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Abstract: The use of renewable energy to reduce the effects of climate change and global warming
has become an increasing trend. In order to improve the prediction ability of renewable energy,
various prediction techniques have been developed. The aims of this review are illustrated as
follows. First, this survey attempts to provide a review and analysis of machine-learning models in
renewable-energy predictions. Secondly, this study depicts procedures, including data pre-processing
techniques, parameter selection algorithms, and prediction performance measurements, used in
machine-learning models for renewable-energy predictions. Thirdly, the analysis of sources of
renewable energy, values of the mean absolute percentage error, and values of the coefficient of
determination were conducted. Finally, some possible potential opportunities for future work were
provided at end of this survey.
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1. Introduction

1.1. Machine Learning

In the past decades, machine-learning techniques have been widely applied to many fields
associated with data-driven problems. Machine-learning techniques include many interdisciplinary
areas, such as statistics, mathematics, artificial neural networks, data mining, optimization, and artificial
intelligence. Machine-learning techniques try to seek the relations between input data and output data
with or without mathematical forms of problems. After the machine-learning models are well-trained
by the training dataset, decision makers can obtain satisfying forecasting output values by feeding
the forecasting input data into the well-trained models. The data pre-processing procedure plays an
essential role in machine learning and can improve the performance of machine learning efficiently [1].
Basically, machine-learning technology mainly uses three learning methods: namely, supervised
learning, unsupervised learning, and reinforcement learning. Supervised learning takes advantage of
labeled data in the training phase. Unsupervised learning is to automatically categorize input data into
clusters by certain criteria for training data that has not been labeled in advanced. Thus, the number of
clusters generally depends on the clustering criteria used. Reinforcement learning is learning through
interaction with the external environment to obtain feedback in order to maximize the expected benefits.
By ways of three basic learning principles, many theoretical mechanisms and applications have been
proposed [2]. Due to the rapid development of information technology in hardware and software,
deep learning, a sub-field of machine learning, has been booming recently. Deep learning is able to
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realize characteristic nonlinear attributes and high-level invariant data configurations and, therefore,
has been applied in many fields to obtain satisfying performances [3]. Additionally, some studies have
focused on forecasting renewable energy by using a single machine-learning model [4]. However,
due to the diversified datasets, time steps, prediction ranges, settings, and performance indicators, it is
difficult to improve the forecasting performance by using a single machine-learning model. Therefore,
in order to improve the prediction performance, some studies developed hybrid machine-learning
models or overall prediction methods in renewable-energy predictions. Recently, support-vector
machines and deep-learning methods are very popular in the field of machine learning [5].

1.2. Renewable Energy

With the rapid development of global industrialization, it has been recognized that excessive
consumption of fossil fuels will not only accelerate the reduction in fossil fuel reserves but also have
an adverse impact on the environment. These influences will result in increasing health risks and
threats of global climate change. In addition to fossil fuels and nuclear energy, renewable energy is
currently the fastest-growing energy source. Renewable energy refers to reusable energy that can be
recovered in nature, such as solar energy, wind power, hydropower, biomass energy, waves, tides,
and geothermal energy. With characteristics of sustainability and low environmental pollution, the issue
of renewable energy has attracted attention, and plenty of related studies have been performed recently.
One of the most important challenges of renewable energy in the near future is the energy supply.
The renewable supply is the integration of renewable energy sources into the existing or future energy
supply structures [5]. The development of renewable-energy systems will be able to cope with essential
issues of current energy problems, such as improving the reliability of energy supply and solving
regional energy shortages. However, due to the huge volatility and the intermittent and random
nature of renewable energy, this generation of various energy sources is intermittent and chaotic.
Therefore, accurately dealing with the randomness of renewable energy data is still a work to be
conquered. High-precision energy monitoring can improve the efficiency of the energy system. Energy
forecasting technology plays a vital role in the development, the management and the policy making
of energy systems. As ways of providing electrical energy from renewable energy sources increase,
it is very important to develop proper technologies to store renewable energy [6]. Many studies have
revealed that various machine-learning models have been employed in renewable-energy predictions.
The data-driven models do provide practical ways of renewable-energy predictions. In addition, hybrid
machine-learning models were designed to increase prediction accuracy of renewable energy. Various
time intervals, such as minutes, hours, days, and weeks, were employed to predict renewable energy
according to different purposes of predictions. Forecasting accuracy and efficiency were typically
utilized to evaluate the performance of machine-learning models in renewable-energy predictions [7].

