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Abstract: Tuberculosis (TB) is a leading infectious killer, especially for people with Human
Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS). Early diagnosis
of TB is crucial for disease treatment and control. Radiology is a fundamental diagnostic tool
used to screen or triage TB. Automated chest x-rays analysis can facilitate and expedite TB
screening with fast and accurate reports of radiological findings and can rapidly screen large
populations and alleviate a shortage of skilled experts in remote areas. We describe a hybrid
feature-learning algorithm for automatic screening of TB in chest x-rays: it first segmented the
lung regions using the DeepLabv3+ model. Then, six sets of hand-crafted features from statistical
textures, local binary pattern, GIST, histogram of oriented gradients (HOG), pyramid histogram of
oriented gradients and bags of visual words (BoVW), and nine sets of deep-activated features from
AlexNet, GoogLeNet, InceptionV3, XceptionNet, ResNet-50, SqueezeNet, ShuffleNet, MobileNet,
and DenseNet, were extracted. The dominant features of each feature set were selected using particle
swarm optimization, and then separately input to an optimized support vector machine classifier to
label ‘normal’ and ‘TB’ x-rays. GIST, HOG, BoVW from hand-crafted features, and MobileNet and
DenseNet from deep-activated features performed better than the others. Finally, we combined these
five best-performing feature sets to build a hybrid-learning algorithm. Using the Montgomery County
(MC) and Shenzen datasets, we found that the hybrid features of GIST, HOG, BoVW, MobileNet and
DenseNet, performed best, achieving an accuracy of 92.5% for the MC dataset and 95.5% for the
Shenzen dataset.

Keywords: tuberculosis; chest x-rays; particle swarm optimization; hand-crafted features; deep
convolutional neural network; support vector machine; Bayesian algorithm

1. Introduction

Infectious diseases are threats to global health: one is tuberculosis (TB), a serious contagious
disease that can be easily transmitted. TB is spread through the air when a TB infected person coughs,
sneezes or spits. It is caused by the Mycobacterium tuberculosis. The World Health Organization
(WHO) estimated that around 11 million people were ill with TB in 2019 worldwide and 1.5 million
died. The early and accurate detection of TB is essential to control the disease progression and to
prevent forward transmissions. The WHO recommends that a chest x-ray is an essential tool to end TB.
Chest x-rays are non-invasive, fast, affordable, highly sensitive and widely available in urban areas.

Appl. Sci. 2020, 10, 5749; doi:10.3390/app10175749 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7155-9475
http://www.mdpi.com/2076-3417/10/17/5749?type=check_update&version=1
http://dx.doi.org/10.3390/app10175749
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 5749 2 of 22

Chest x-rays are used to screen or triage TB in the lungs and to follow up the treatment. TB mostly
affects the lungs and when TB lesions appear in the lungs, the chest x-rays will display abnormal grey
or white shadows [1,2].

Conventional examination of chest x-rays needs a high degree of expertise, takes time and is
prone to human errors. With the advent of digital imaging and advanced computer vision methods,
computer-assisted diagnosis (CAD) of the diseases, computational techniques have been evaluated in
several types of research. CAD systems aim to assist the medical experts in identifying the disease and
to serve as a complement to human reading of medical images. With the support of CAD systems,
we can detect TB accurately and rapidly, and possibly prevent further transmissions, if it is detected
early. CAD systems have the potential to expedite mass screening programs in high TB prevalence
areas, where a large number of x-rays need to be examined. They can also alleviate the shortage of
qualified medical staff, especially in remote areas [3].

Previous studies of automatic TB prediction in chest x-rays may be categorized into two groups:
(i) hand-crafted feature-based machine learning methods and (ii) deep convolutional neural network
(CNN) based methods. Both categories work with or without lung segmentation. For the first category,
Ginneken et al. [4] used multi-scale feature banks as the inputs to a weighted nearest-neighbor classifier
to identify the presence of TB and obtained area under curve (AUC) of 98.6% and 82% on two private
datasets. An algorithm by Hogeweg et al. [5] analyzed texture abnormality at the pixel level and
provided AUCs between 67% and 86%. Tan et al. [6] used a user-guided snake algorithm for lung
segmentation, and first-order statistical features as features to be classified by a decision tree classifier
for TB prediction. On a small custom dataset, their accuracy was 94.9%. Jaeger et al. [7] used optimized
graph cut methods for lung segmentation and object detection inspired features and content retrieval
ones as input to a support vector machine (SVM) classifier. They obtained AUCs of 86.9% for the
Montgomery County (MC) dataset and 90% for Shenzen datasets. Vajda et al. [8] segmented the lung
using an atlas-driven method and extracted multi-level features of shape, curvature and Hessian matrix
eigenvalues. Following this, the wrapper type feature selection with a multi-layer perceptron was used
to select the discriminant features and differentiate between normal and TB chest x-rays: they achieved
AUCs of 87% for MC and 99% for Shenzen. Karargyris et al. [9] segmented the lung region using
an atlas-driven method, extracted a combined feature set of texture and shape, and applied SVM
as a classifier and obtained AUC of 93.4% for the Shenzen dataset. Jemal [10] used another texture
feature-based method, after segmenting the lung region by thresholding; he extracted the textural
features, and then differentiated between positive and negative using SVM, achieving AUCs of 71% for
MC and 91% for Shenzen. Santosh and Antani [11] used multi-scale features of shape, edge, and texture,
and a combination of a Bayes network, Multilayer Perceptron (MLP) and a random forest, yielding
AUCs of 90% for MC and 96% for Shenzen dataset. Multiple instance learning methods [12] used
moments of pixel intensities as features and SVM as a classifier and led to AUCs between 86% and 91%
for three private datasets. Besides, the prediction scores were used to indicate the diseased regions
using heat maps. Melendez et al. used the combined feature set of local/global features from chest
x-rays and clinical information and selected the optimal feature subset using the minimum redundancy
maximum relevant (mRMR) method [13]. Using the selected features, an ensemble classifier of random
forest and extremely randomized trees was used to predict TB: they obtained AUCs of 99.6% for MC
and 97.7 for Shenzen datasets. Chauhan et al. [14] used GIST and pyramid histogram of oriented
gradients (PHOG), as the feature extractors, and SVM, as the classifier, and tested two custom datasets:
Dataset A and DataSet B. They achieved promising results using PHOG features with an accuracy of
92.3% for Dataset A and 92.0% for Dataset B. These studies and their results show that the handcrafted
features are suitable for classifying normal and TB containing x-rays.

