is the number of neurons in the hidden
layer, as shown in Table 5; the precision of each model to predict the Brix degrees was different.
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Table 5. Models using FL prediction of ◦ Brix.

Number of
GROI

Membership
Functions

Number of
YROI

Membership
Functions

Number of
OROI

Membership
Functions

Number of
RROI

Membership
Functions

Mean
Squared

Error
(MSE)

Root Mean
Squared

Error
(RMSE)

Pearson
Correlation
Coefficient

(R)

Model 16 3 3 3 3 5.923 2.433 0.499

Model 17 4 3 3 4 0.891 0.944 0.696

Model 18 3 4 4 3 1.645 1.282 0.424

4. Results

Figure 16 shows the accuracy of the 10 maturity classifier models using ANN and FL. The first
five models are type ANN (blue circles) and the next five models are type FL (red squares). It can be
seen that the proposed models which used ANN achieved greater than 90% accuracy, unlike those that
used FL. Together, the models that had good precision are Models 13–15. Finally, the worst models
were Models 11 and 12 with an accuracy of less than 70%. In Figure 17, the prediction error of the
model is presented, where it can be highlighted that the models which use ANN have lower least
squared medium error. Five ANN models (blue circles) and three FL models (red squares) are shown.
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5. Discussion

The main contribution of this work is the development of a ◦ Brix content prediction system for
bell pepper maturity. According to the results, the models with FL achieved a maximum precision of
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88% in identifying the four stages of maturity corresponding to the shades of green, yellow, orange,
and red. The models with ANN have 100% precision to identify samples of green and red color similar
to the results reported by Elhariri et al. [41]. Of the results obtained, Model 8 was the one that presented
a correlation of R = 0.79543 between the green, yellow, orange, and red regions of interest and ◦ Brix.
This result is similar to that reported by Shamili [42] and is slightly superior to those reported by
Leiva-Valenzuela et al. [46] (R = 0.788) and Rahman et al. [47] (R = 0.74). The advantage is that our
proposal uses a visible RGB camera and they used a high-cost multispectral camera. Figure 18 shows
the estimation.
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6. Conclusions

In this work, a new classification system is proposed to evaluate the bell peppers maturity using
an artificial vision system. According to the results obtained, it can be concluded that the proposed
architecture improves the ◦ Brix prediction using the regions of interest associated with the color of
the pericarp. The correlation obtained was R = 0.7929 with the use of the NETFIT-ANN, surpassing
the model designed with FL with a correlation of R = 0.696. Together, it was possible to classify
100% of the classes of the samples with the use of a model that uses the RBF-ANN architecture.
This architecture presented a better result than the FL models that obtained a maximum accuracy
of 88%. The present work demonstrated that it is possible to identify the degrees of maturity of the
peppers using an artificial vision system that is sensitive to the total soluble solids content of the
fruit. It has the advantage of using a low-cost RGB camera instead of a multispectral one, and it is a
non-destructive technique to estimate ◦ Brix. This vision system model is applicable to real scenarios
in the industrial sector such as online processes. Furthermore, it is a system that can be used to predict
the ◦ Brix content in real time. As further research, the development of a prediction system for ascorbic
acid, polyphenolics, and various carotenoids has been completed.
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