1.3. Review Studies of Applying Machine-Learning Techniques to Renewable Energy

Table 1 lists some recent survey studies of applying machine-learning techniques to
renewable-energy predictions. Mellit et al. [8] reviewed the literature on the topic of photovoltaic power
prediction by using artificial intelligence technology, machine-learning techniques, deep learning,
and hybrid methods. The author pointed out that by using numerical weather predictions with
feature extraction and deep-learning techniques to achieve long-term photovoltaic-power-generation
prediction, long short-term memory networks, convolutional neural networks, and recurrent neural
networks, they were able to estimate the time-dependence data in photovoltaic power predictions.
Wang et al. [5] reviewed renewable-energy prediction methods based on deep learning. The prediction
methods were divided into four categories, namely deep belief networks, the stack auto-encoder,
deep recurrent neural networks, and others. In addition, some data pre-processing and post-processing
techniques were employed to improve forecasting accuracy. Bermejo et al. [9] investigated artificial
neural networks in forecasting energy and reliability. Energy sources in this study included solar,
hydraulic, and wind. Many cases were provided to demonstrate the superiority of artificial neural
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networks in forecasting energy and reliability. Mosavi et al. [10] surveyed applications and the
taxonomy of machine-learning techniques in energy systems. Authors reported that hybrid models
are superior to the traditional machine-learning models in applications of energy systems. Ahmed
and Khalid [11] investigated forecasting models of renewable power systems from aspects of power
dispatching systems, energy storage systems, the energy policy and markets, reliability, and optimal
reserve capacity. This review was useful to the power sector by providing recent trends and forecasting
improvements of the system design and operations of power systems. Zendehboudi et al. [7] reviewed
applications of support-vector machine (SVM) models to forecasting solar and wind energy and
indicated support-vector machine models outperformed the other forecasting models in terms of
prediction accuracy. In addition, authors revealed that hybrid support-vector machine models can
obtain better forecasting results than a single support-vector machine model. Das et al. [12] conducted
a review and performance analysis of forecasting techniques in solar photovoltaic-power generations.
This study indicated that the use of artificial neural networks and a support-vector machine model has
been popular in this field. Authors pointed out that variations in weather conditions resulted in high
forecasting errors in forecasting of the solar power. Because solar radiation is a main source of solar
energy, Voyant et al. [13] performed a review of using machine-learning models in forecasting solar
radiation. The authors reported that artificial neural networks, support-vector regression, regression
tree, random forest, and gradient boosting are promising tools in solar radiation prediction, and hybrid
models or ensemble forecast approaches are feasible ways to improve forecasting accuracy. Pérez-Ortiz
et al. [14] reviewed classification algorithms for renewable energy problems and provided helpful
insights for researchers as well as practitioners in this area. Khare et al. [15] presented a comprehensive
survey of hybrid renewable-energy systems. This study included hybrid renewable-energy system
issues of feasibility analysis, optimum sizing, modeling, control and reliability, applications of
evolutionary technique, and game theory. Table 1 depicts that the applications machine-learning
techniques to renewable energy have been growing and shows that this issue is worth further exploring.

Aiming at a broad survey of machine-learning models in renewable-energy predictions
based in recent years, this investigation elucidates categories of renewable energy sources,
machine-learning models, data pre-processing techniques, parameter selection of machine-learning
models, and performance measurements of machine-learning models in renewable-energy predictions.
Moreover, directions of potential or possible future work were pointed out as well. The structure
of this study is as follows. Section 2 depicts data preprocessing methods, machine-learning models,
and parameter selection techniques; Section 3 presents measurements of model performances; Section 4
draws conclusions and provides directions of future work.

Table 1. Review studies of applying machine-learning techniques to renewable energy.

Literature Years Sources of Energy

Mellit et al. [8] 2020 Solar
Wang et al. [5] 2019 Solar, Wind

Bermejo et al. [9] 2019 Solar, Wind, Hydropower
Mosavi et al. [10] 2019 Solar, Wind, Hydropower

Ahmed and Khalid [11] 2019 Solar, Wind
Zendehboudi et al. [7] 2018 Solar, Wind

Das et al. [12] 2018 Solar
Voyant et al. [13] 2017 Solar

Pérez-Ortiz et al. [14] 2016 Solar, Wind, Wave
Khare et al. [15] 2016 Solar, Wind