In recent years, deep CNNs have achieved human experts-level performance on automated
detection of diseases on a diversity of medical images. For example, Esteva et al. [15] achieved
dermatologist-level performance on skin cancer detection and Rajpurkar et al. [16] outperformed the
conventional methods and achieved the radiologist-level pneumonia detection. We found four different
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strategies using CNNs to detect diseases in medical images: training the new CNN architecture from
scratch, fine-tuning of pre-trained CNNs, use of pre-trained CNNs as the feature descriptors and the
integration of deep features from pre-trained CNNs with shallow hand-crafted features. Pasa et al.
described a modified CNN model, a variant of AlexNet, with a depth of five convolutional blocks and
additional skip connections [17]; they achieved AUCs of 81.1% for MC and 90% for Shenzen datasets
and used their model to generate the saliency maps and gradient-weighted class activation mapping
(Grad-CAM) to localize the disease regions. Despite the promising results, training the model from
scratch presents significant challenges, because it demands the high computational resources and a
large volume of data. Training the model from scratch using a small dataset may over-fit. When there
is only a small dataset available, fine-tuning of the pre-trained CNNs on certain images is an alternative
to training the network from scratch, while achieving similar results. For example, Hwang et al. [18]
adopted the transfer learning using the pre-trained AlexNet and achieved AUCs of 88.4% for MC and
92.6% for Shenzen datasets. Islam et al. [19] used Alexnet, VGG16, VGG19, ResNet-18, ResNet-50,
and ResNet-152 CNN models separately and combined their results to make a final prediction decision,
using the Shenzen dataset, they found an AUC of 94%. Similarly, Lakhani and Sundaram [20] used an
ensemble learner, combining the output of AlexNet and GoogLeNet, and evaluated it on four different
datasets with 1007 images, they achieved AUC of 99%. Even fine-tuning the pre-trained models, it took
time to train and parameters to tune. Therefore, Lopes et al. [21] and Rajaraman et al. [22] showed how
to use pre-trained CNNs as the feature extractors, this technique is called deep-activated features or
deep features. Lopes et al. [21] used the pre-trained CNNs as the features descriptors. Deep activated
features from GoogleNet, ResNet, and VGGNet were extracted in three different approaches and
fed separately as input to the SVM classifier. They obtained the highest AUC of 92.6% for MC and
Shenzen datasets. Rajaraman et al. [22] first segmented the lung region, using an atlas-based method,
and built the SVM classifiers using hand-crafted features, and deep-activated features from pre-trained
CNN models, separately. Finally, they built an ensemble-stacked model of different based learners
via majority voting. Using four datasets, they reported AUCs of 98.6% for MC, 99.4% for Shenzen,
plus two additional datasets that they built—Kenya 82.9% and India 99.5%. The fourth strategy of
using pre-trained CNNs, which is the focus of our work, was a combination of deep-activated features,
extracted from pre-trained CNNs, with hand-crafted features, to design a more efficient and accurate
classifier. Extracting multiple deep features from pre-trained CNNs and integrating them with shallow
handcrafted features is a promising way to further enhance the performance, compared to using an
individual feature set.

Most of the hand-crafted and deep-activated features in this study have been used in TB detection.
However, except the studies in Vajda et al. [8] and Melendez et al. [13], all extracted features were used
as input to the classification, so the feature set might contain noise and irrelevant features. To address
this lack, we used a particle swarm optimization (PSO) algorithm to select the discriminant features
before classification. The hand-crafted features and deep-activated features from few pre-trained CNN
models were studied by Rajaraman et al. [22]: they trained several classifiers using the hand-crafted
and deep-activated features separately, and the output of multiple classifiers were fused for the a
final decision. As an alternative, we exploited the combination of hand-crafted and deep-activated
features to select a best hybrid feature set, from a diverse set of features, and input the hybrid feature
set to a single SVM classifier. We ran several experiments using hand-crafted features from local and
global feature descriptors, and deep activated features, from pre-trained CNNs, as input separately or
in composite manner for a PSO feature selection algorithm and SVM classifier. These experiments
showed that using a hybrid feature set, that contained the selected hand-crafted and deep-activated
features performed better than an individual feature set. The four main contributions of this study are:

• First, instead of using all extracted features as input, we selected the important features prior to
classification. This is the first attempt to use the PSO feature selection algorithm for automated TB
detection. By selecting the important features prior to classification, we reduced the noisy and
irrelevant features, reduced processing times, and enhanced the prediction performance.
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• Second, we optimized an SVM classifier using a Bayesian algorithm.
• Third, we compared the classifications from hand-crafted and deep-activated features using the

optimized SVM classifier.
• Fourth, we combined the selected hand-crafted and deep-activated features to generalize the

feature set in extensive experiments. To our knowledge, this is the first approach to predict TB using
a hybrid feature set which contained a combination of selected handcrafted and deep-activated
features. By using the hybrid feature set, we enhanced the prediction performance compared to
individual methods and state-of-the-art.

This paper has four sections. Section 2 presents the datasets. Section 3 describes the steps in our
method: lung segmentation, feature extraction, feature selection and classification. Section 4 describes
and discusses our experimental results. Section 5 concludes and suggests future work.