2. Machine-Learning Models in Renewable-Energy Predictions

Renewable energy is an environment-friendly energy source. Such carbon-free technology helps
to combat climate change and has become an essential alternative to current petrochemical energy
sources. However, renewable energy often has diverse characteristics, which lead to uncertainties
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of renewable energy power systems. Therefore, the prediction of renewable energy is an important
way to deal with this problem. Machine learning is a data-driven process used to establish an
intelligent outcome. Basic steps of machine learning contain data collection and preprocessing, feature
selection and extraction, model selection, and model verification. Sharifzadeh et al. [16] categorized
machine-learning models in renewable energy into statistical models, artificial intelligence techniques,
and hybrid methods. This study collected 130 recent papers and Figure 1 shows the pie chart in terms
of seven renewable energy sources. It can be noticed that both solar energy and wind energy are close
to 40 percent each; and each of the other five renewable energy fields are less than five percent in the
literature of this study.
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2.1. The Status of Machine-Learning Technology Used in Renewable-Energy Forecasting

Table 2 lists papers related topics of using machine-learning models in renewable-energy
predictions since 2017. For wind-energy predictions, statistical methods were used in the early
stage [17,18]. Recent studies employed artificial intelligence and machine-learning techniques in
wind-energy predictions, such as support-vector machines [16–19], random forest classification
algorithms [20,21], gradient boosting decision trees [22], adaptive neuro-fuzzy inference system
(ANFIS) [23], artificial neural network [24–38], and long short-term memory networks [39–45].
The machine-learning techniques were able to capture data trends in forecasting wind energy.
In addition, hybrid algorithms have been developed to improve forecasting models effectively and
efficiently by integrating data processing approaches and optimization algorithms into machine-learning
models [46–49]. Extreme-learning machines (ELM) have been used in forecasting wind-power
generation [50–54]. Wavelet decomposition (WD), wavelet packet decomposition (WPD), and ensemble
empirical mode decomposition (EEMD) were employed to eliminate influences of noise from original
data and can effectively improve the accuracy of wind-speed predictions [55,56]. [57,58] used the
Bayesian model-based method to predict hybrid wind power. The numerical results indicated that
the Bayesian model-based method can provide more accurate results than the other forecasting
models in forecasting hybrid wind power. [59] developed a dynamic integration method to forecast
wind speed. The phase space reconstruction (PSR) was used to dynamically select input vectors of
prediction models. Besides, the kernel principal component analysis (KPCA) was used to extract
the nonlinear features of the high-dimensional feature space reconstructed by PSR. Then, the core
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vector regression (CVR) model with parameters determined by the competition over resource (COR)
algorithm is established. The empirical results revealed that the proposed model significantly increased
the prediction accuracy and statistically outperformed other forecasting approaches. A hybrid model
including WPD, convolutional neural networks (CNN), and long short-term memory (LSTM) was
designed to predict wind speed and can provide satisfying prediction results [60]. A hybrid model
containing empirical wavelet transform, long short-term memory network, and Elman neural networks
(EWT-LSTM-Elman) was proposed and outperformed the other forecasting models in wind-speed
predictions [61].

In the solar energy prediction method, solar irradiance can be considered as a time series
with different time scales. The most common time series forecasting method was autoregressive
moving average (ARMA) [62,63]. Machine-learning models and deep-learning techniques, including
support-vector machines [64–70]] and artificial neural networks (ANN) [71–75] have been booming
data-driven prediction models. Deep learning includes CNN [76], deep neural network (DNN) [77–79],
long short-term memory [64,80–85], and the other hybrid models used in multistep predictions of
solar energy. A method for predicting solar radiation sequences was introduced by using multiscale
decomposition techniques, such as empirical mode decomposition (EMD), integrated empirical mode
decomposition (EEMD), and wavelet decomposition, to investigate several clear sky index data [86],
and based on linear, the method performs an autoregressive process (AR) and a nonlinear method.
The results showed that the WD hybrid model (WD-NN) performed the best in predicting solar
radiation. In terms of applications of SVM to solar-energy predictions, parameter selection is crucial to
the forecasting accuracy of SVM. Thus, some studies have used optimization methods [87–90], such as
grid search, firefly algorithm (FFA), genetic algorithm (GA), and particle swarm optimization, (PSO) to
determine parameters of SVM models.

For the hydropower prediction, a hybrid method of ANFIS and gray wolf optimization (GWO)
was designed to forecast hydropower generation [91]. In renewable energy, biomass and hydrogen
can increase global energy sustainability and reduce greenhouse gas emissions [92]. It was reported
that machine-learning algorithms, linear regression (LR), K nearest neighbor regression (KNN),
support-vector machine regression (SVMR), and decision-tree regression (DTR) can be used to model
gasification products without further revisions [93]. The gradient-boosted regression trees (GBRT) were
employed to forecast the high heating value (HHV) of biomass with a dataset including 511 biomass
samples [94]. Four models, namely polynomial regression, support-vector regression, decision-tree
regression, and multilayer perceptron were used to predict CO, CO2, CH4, H2 during biomass
gasification and HHV outputs [95]. The numerical results illustrated that multilayer perceptron and
decision-tree regression can provide better forecasting results than the other models. A new hybrid
algorithm based on the combination of SVM and simulated-annealing (SA) optimization technology
was designed to study the baking process in order to obtain a prediction model of the high heating
value (HHV) in biomass [96]. The results of this study indicated that the SVM-SA hybrid model can
improve the prediction performance. In wave-power-generation predictions, the prediction algorithms
were used to predict the height of coastal waves in a relatively short period of time. A hybrid Improved
complete ensemble EMD-ELM model was proposed to predict the wave heights [97]. The proposed
model was an effective tool in forecasting wave heights. A Bayesian optimization with hybrid grouping
genetic algorithms and an extreme-learning machine (BO-GGA-ELM) model was proposed to forecast
the wave height and the wave energy flux at the target ocean [98]. Bayesian optimization was used to
provide wave characteristics of the problem. In predictions of tidal-power generation, a univariate
prediction method based on wavelet transform and support-vector regression (SVR) was designed to
forecast the tide velocity and directions with high accuracy [99]. A power flow prediction method
based on clustering technology was presented to obtain harmonic power flows [100]. These hybrid
models involved wavelet and artificial neural networks (WNN and ANN) and the Fourier series
combination based on Fourier series based on least square method (FSLSM) technology. The numerical
results indicated that the model can obtain high forecasting accuracy. A method using probabilistic
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machine-learning techniques in the Bayesian framework was proposed to predict power flow [101].
The Gaussian process was used in this study to model tidal data. Based on ensemble empirical mode
decomposition (EEMD) and least-squares support-vector machines (LSSVM), a forecasting models
was developed to improve the accuracy of predicting tidal current speed (TCS) and tidal current
direction (TCD) [102]. A two-stage method for modeling and prediction of tidal was presented [103].
This method used a fuzzy feature selection technique to extract the dataset from the tide velocity and
directions. Then, support-vector regression was employed to make a forecast of tidal. For methods
of geothermal energy predictions, [104] employed LSTM encoder–decoder model to forecast the
geothermal energy. The LSTM encoder and the LSTM decoder were applied to deal with the learning
of the past geothermal energy production and predictions of the future geothermal-energy generations,
respectively. The predictions of geothermal-energy generations were conducted according to the
output of the encoder and the batch size of LSTM with optimized periods and sequence lengths. [105]
investigated heat exchangers of geothermal installations with the goal of using previous data to obtain
accurate predictions of the sensors placed along the heat exchangers in systems. The results showed that
the time-dependent neural networks (TDNN) model is superior to other standard regression indicators
in all cases. Bayesian linear regression, neural network regression, boosted decision-tree regression,
and decision forest regression were used to predict the water levels of a reservoir, which is critical to
hydropower generation [106]. The study revealed that Bayesian linear regression can obtain superior
forecasting results than the other three forecasting models in terms of forecasting accuracy. [107]
designed a forecasting system (LMS-BSDP) by employing inflow predictions with various lead-times
intervals to increase the performance of hydropower stations in hydropower predictions as well as
reliability. Based on the proposed forecasting model with accurate forecasting performance, proper
operation policies of hydropower stations can be provided. A hybrid model (PSO-SVM) based on
support-vector machines and particle swarm optimization (PSO) was presented to forecast the higher
heating value (HHV) in a roasting process of the biomass-energy generation [108]. The particle
swarm optimization was used to determine parameters of support-vector machines. Experiment
results indicated that the proposed PSO-SVM model with cubic kernel functions can generate more
accurate forecasting HHV results than the other forecasting models. Fuzzy inference systems (FIS)
and artificial neural networks (ANN) were proposed to predict wave energy in faster and cheaper
ways [109]. This study reported that that the proposed forecasting models is able to predict wave
power effectively and efficiently at any place in deep oceanic waters. [110] used the Gaussian process
(GP) to forecast short-term waves, which is essential to wave energy converters. Two other forecasting
models, neural network (NN) and autoregressive modeling (AR), were employed to deal with the
same dataset to demonstrate the performance of the GP models. The numerical results illustrated
that the GP model outperformed the other two models. Furthermore, the GP model is capable of
dealing with the uncertainty of short-term waves. A fuzzy inference system using interval type -2
fuzzy inference system 2 (IT2FIS) was designed to forecast waves [111]. The proposed IT2FIS used
meta-cognitive learning algorithms to capture knowledge from wave data. This study revealed that
the proposed ITSFIS is a promising alternative in-wave forecasting. [112] Multiple regression and
artificial neural networks were employed to predict drilling parameters of rates of penetration (ROP)
while generating geothermal energy. The investigation showed that both models can provide high
values of correlation and, therefore, improve prediction performance of ROP predictions. [113] used
random-forest algorithms and data collected from geographic information systems to predict very
shallow geothermal opportunity. The study indicated that the random forest is a feasible and promising
way to forecast geothermal energy when data, such as topography, weather and soil, are available.
Table 2 illustrates that wind and solar are the two renewable energies often investigated, and artificial
intelligence and hybrid models are the two frequently employed techniques.
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Table 2. Summary of sources, models, and techniques in renewable-energy predictions.