2. Dataset Description

This study used two public datasets: Montgomery (MC) and Shenzhen, published in Jaeger et al. [23].
The MC dataset has 138 frontal chest x-rays—80 normal and 58 show TB; they were collected in
Montgomery County, Maryland, USA. The image sizes are 4892 × 4020 or 4020 × 4892. This dataset
also has ground truth lung masks for every image and radiological reports describing the lesions.
Figure 1 shows example chest x-rays from the MC dataset. The Shenzhen images were collected in the
Guandong Hospital, Shenzhen, China; it consists of 326 normal and 336 images containing TB lesions.
The image resolutions vary but are approximately 3000 × 3000 pixels. Figure 2 shows some chest-rays
in the Shenzhen dataset.
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3. Methodology

We aimed to implement an automatic TB screening system using chest x-rays, which could
facilitate and expedite TB diagnosis and treatment. Figure 3 depicts the data flow of our algorithm
that hybridizes the shallow and deep features for TB classification. It has three main steps: (i) lung
segmentation supplemented by preprocessing, (ii) feature extraction, selection and concatenation,
and (iii) classification of normal and TB. Each step is presented in details in the following subsections.
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3.1. Preprocessing

The images were resized to a common 512 × 512 pixel size for all images to reduce the processing
time. Image enhancement largely influences on the performance of better lung segmentation and
classification results [3]. Contrast limited adaptive histogram equalization (CLAHE) is used to improve
image quality and contrast [24]. The effect of image enhancement is shown in Figure 4.
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3.2. Lung Segmentation

Lung segmentation is an essential subtask for most disease detection using chest x-rays.
Accurate extraction of lung regions impacts the performance of subsequent processes because it
defines the region of interest (ROI) where lung abnormalities are searched. Gordienko et al. [25]
investigated the impact of lung segmentation and removing bone shadow for lung nodule detection
and showed that better accuracy was obtained using the segmented lung and bone shadow removal.
Chest x-rays in our study contain the regions other than lungs, which are irrelevant for TB detection.
To reduce the risk that the irrelevant regions present in the image mislead the final results, we decided
to segregate the lungs. Processing only on the lung regions allows to focus on the useful regions for
further processing, thereby improving the algorithm’s performance and lowering the computational
time. Previously, we evaluated and compared different lung segmentation methods [26], especially
deep semantic ones such as the fully convolutional network (FCN) [27], SegNet [28], U-Net [29] and
DeepLabv3+ [30]. The segmentation performance was evaluated at the pixel level by comparing
the predicted mask generated by the algorithms with the ground truth mask. Three evaluation
metrics namely interception over union (IoU), accuracy and dice similarly coefficient, were measured.
We found that DeepLabv3+ [30] with a XceptionNet [31] backbone yielded better segmentation than
other methods by achieving IoUs of 95.1% for MC and 92.7% for Shenzen datasets [26]. Inspired by
those results, we employed it to segment the lung regions here. The data flow for lung segmentation is
depicted in Figure 5. DeepLabv3+ consists of two segments—encoder and decoder. The encoder is to
downsample the input images and extract the rich semantic information via atrous spatial pyramid
pooling (ASPP) for classification of lung or non-lung pixels. The encoder module employs XceptionNet
as a backbone network. XceptionNet is a CNN used for the image classification task. Its architecture
is a linear stack of depth-wise separable convolutions with residual connections forming the feature
extraction. It has a depth of 126 and constitutes with three components: entry, middle and exit flow.
There are a total of 36 convolutional layers to extract the features: 8 in the entry, 24 in the middle and 4
in the exit components [31]. Using the last feature map of XceptionNet, ASPP applied four parallel
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atrous convolutions with different rates to explore the image-level features at multiple scales. Here we
used four different rates of 1, 6, 12 and 18 for atrous convolution. The extracted features maps from
atrous convolutions were then pooled into 1 × 1 convolutional feature map, and fed to the decoder
module. The decoder module reconstructs the semantic labels by concatenating low and high-level
encoder features, followed by upsampling. The decoder module generates the mask for lung regions.
We superimposed the lung mask generated by DeepLabv3+ on original chest x-rays to retrieve the
segmented lung region. Finally, a morphological gradient operation was used to correct and refine the
boundaries of the segmented lungs [32].
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3.3. Feature Extraction

Features play a vital role in medical image analysis; they represent the interesting parts of an image
in terms of a compact coded attribute. Here, features that will aid TB identification were retrieved
and input to classify normal or TB x-rays. The segmented lung regions generated by Section 3.2 were
used as input to feature extraction. It would be better if we could use TB lesion region as the ROI.
Since there is no labeled dataset that indicates the exact area of TB regions, we could not segment small
TB lesions and use them as ROI. We can use either the entire images or the segmented lung regions.
As TB lesions appear only on lung region, we used the segmented lung regions as ROIs and extracted
the features from them. Two types of features: hand-crafted (shallow) features and deep-activated
features from CNNs were extracted. An overview of the applied feature extractors follows.

3.3.1. Hand-Crafted Features

• Statistical textural features: Statistical textural features result from the quantitative analysis of
the pixel intensities in the grayscale image using different arrangements. Intensity histograms,
first-order statistical textures, gray-level co-occurrence matrices (GLCM) and gray-level run-length
matrices (GLRLM) are used as the feature descriptors to extract the statistical textural features.
We extracted eight first-order statistical features [33], a total of 88 GLCM features, which encoded
22 different features in four directions [34], and a total of 44 GLRLM features which encoded
11 different features in four directions [35], for a total of 140 textural features.

• Local binary pattern (LBP) features: An LBP is a texture histogram that describes a texture based
on differences between central pixels and its neighbors. LBP produces a binary pattern using a
threshold value for the central pixel with its neighborhood. A neighbor is 1, when it is greater
than or equal to the central pixel, and 0 when it is less. Then the frequency of binary patterns is
determined as a histogram of the representative number of binary patterns found in the image [36].
With an 8-pixel neighborhood, 256 features are obtained.

• GIST features: GIST is a feature descriptor that proceeds image filtering to develop a low-level
feature set including intensity, color, motion, and orientation based on the information of the
gradients, orientations, and scales of the image [37]. GIST captures these features toward
identifying the salient image locations that significantly differ from those of the neighbors [14].
First, GIST convolves a given input image with 32 Gabor filters at four different scales and eight
different orientations to generate a total of 32 feature maps. Each of these feature maps was
then splatted into 16 sub-regions with a 4 × 4 square grid and the feature values within each
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sub-region were averaged. The averaged values from the 16 sub-regions were concatenated for
the 32 different feature maps, resulting in a total of 512 GIST descriptors for a given image.

• Histogram of oriented gradients (HOG) Features: A HOG descriptor, introduced by Dalal and
Triggs [38], counts gradient orientation occurrences in localized image regions. HOG measures
the first-order image gradient pooled in overlapping orientation bins, and gives a compressed and
encoded version of an image. It first computes gradients, creating cell histograms, and generating
and normalizing the descriptor blocks. Given an image, HOG first fragments the image into to
small-connected regions called cells. Following this, it computes the gradient orientations over
each cell and plots a histogram of these orientations, giving the probability for a gradient with a
specific orientation in a given path. The adjacent connected cells are grouped into small blocks.
The features are extracted over small blocks, in a repetitive fashion, to preserve information
about local structures, and the block-wise features are finally integrated into a feature vector.
We used the cell size of [16 × 16] pixels, number of bins 3, and 4 × 4 cells in each block. A total of
10,800 HOG features were extracted.

• Pyramid histogram of oriented gradients (PHOG) features: Bosch et al.’s PHOG descriptor [39],
represents an image by its spatial layout and local shape. First, PHOG tiles the image into
sub-regions, at multiple pyramid-style resolutions, and in each sub-region, the histogram of
orientation gradients is applied as a local shape descriptor using the distribution of edge directions.
We extracted a total of 168 PHOG features from each image.

• Bag of visual words features: BoVW is a technique adapted from information theory to computer
vision applications [40]. Contrary to text, images do not contain words, so, this method creates a
bag of features extracted from the images across the classes, using a custom feature descriptor,
and constructs a visual vocabulary. First, speeded-up robust features (SURF) [41] are used as
feature descriptors to detect interesting key points. Then, k-means clustering [42] is used to
generate a visual vocabulary by reducing the dimensions of the features. The center of each cluster
refers to a feature or visual word. We extracted 500 BoVW features, using 500 clusters.

A summary of the feature descriptors, along with the number of extracted features, is in Table 1.

Table 1. Summary of feature descriptors used in our study.

Feature Descriptors Features Number of Features

H
an

d-
cr

af
te

d
fe

at
ur

es

Statistical Textures First order statistics, GLCM, GLRLM 140

LBP Texture histogram 256

HOG Occurrences of oriented gradients 10,800

PHOG Occurences of oriented gradients at
each pyramid resolution level 168

GIST Information of the gradients,
orientations, and scales of the image 512

BoVW Image features as ‘words’ 500

D
ee

p
C

N
N

s’
Fe

at
ur

es

Alex Deep-activated features 1000

GoogLeNet Deep-activated features 1000

InceptionV3 Deep-activated features 1000

XceptionNet Deep-activated features 1000

ResNet-50 Deep-activated features 1000

SqueezeNet Deep-activated features 1000

ShuffleNet Deep-activated features 1000

MobileNet Deep-activated features 1000

DenseNet Deep-activated features 1000
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3.3.2. Deep-Activated Features from Pre-trained CNNs

Pre-trained CNNs are convolutional nets, trained on a large datasets and can classify 1000 or
more natural objects. There are two ways to use pre-trained CNNs in specific tasks, in our case,
medical image classification, transfer learning with fine-tuning as the classifier, and feature extractors
along with supervised machine learning classifiers. If there is a limited amount of memory and
computational resources, using them as the feature descriptors is a good choice. Here, we used
nine different pre-trained CNNs: AlexNet [43], GoogLeNet [44], InceptionV3 [45], XceptionNet [31],
ResNet-50 [46], Squeezenet [47], ShuffleNet [48], MobileNet [49] and DenseNet [50], as the feature
descriptors to extract high-level deep-activated features. Here, we resized the segmented lung image
to the input size, for each CNN, before extracting the features and feeding them to the network.
The fully connected layer, which is the last layer before sigmoid classification neuron of each CNN,
is retrieved and returns 1000 deep-activated features from each CNN, as listed in Table 1. Pre-trained
CNN constructs a hierarchical representation of input images. The early layers extracted fewer low
level features. The deep layers extracted high-level features, constructed using earlier layers. Figure 6
displays an example of activated feature maps of three different pooling layers: ‘pool1’, ‘pool2’ and
‘pool3’, of DenseNet. The pooling operation encapsulated the feature maps from convolution layers
by highlighting the activated spatial locations, so that the features became more abstract in deeper
layers of the CNN. These activation maps reveal the features the CNN learned by overlaying it with
the original image.
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3.4. Feature Selection

The extracted features include many noisy and irrelevant features. Using those features directly
may result in poor classification. Selecting the discriminant features prior to classification is of
paramount importance in supervised machine learning methods. The algorithm used for feature
selection was a PSO algorithm—a population-based metaheuristic method, inspired by bird flocking
or fish swarming, first described by Kennedy and Eberhart [51]. It has been successfully used in global
search problems. It is easy to implement, the computation time is reasonable and provides the global
search. A PSO flowchart is illustrated in Figure 7. In PSO, each particle has three attributes: position,
velocity, and fitness. The position of each particle is a potential solution. The fitness determines the
movement of each particle.
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Let denote that the population of n particles is X = [X1, X2, . . .Xn] in the potential solution in a
D-dimensional space. The position, Xi, and velocity, Vi, of particle, i, are:

Xi = [xi1, xi2, . . . , xiD] (1)

Vi = [vi1, vi2, . . . , viD] (2)

The particles move through the solution space, and their fitness values are evaluated. The
direction and distance of the particle movement is determined by the velocity. The personal best
position of each particle and the global best position among all particles are tracked to update
individual positions. The personal best position means the best position and fitness found for particle,
i: Pbesti = [pi1, pi2, . . . , piD]. The global best position, Gbest, is the best position and fitness for all
particles in the swarm. The velocity and position of the particle are updated:

vt+1
id = ωvt

id + c1r1
(
pt

id − xt
id

)
+ c2r2

(
Gbest− xt

id

)
, d = 1, 2, . . . ., D (3)

xt+1
id = xt

id + vt+1
id , d = 1, 2, . . . ., D; i = 1, 2, . . .n (4)

where t is the current iteration index, ω denotes an inertia weight, c1 and c2 are acceleration coefficients,
and r1 and r2. are random numbers between 0 and 1.