Sources of
Energy Models Techniques

Wind Artificial
intelligence

Gaussian process regression(GPR), Support vector regression(SVR), Artificial neural
networks(ANN) [16]; xGBoost regression, SVR, Random forest(RF) [18]; Least squares
support vector machine(SVM) [19]; SVR, ANN, Gradient boosting(GB), RF [20]; RF [21];
GB trees [22]; Multi-layer perceptron(MLP) [24]; Deep neural network(DNN)-principal
component analysis [25]; Feedforward ANN [26]; Efficient deep convolution neural
network [27,34]; Linear regression, neural networks, SVR [28]; Convolutional neural
networks(CNN) [29,37]; DNN [30,31]; Efficient deep CNN [32]; Stacked auto-encoders,
back propagation [33]; Predictive deep CNN [35]; Improved radial basis function neural
network-based model with an error feedback scheme [36]; ANN and genetic
programming [38]; Long short-term memory(LSTM) [39,42]; Improved LSTM-enhanced
forget-gate network [40]; LSTM-ANN [41]; Auto-LSTM [43]; Shared weight LSTM
network [44]; Ensem-LSTM [45]; Instance-based transfer-GB decision trees [114]; Extreme
learning machine(ELM) [115,116]; Empirical mode decomposition(EMD)-stacked
auto-encoders-ELM [117]; Pattern sequence-based forecasting [118]

Statistical Physics-informed statistical [17]

Hybrid Adaptive neuro-fuzzy inference system, Particle swarm optimization(PSO), Genetic
algorithm [23]; Improved dragonfly algorithm-SVM [46]; Deep belief network with genetic
algorithms [47]; Type-2 fuzzy neural network-PSO [48]; Multi-objective ant Lion
algorithm-Least squares SVM [49]; Complete ensemble EMD-multi-Objective grey wolf
optimization-ELM [50]; Variational Mode decomposition(VMD)-Backtracking
Search-regularized ELM [51]; Coral reefs optimization algorithm with substrate layer, ELM
[52]; Stacked extreme-learning machine [53]; VMD-singular spectrum analysis-LSTM-ELM
[54]; Ensemble EMD-deep Boltzmann machine [55]; ELM-Improved complementary
ensemble EMD with Adaptive noise-Autoregressive integrated moving average(ARIMA)
[56]; Bayesian model averaging and Ensemble learning [57]; Sparse Bayesian-based robust
functional regression [58]; Kernel principal component analysis-Core vector
regression-Competition over resource [59]; Wavelet packet decomposition-LSTM [60];
Empirical wavelet transformation, Recurrent neural network(RNN) [61]

Solar

Artificial
intelligence

Gated recurrent units [64]; RF [65], SVR, RF [66]; RF [67]; RF, gradient boosted regression,
extreme GB [68]; Linear regression, decision trees, SVM, ANN [69]; ANN, SVM, GB, RF
[70]; ANN [71–75,119–121]; CNN [76]; DNN [77–79]; DNN, RNN, LSTM [80]; LSTM,
auto-LSTM, gate recurrent unit(GRU), machine learning and statistical hybrid model [81];
LSTM [82,84,85]; LSTM, GRU [83]; Copula-base nonlinear quantile regression [88];
Multi-method [122]; Smart persistence [123]; K-nearest-neighbors, GB [124];
K-nearest-neighbors, SVM [125]; Angstrom-Prescott [126]; Multilayer feed-forward neural
network [127]; Support vector classification [128]; GPR [129]; Regime-dependent ANN
[130]; ELM [131]; Adaptive forward–backward greedy algorithm, leapForward, spikeslab,
Cubist and bagEarthGCV [132]; Static and dynamic ensembles [133]

Statistical ARIMA [62,63]