The features are encoded as the particle swarm here. Pseudocode for feature selection using PSO
is given in Algorithm 1. We input the training dataset, the population size, the maximum number of
iteration, and objective function. First, particles positions and velocities were randomly initialized and
the fitness of each particle was computed using the objective function. The particle with the highest
fitness value are considered as the best particle and so, its feature elements will be selected. As our
main purpose of optimization is to obtain the higher classification accuracy, we directly used the value
of the classification accuracy as the fitness value. The personal and global best positions are tracked to
iteratively update the position and velocity of each particle and find the best set of features until a
satisfactory fitness or the maximum number of iterations is reached.
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Algorithm 1. Pseudo Code 1: PSO based feature selection algorithm

Input: TrainingData, Population, MaximumIteration, ObjectiveFunction
Begin:Randomly intialize position and velocity of particle xi . in the population
Set Iteration Counter, t← 0

Repeat
Compute fitness for each particle using ObjectiveFunction

If fitness of xi > Pbesti
Pbesti ← xi

If fitnest of Pbesti > Gbest
Gbest← Pbesti

Begin
Update the velocity and postiion using Equations (3) and (4), respectively

End
Set t← t+1

Until terminal criteria met
finalSet← finalSet U save(particles)
End

3.5. Classification

A SVM is a supervised learning algorithm, used for classification and regression, originally described
by Cortes and Vapnik [52]. An SVM classifies data points of different class by searching for the best
hyperplane separating them. Starting with a training dataset, X, comprising I training samples, X = x1,
x2, . . . , xi, and target labels, y = y1, y2, . . . ,yi, where yi € {−1, +1}, i = [1,2, . . . ,I]. The equation of the
linear decision hyperplane, f(x), can be defined:

f (x) =
(
wT
·x
)
+ bias (5)

where w is the weight vector or direction of the hyperplane, and bias is the position in the space.
To find the best hyperplane of the binary classification of TB and normal, candidate decision surfaces
were normalized so that the value of the decision hyperplane f (x) for the support vectors is (wT

· x)
+ b = +1 for TB class and (wT

· x) + b = −1 for normal class. The best hyperplane is the one with the
largest margin between the two classes. The maximum margin between two classes is equivalent to
minimizing ‖ w ‖2. Therefore, the best separating hyperplane is defined:

Minimize : ‖ w ‖2 (6)

subject to : yi
[(

wT
·xi

)
+ bias

]
≥ 1, i = 1, 2, . . . , I (7)

In a real application, the training data set is not usually linearly separable because some data
points may fall inside or behind the margin, or wrong side of the decision hyperplane. Let denote ξ €
{ξ1, ξ1, ξ1, . . . , ξi} as a vector of the error points for I training samples. The decision hyperplane for not
linearly separable data is:

Minimize : ‖ w ‖2 +C
I∑

i=1

ξi (8)

subject to : yi

[(
wT
·xi

)
+ bias

]
≥ 1− ξi, i = 1, 2, . . . , I (9)

where ξi=0, 0 < ξi < 1, and ξi > 1 are error points, C is a penalty parameter used for minimizing the
errors falling inside or on the other side of the margin.

When the data is not linearly separable, SVM maps the feature space to a higher dimension using
the mapping function or ‘kernel trick’ ϕ: K

(
x j, xk

)
= < ϕ

(
x j

)
,ϕ(xk) >. Two types of mapping functions,

i.e., local (Gaussian radial basis function) and global (linear or polynomial) functions are commonly
used for SVM and shown in Equations (10) to (13):
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Linear K
(
x j, xk

)
= x j

T
·xk (10)

Gaussian radial basis K
(
x j, xk

)
= exp

(
−γ ‖ x j − xk ‖

2
)
, γ > 0 , γ =

1
2σ2 (11)

Quadratic polynomial K
(
x j, xk

)
= (x j

T
·xk + 1)

2
(12)

Cubic polynomial K
(
x j, xk

)
= (x j

T
·xk + 1)

3
(13)

Using the mapping functions, a non-linear decision surface is defined mathematically:

f(x) =
Sv∑

i=0

αiyi Φ
(
x j

)
·Φ(xk) + bias (14)

where Sv denotes the number of support vectors, αi and yi, represent the Lagrange multipliers and
target labels associated with Sv, respectively. x j. and xk. represent the observations j and k in the
training set X [53].

The performance of an SVM relies heavily on the choice of its parameters. Optimal values of
the SVM parameters were searched using the Bayesian algorithm [54], as shown in Figure 8. We first
defined the initial parameter search space and used the Bayesian method to iteratively search for the
optimal values until the maximum criteria reached or the validation accuracy unchanged.
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3.6. Evaluation Metrics

We used three metrics to evaluate classification performance: accuracy and F1 Score (F1),
formulated in Equations (15) and (16), and area under curve (AUC).

Accuracy =
TruePositive + TrueNegative

TruePositive + FalsePositive + TrueNegative + FalseNegative
× 100% (15)

F1 =

(
2×

Precision× Sensitivity
Precision + Sensitivity

)
× 100% (16)

• TruePositive (TP) refers to the number of TB cases correctly classified as TB.
• TrueNegative (TN) refers to the number of normal cases correctly classified as normal.
• FalsePositive (FP) represents the number of normal cases incorrectly classified as TB.
• FalseNegative (FN) denotes the number of TB cases missed by our method.

Additionally, we rated the classifier, using the Kappa Index [55], which takes all elements in the
confusion matrix into account, whereas accuracy counts only those on the main diagonal. The Kappa
Index was computed:

Kappa Index =

(
Pobserved − Pexpected

)
1− Pexpected

× 100% (17)

Pobserved is the observational probability of agreement, Pobserved = TP+TN
TP+TN+FP+FN , and Pexpected is the

expectedprobabilityofagreement,Pexpected =
(TN+FP)·(TN+FN)+(TP+FP)·(TP+FN)

(TP+TN+FP+FN)2 . Classification performance

based on Kappa Index values is shown in Table 2, as defined by Landis and Koch [56].

Table 2. Quality of classification evaluated by Kappa Index.

Kappa Index Quality

<0 Poor
0–20 Slight

21–40 Fair
41–60 Moderate
61–80 Substantial
81–100 Excellent

4. Experimental Results and Discussion

Experiments were run in MATLAB_R2019b using a 9th Generation Core i7 at 3.0 GHz CPU
and Nvidia T1660Ti GPU under Windows 10. Two public datasets: MC and Shenzen were used.
The datasets were randomly split into training (70%) and testing (30%). Since the MC dataset is
limited, the training sets from both datasets were combined to generate the combined training set and
used to develop and select algorithms. The testing sets were used to assess the performance. First,
we segregated the lung regions, using DeepLabv3+ with the XceptionNet backbone. Segmentation
performance is described in our previous study [25]. Example lung segmentations are in Figure 9.

Once the lung regions were retrieved, we extracted six sets of hand-crafted features: statistical textures,
LBP, GIST, HOG, PHOG, and BoVW, and nine sets of deep-activated features from nine different
pre-trained CNNS: AlexNet, GoogLeNet, InceptionV3, XceptionNet, ResNet-50, SqueezeNet,
ShuffleNet, MobileNet and DenseNet. Then, we used a PSO based feature selection algorithm
to select the dominant features from each feature set. From each dataset, we selected 5%, 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% (all features) of the features and 11 different
selected percentages multiplied by 15 different feature sets—a total of 165 tests were performed.
The performance of the selected feature subset was assessed using linear SVM. The accuracy for the
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different feature sets with a corresponding selected feature is plotted in Figure 10 for hand-crafted and
in Figure 11 for deep-activated features. We found that selecting small numbers of features, up to 20%
of the total, delivered poor accuracy. Conversely, selecting a large number of features, from 80% to
100% of the total, caused a drop in accuracy. Selecting 30–70% of the features provided better accuracy.
Thus, we selected an average 50% of the features from each feature set. Each selected feature subset
was separately fed to an SVM classifier to predict TB.
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Figure 9. Lung segmentation using DeepLabv3+.

Appl. Sci. 2020, 10, x 13 of 22 

   

   

(a) Input x-rays (b) Semantic labels (c) Segmented lungs 

Figure 9. Lung segmentation using DeepLabv3+. 

Once the lung regions were retrieved, we extracted six sets of hand-crafted features: statistical 
textures, LBP, GIST, HOG, PHOG, and BoVW, and nine sets of deep-activated features from nine 
different pre-trained CNNS: AlexNet, GoogLeNet, InceptionV3, XceptionNet, ResNet-50, 
SqueezeNet, ShuffleNet, MobileNet and DenseNet. Then, we used a PSO based feature selection 
algorithm to select the dominant features from each feature set. From each dataset, we selected 5%, 
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% (all features) of the features and 11 different 
selected percentages multiplied by 15 different feature sets—a total of 165 tests were performed. The 
performance of the selected feature subset was assessed using linear SVM. The accuracy for the 
different feature sets with a corresponding selected feature is plotted in Figure 10 for hand-crafted 
and in Figure 11 for deep-activated features. We found that selecting small numbers of features, up 
to 20% of the total, delivered poor accuracy. Conversely, selecting a large number of features, from 
80% to 100% of the total, caused a drop in accuracy. Selecting 30–70% of the features provided better 
accuracy. Thus, we selected an average 50% of the features from each feature set. Each selected feature 
subset was separately fed to an SVM classifier to predict TB. 

 
Figure 10. Accuracy of selected hand-crafted features using PSO vs. fraction of features selected. 

58
61
64
67
70
73
76
79
82
85
88
91
94

5 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

A
cc

ur
ac

y
(%

)

Number of selected features (%)

Statistical Textures LBP

GIST PHOG

BoVW HOG

Figure 10. Accuracy of selected hand-crafted features using PSO vs. fraction of features selected.



Appl. Sci. 2020, 10, 5749 14 of 22

Appl. Sci. 2020, 10, x 14 of 22 

 

Figure 11. Selected deep-activated features using PSO vs. fraction of features selected. 

To obtain a robust and effective SVM, it is crucial to select suitable parameters, e.g., penalty 
parameter (C), kernel functions and kernel scales. First, we defined the parameter search spaces: C = 
{0.001, 1000}, kernel functions = {Linear, Gaussian, Quadratic, Cubic}, and kernel scale, 0.001} = ߛ–
1000}, and used a Bayesian algorithm to find the optimal parameters for each feature set. The optimal 
parameters for each feature set are listed in Table 3. We trained 15 SVM classifiers with the parameters 
in Table 3. Once the optimized SVM classifiers were trained, we used them to identify TB. The 
classification metrics were F1, Accuracy, AUC, and Kappa Index. Tables 4 and 5 listed the F1, 
accuracy and AUC using 15 different methods for MC and Shenzen datasets. Figures 12 and 13 plot 
and show the performance of each method for the MC and Shenzen datasets We found that GIST, 
HOG, BoVW from hand-crafted features, and MobileNet and DenseNet from pre-trained CNN 
performed better than other methods for both datasets, achieving over 90% of F1, Accuracy, and AUC 
with an excellent Kappa (over 80%). To improve prediction, we combined the five best-performing 
feature subsets: GIST, HOG, BoVW, MobileNet and DenseNet and built a hybrid feature set that 
contained local and global texture features and high-level deep activated features. The hybrid feature 
set contained 50% of the selected features of five feature sets: 256 GIST features, 5400 HOG features, 
250 BoVW features, 500 MobileNet features and 500 DenseNet features, and fed them as input to 
SVM classifier. The performance of the SVM classifier using the hybrid feature set is in Table 4 for 
MC and Table 5 for Shenzen datasets. Its Kappa indices are plotted in Figures 12 and 13. It achieved 
favorable performance with 93.3% F1, 92.7% accuracy, 99.5% AUC for MC and 95.4% F1, 95.5% 
accuracy, 99.5% AUC for Shenzhen. Its Kappa was ‘excellent’ for both datasets. The hybrid feature 
set marginally improved the prediction compared to individual best-performing feature sets on 
Shenzen dataset while matching the best prediction made by HOG and DenseNet feature sets using 
the MC dataset. 
  