Hybrid Wavelet decomposition-Hybrid [86]; Improve moth-flame optimization algorithm-SVM
[87]; SVM-PSO [89]; Cluster-based approach, ANN, SVM [90]; SVM, Horizon, General
[134]; ANN, Principle component analysis [135]; Auto regressive mobile average, MLP,
Regression trees [136]; Ensemble EMD-least square SVR [137]; Least absolute shrinkage
and Selection operator, LSTM [138]; RF, SVR, ARIMA, k-nearest neighbors [139];
Mycielski-Markov [140]; VMD-deep CNN [141]; PSO-ELM [142,143]; Multi-objective PSO
[144]; Artificial bee colony-empirical models [145]; Gated recurrent unit and Attention
mechanism [146]

Hydropower

Artificial
intelligence

Bayesian linear regression [106]

Hybrid Grey wolf optimization-adaptive neuro-Fuzzy inference system [91]; Long-medium and
short-term, Bayesian stochastic dynamic programming [107]

Biomass
Artificial

intelligence
Linear regression, k-nearest neighbors’ regression, SVM, Decision tree regression [93];
Gradient boosted regression trees [94]; Decision tree regression, MLP [95]

Hybrid SVM-Simulated annealing [96]; PSO-SVM [108]

Wave

Artificial
intelligence

Fuzzy inference systems, ANN [109]; GPR [110]; Interval type-2 fuzzy inference system
[111]

Hybrid Improved complete ensemble EMD-ELM [97]; Bayesian optimization-grouping genetic
algorithm-ELM [98]
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Table 2. Cont.

Sources of
Energy Models Techniques

Tidal Artificial
intelligence

Wavelet-SVR [99]

Hybrid Wavelet and ANN, Fourier series based on least square method [100]; GPR-Bayesian [101];
Ensemble EMD-Least squares SVM [102]; Modified harmony search [103]

Geothermal Artificial
intelligence

LSTM [104]; Multiple regression-ANN [112]; RF [113]

Statistical Time dependent neural networks [105]

2.2. Data Preprocessing Techniques

In energy forecasting, the modeling process could be divided into four stages, namely
data preprocessing, determining proper hyper-parameters of models, training models, testing,
and forecasting problems [49]. The data preprocessing includes removing data with missing values
and data exceptions [57]. These data exceptions come from the lack of data caused by the abnormal
collection mechanism of data collection. For example, the solar radiation data at night are meaningless
to solar-power predictions [86]. Thus, data exceptions have to be filtered out. Table 3 lists data
pre-processing techniques used by machine-learning models for renewable-energy predictions and
illustrates that the decomposition method is more commonly used than the other data pre-processing
techniques. For the data splitting, robust machine-learning models are generated by dividing original
data into a training dataset, a validation dataset, and a testing dataset, or performing a cross-validation
procedure during the modeling process [57,95,129]. The kernelized Mahalanobis distance (kWMD)
method can effectively calculate the similarity of two unknown sample sets [71]. Data decomposition
is used to preprocess the original signal and can increase the forecasting accuracy. Data decomposition
decomposes a high-dimensional dataset into several low-dimensional sub-datasets and is often
employed in signal processing problems [147]. Data discretization converts continuous data into
discrete data and is especially useful in forecasting renewable energy by weather data [100,130,137,138].
The encoding categorical features method removes impurities and redundancy in the original data and
designs more efficient features to depict the relationship between problems and prediction models [67].
Feature selection is a technique to seek proper independent variables and remove the irrelevant or
redundant attributes [43]. Data imputation of missing values is a process to replace the missing value
with substituted values when null data happens in the modeling process [62,139]. Data normalization
refers to the adjustment of datasets expressed in different scales so that different datasets can be
processed by machine-learning models. For example, weather attributes have to be normalized
when conducting wind-speed predictions [16,32,38,39,46,57,66]. Data standardization is a process
that converts data from different sizes to the same size, and Z-Score values are used to measure data
scales [24]. Data transformation is a way to convert the state of the data. The Markov chains method is
a typical data transformation approach [140]. Tables 4 and 5 show data pre-processing methods utilized
by machine-learning models in predicting renewable energy in terms of types of renewable energy
sources and variables, respectively. It can be observed that decomposition approaches for wind-energy
predictions are the most often employed. The cause could be resulted from decomposing wind data
with different frequencies and is able to improve forecasting performance of machine-learning models.
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Table 3. Pre-processing techniques used by machine-learning models for renewable-energy predictions.