75

78

81

84

87

90

93

5 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

A
cc

ur
ac

y 
(%

)

Number of selected features (%)

AlexNet GoogleNet
InceptionV3 ResNet-50
XceptionNet SqueezeNet
ShuffleNet MobileNet
DenseNet

Figure 11. Selected deep-activated features using PSO vs. fraction of features selected.

To obtain a robust and effective SVM, it is crucial to select suitable parameters, e.g., penalty parameter
(C), kernel functions and kernel scales. First, we defined the parameter search spaces: C = {0.001, 1000},
kernel functions = {Linear, Gaussian, Quadratic, Cubic}, and kernel scale, γ = {0.001–1000}, and used a
Bayesian algorithm to find the optimal parameters for each feature set. The optimal parameters for
each feature set are listed in Table 3. We trained 15 SVM classifiers with the parameters in Table 3.
Once the optimized SVM classifiers were trained, we used them to identify TB. The classification
metrics were F1, Accuracy, AUC, and Kappa Index. Tables 4 and 5 listed the F1, accuracy and AUC
using 15 different methods for MC and Shenzen datasets. Figures 12 and 13 plot and show the
performance of each method for the MC and Shenzen datasets We found that GIST, HOG, BoVW from
hand-crafted features, and MobileNet and DenseNet from pre-trained CNN performed better than
other methods for both datasets, achieving over 90% of F1, Accuracy, and AUC with an excellent Kappa
(over 80%). To improve prediction, we combined the five best-performing feature subsets: GIST, HOG,
BoVW, MobileNet and DenseNet and built a hybrid feature set that contained local and global texture
features and high-level deep activated features. The hybrid feature set contained 50% of the selected
features of five feature sets: 256 GIST features, 5400 HOG features, 250 BoVW features, 500 MobileNet
features and 500 DenseNet features, and fed them as input to SVM classifier. The performance of
the SVM classifier using the hybrid feature set is in Table 4 for MC and Table 5 for Shenzen datasets.
Its Kappa indices are plotted in Figures 12 and 13. It achieved favorable performance with 93.3% F1,
92.7% accuracy, 99.5% AUC for MC and 95.4% F1, 95.5% accuracy, 99.5% AUC for Shenzhen. Its Kappa
was ‘excellent’ for both datasets. The hybrid feature set marginally improved the prediction compared
to individual best-performing feature sets on Shenzen dataset while matching the best prediction made
by HOG and DenseNet feature sets using the MC dataset.
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Table 3. The optimal hyper parameters of SVM for each feature set.

Feature Sets Penalty Term (C) Kernel Functions Kernel Scale (γ)
H

an
d-

cr
af

te
d

fe
at

ur
es Statistical Textures 8.58 × 100 Linear N/A

LBP 9.24 × 10−3 Linear N/A

HOG 8.28 × 102 Gaussian 8.21 × 102

GIST 9.96 × 102 Gaussian 3.10 × 101

PHOG 2.58 × 100 Gaussian 3.37 × 101

BoVW 3.64 × 10−3 Linear N/A

D
ee

p-
ac

ti
va

te
d

fe
at

ur
es

AlexNet 9.87 × 102 Gaussian 6.08 × 102

GoogLeNet 5.51 × 10−2 Linear N/A

InceptionV3 1.77 × 10−2 Linear N/A

XceptionNet 1.01 × 10−3 Linear NaN

ResNet-50 9.98 × 102 Gaussian 9.91 × 102

SqueezeNet 2.02 × 10−2 Linear N/A

ShuffleNet 1.00 × 10−3 Linear N/A

MobileNet 3.05 × 102 Gaussian 3.01 × 101

DenseNet 5.60 × 102 Gaussian 7.32 × 102

Note: N/A= not applicable.

Table 4. Performance of each individual set and hybrid feature using the optimized SVM
classifiers—MC dataset.

Features F1 (%) Accuracy (%) AUC (%)

Statistical Textures 81.8 80.5 87.9

LBP 79.2 73.2 86.2

GIST 90.9 90.2 93.1

HOG 93.3 92.7 100.0

PHOG 75.6 73.2 83.6

BoVW 91.3 90.2 99.8

AlexNet 76.9 70.7 85.7

GoogLeNet 88.9 87.8 91.9

InceptionV3 83.7 82.9 89.0

XceptionNet 85.7 82.9 91.0

ResNet-50 81.8 80.5 88.8

SqueezeNet 81.6 78.0 79.5

ShuffleNet 83.3 80.5 84.0

MobileNet 90.9 90.2 93.1

DenseNet 93.3 92.7 99.5

Hybrid features (GIST+HOG+BoVW+MobileNet+DenseNet) 93.3 92.7 99.5
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Table 5. Performance for individual set and hybrid feature using the optimized SVM
classifiers—Shenzhen dataset.

Features F1 (%) Accuracy (%) AUC (%)

Statistical Textures 83.1 83.4 91.0

LBP 83.4 83.4 90.7

GIST 94.4 94.5 98.6

HOG 94.5 94.5 96.7

PHOG 78.8 77.9 85.9

BoVW 91.5 91.5 95.7

AlexNet 86.6 86.9 94.0

GoogLeNet 87.3 87.4 93.3

InceptionV3 87.3 87.4 94.1

XceptionNet 88.0 87.9 94.4

ResNet-50 85.7 85.9 94.0

SqueezeNet 85.0 84.9 90.1

ShuffleNet 84.7 84.4 88.9

MobileNet 93.9 94.0 98.6

DenseNet 92.5 92.5 97.8

Hybrid features (GIST+HOG+BoVW+MobileNet+DenseNet) 95.4 95.5 99.5
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We compared our method with previous studies in Table 6. Our method surpassed the existing
studies for the MC dataset with accuracy 92.7% and AUC 99.5%, and obtained comparable results
with the state of the art for the Shenzen dataset with accuracy 95.9% and AUC 99.5%. From Table 6,
we found that the methods produced better performance on Shenzhen dataset compared to MC dataset.
The same pattern is seen Tables 4 and 5 of our study, and also in related works [7,8,10,11,17,18,21,22].
The lower performance with the smaller MC dataset is probably attributed to its limited size containing
only 138 x-rays, and therefore lower range of samples to be trained and learnt. Shenzhen dataset
is larger than MC dataset where the number of samples is over 300, both for normal and TB cases.
Another factor of impairing the classification accuracy could be the unbalanced data distribution.
The MC dataset is unbalanced, with a smaller number of TB cases while the Shenzen set is larger
and balanced with almost 50% TB cases. It is also noteworthy that the most hand-crafted used here
have already been studied. However, they were directly input to the classifier. On the other hand,
our method, first filtered out the noisy and irrelevant features and selected the dominant features.
For deep-activated features, few pre-trained CNNs were used in previous studies, whereas we studied
a wide variety of different CNN structures. We also first selected the important deep activated features,
before feeding them to the classifier. Rajaraman et al. [22] used hand-crafted based classifiers and
pre-trained CNNs separately and, combined their results via majority voting to make a final decision.
Here, we made alternative use of these features. Our method first selected the important features and
hybridized the best-performing shallow hand-crafted features and high-level deep features, so that
the classifier had better information to make the prediction. Achieving the better results than the
previous studies using the same feature sets was due to the feature selection. Using a PSO feature
selection and hybridizing the hand-crafted and deep-activated features were the keys to improved
prediction. The code supporting the findings of this study are available from the corresponding authors
upon request.
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Table 6. Performance of previous studies and our method using MC and Shenzhen datasets.

Authors Methods Used
MC Shenzhen

Accuracy AUC Accuracy AUC

Jaeger et al. [7]

� Lung segmentation using optimized graph cuts
� Multiple local and global hand-crafted features
� SVM classifier

78.3% 86.9% 84.0% 90.0%

Vajda et al. [8]

� Atlas-driven lung segmentation
� Multi-level features of shape, curvature and

eigenvalues of the Hessian matrix
� Wrapper feature selection with MLP

78.3% 76.0% 95.6% 99.0%

Karargyris et al. [9]

� Atlas-driven lung segmentation
� Combination of texture and shape
� SVM

NA NA NA 93.4%

Jemal [10]

� Lung segmentation using thresholding
� Textural features
� SVM classifier

68.1% 71.0% 83.4% 91.0%

Santosh et al. [11]

� Multi-scale features of shape, edge, and texture
� A combination of a Bayes network, MLP and

random forest
83.0% 90.0% 91.0% 96.0%

Pasa et al. [17] � A variant of AlexNet architecture 79.0% 81.1% 84.4% 90.0%

Hwang et al. [18] � Pre-trained AlexNet 67.4% 88.4% 83.7% 92.6%

Islam et al. [19] � Ensemble of pre-trained CNNs NA NA NA 94%

Lopes et al. [21]

� Features from GoogLeNet, ResNet,
and VGGNet

� SVM
82.6% 92.6% 84.7% 92.6%

Rajaraman et al. [22]

� Atlas-based method
� A stacked model of hand-crafted features

and CNNs
87.5% 98.6% 95.9% 99.4%

Our method

� Lung segmentation using DeepLabv3+

� PSO based feature selection
� Hybrid feature set of selected GIST, HOG,

BoVW, MobileNet and DenseNet features
� Optimized SVM classifier

92.7% 99.5% 95.5% 99.5%

5. Conclusions

We present a technique for learning with a hybrid of hand-crafted features and deep-activated
features from pre-trained CNNs, with help of a PSO algorithm and an optimized SVM classifier.
We initially preprocessed the images using CLAHE and subsequently segmented the lung regions using
a deep semantic segmentation technique, which used XceptionNet as the backbone in DeepLabv3+.
From the segmented lung regions, we extracted six sets of hand-crafted features using statistical
textures, LBP, GIST, HOG, PHOG, and BoVW feature descriptors. Then, we used nine pre-trained
CNNs as the feature descriptors to retrieve the deep-activated features. To select the important features
from each feature set, a PSO based feature selection algorithm selected different fractions of features.
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A total of 50% of selected features were input to the optimized SVM classifier. Additionally, 15 features
sets were tested, but GIST, HOG, BoVW, MobileNet, and DenseNet features performed better than
the rest. To build a classifier that learnt from both local and global hand-crafted features, as well as
high-level deep-activated features, we combined the five-best performing feature sets into a hybrid
feature set and input it to the classifier to identify TB. The SVM classifier, using the hybrid feature
set, obtained 92.7% accuracy, 99.5% AUC for the MC and 95.5% accuracy, 99.5% AUC for the Shenzen
dataset, and achieved an excellent Kappa Index for both datasets. Our results surpassed those in
previous studies for the MC dataset and matched them for the Shenzen dataset. Using a PSO feature
selection method and a hybrid feature set was a key to improved prediction.

We here used a PSO algorithm to rank the importance of the features and select the different
fractions of features. It is a drawback and time-consuming that we have to run exhausting tests to
find the optimal number for selecting the features. Therefore, we will work on the feature selection
algorithm, which will automatically find the optimal number of features itself. Besides, to test the
robustness of the existing algorithms or developing a new algorithm, large number of images are
required. As the acquisition and labelling of medical images are expensive, we have a great interest
of using synthesis images generated by generative adversarial networks for training deep learning
models which require large number of training images. In this way, we could develop even more
robust TB classifier.
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