Data Pre-Processing Techniques Number of Papers Used References

Data splitting 3 [57,95,129]
kWMD 1 [71]

Decomposition 21 [25,27,32,49–51,54,56,57,59–61,71,
82,86,97,99,115,131,137,141]

Discretization 4 [100,130,137,138]
Encoding categorical features 1 [67]

Feature selection 2 [43,71]
Imputation of missing values 2 [62,139]

Normalization 8 [16,24,32,38,39,46,57,66]
Standardization 2 [24,139]
Transformation 1 [140]

Table 4. Pre-processing techniques used by machine-learning models in renewable-energy predictions
with various renewable energy sources.

Pre-Processing Techniques
Sources of Energy

Solar Wind Biomass Wave Tidal Total

Data splitting 1 1 1 3
kWMD 1 1
Decomposition 6 13 1 1 21
Discretization 3 1 4
Encoding categorical features 1 1
Feature selection 1 1 2
Imputation of missing values 2 2
Normalization 2 6 8
Standardization 1 1 2
Transformation 1 1
Total 19 22 1 1 2 45

Table 5. Pre-processing techniques used by machine-learning models in renewable-energy predictions
with different variables.

Preprocessing
Method\Sources of

Energy
Solar Wind Biomass Wave Tidal

Data splitting V3, V5, V6, V7 V1, V2, V3 V18, V19,
V20, V21, V22

Data Validation V3, V4, V5, V7
kWMD V1, V3, V4, V5, V7 V1, V2, V3, V7, V10 V23 V16, V17

Discretization V1, V2, V3, V4, V5,
V7, V8, V9 V16, V18

Encoding categorical
features

V1, V2, V3, V7,
V13, V14, V15

feature selection V3, V4, V5, V7 V1
Imputation of
missing values V6

Normalization V1, V2, V3, V5, V7,
V8, V10, V11

V1, V2, V3, V10,
V12

Standardization V6 V2, V3, V10, V12
transformation V5

V1 = wind speeds; V2 = wind directions; V3 = temperatures; V4 = global horizontal irradiation; V5 = solar irradiation;
V6 = sunshine; V7 = humidity; V8 = cloud cover; V9 = clearness index; V10 = air pressure; V11 = precipitation;
V12 = air density; V13 = sky type; V14 = rainfall type; V15 = elevation; V16 = tidal speeds; V17 = tidal directions;
V18 = CO; V19 = CO2; V20 = CH4; V21 = higher heating value; V22 = H2; V23 = wave heights.
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2.3. Parameter Selection of Machine-Learning Models in Renewable-Energy Predictions

Parameter selection influences performances of machine-learning models a lot. Most machine-learning
models have more than two parameters. The trial-and-error method is not feasible. Thus, metaheuristics
have been a popular way to seek proper parameters of machine-learning models. Basically, the
forecasting error functions served as objective functions of metaheuristics for optimization. For each
iteration, a new set of parameters are generated and used by a machine-learning model to make a
forecast. Then a new foresting error is produced [47]. Sometimes a validation dataset is divided
from the training dataset to prevent the overfitting of the training process [148]. Majid Dehghani
et al. [91] used the gray wolf optimization (GWO) method to select conjunction parameters of the
ANFIS model to predict hydropower generation. GWO can significantly improve the forecasting
performance of ANFIS. Wu et al. [50] employed extreme-learning machines with multi-objective grey
wolf optimization (MOGWO) to achieve effective wind predictions. Lin et al. [87] proposed an improved
moth optimization algorithm (IMFO) to optimize the parameters of the SVM model for predicting
photovoltaic-power generations. Liu et al. [88] used firefly algorithm (FFA) to determine parameters of
SVM models in forecasting solar radiation. Numerical results indicated that the proposed SVM-FFA
model outperformed the other forecasting models in terms of forecasting accuracy. Particle swarm
optimization (PSO) is a popular method used to determine parameters in wind and solar forecasting
models [23,48,89,142,144]. Fan et al. [89] used whale optimization, PSO, and Bat algorithms(BAT)for
parameter determination of SVM models in solar-radiation predictions. The numerical results
showed that support vector machines with bat algorithms (SVM-BAT) models performed the best
in terms of the prediction accuracy and the rate of convergence. Demircan et al. [145] designed
an empirical regression model with the artificial bee colony (ABC) algorithms to predict global
solar radiation. The forecasting model depended on durations and angles of sunlight to make a
forecast. The artificial bee colony algorithms were employed to selected parameters of empirical
regression models. Li et al. [46] conducted short-term wind-power predictions by using an improved
dragonfly algorithm to select parameters of the SVM model. García Nieto et al. [96] presented
a hybrid model of support-vector machine and simulated annealing (SA) to forecast the HHV of
the biomass. The SA was used to decide SVM parameters, and the proposed hybrid model can
provide promising forecasting results. Lin et al. [47] presented a deep belief network with a genetic
algorithms (DBNGA) model to predict wind speeds. The genetic algorithms was used for parameter
selection of deep belief networks Zhou et al. [51] proposed a new a hybrid model, which contains
variational mode decomposition (VMD), backtracking search algorithms (BSA) and regularized
extreme-learning-machine (RELM) techniques in wind-speed predictions. The BSA technique was
employed to select parameters of RELM models. Li and Jin [49] used the multi-objective ant lion
algorithms to determine parameters of ELM (Extreme-learning machines)models in the wind-speed
predictions and can provide satisfying forecasting results. Salcedo-Sanz et al. [52] used coral-reef
algorithms and ELM for wind-speed predictions. The coral-reef algorithms were employed to
select parameters of ELM models. Cornejo-Bueno et al. [98] used Bayesian optimization to obtain
ELM parameters in the ocean-wave prediction system. Zameer et al. [38] developed a short-term
wind-energy prediction method by artificial neural networks with genetic programming for parameter
selection. Papari et al. [103] used modified harmony search (MHS) to determine parameters SVR
in power-flow predictions. The results showed that the proposed SVR with an MHS model can
generate more accurate results than the other forecasting models. Figure 2 provides a collection
of metaheuristics for machine-learning parameter selection in renewable-energy predictions. It is
shown that extreme-learning machines and support-vector machines are two machine-learning models
applying metaheuristics most frequently for parameter selection.
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3. Measurements of Forecasting Performance

Measurements of forecasting accuracy are investigated in this section. In total, 41 types of
measurements of forecasting accuracy were gathered in this study. Table 6 lists measurements of
forecasting accuracy used by more than 10 studies. Mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean square error (RMSE) are three measurements most frequently
used. Renewable energy can be represented in diversified units, and values of renewable energy
fluctuate a lot for different studies. To avoid influences of units and values of renewable energy, MAPE
is specified here to depict forecasting accuracy. In Table 7, a total of 39 collected studies used MAPE
to measure forecasting performances. Generally, many models were introduced in each study. Thus,
Table 7 shows the best performance result in each study. According to Lewis [149], MAPE values less
than 10 percent are highly accurate predictions. Thus, most forecasting accuracies of collected studies
are high in terms of MAPE. In addition, the coefficient of determination (R2) is another measurement
specified in this study for analysis. The coefficient of determination represents the proportion of
the variance in the dependent variable that is explainable by the independent variables. Table 8
illustrates 23 collected studies employing R2 as a measurement in forecasting renewable energy. It
can be observed that most values of R2 are larger than 0.8. Besides, eight articles used R2 and MAPE
simultaneously as forecasting performance measurements. Table 9 lists values of R2 and MAPE, and a
correlation coefficient of −0.7869 was calculated from the numerical data. Thus, this study revealed that
machine-learning models with higher R2 values result in more accurate renewable-energy prediction
in terms of MAPE. When employing machine-learning models in forecasting renewable energy, the
coefficient of determination could be calculated before further steps of modeling are performed.
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Table 6. Measurements of forecasting accuracy used by more than 10 studies.

Measure-ments
Sources of Energy

Solar Wind Hydro-Power Biomass Geothermal Wave Tidal Total

MAE 17 26 1 3 1 2 0 50
MAPE 12 23 0 1 0 0 3 39
RMSE 36 31 1 4 0 2 3 77

R2 9 8 1 3 1 1 0 23
NRMSE 9 4 0 0 0 0 0 13

MSE 2 8 0 1 1 0 0 12

NRMSE = Normalized root mean square error; MSE = mean square error.

Table 7. MAPE values in energy prediction literature.

Sources of
Energy MAPE (%)/References Average MAPE (%)

Solar 17.70 [62]; 2.4 [79]; 54 [82]; 7.43 [83]; 2.8559 [87]; 1.342 [90]; 0.22 [129];
4.73 [138]; 7.4 [131]; 2.7822 [133]; 5.80 [121]; 1.4440 [106] 9.008675

Wind

8.1082 [21]; 1.66 [26]; 2.43 [27]; 2.43 [32]; 3.39 [33]; 6.531 [35]; 3.871 [36];
17.1076 [45]; 8.64 [46]; 0.88 [48]; 2.33 [50]; 2.29 [51]; 5.19 [53]; 2.29 [54];
1.7298 [55]; 7.6360 [56]; 6.0140 [57]; 6.2920 [58]; 15.1191 [59]; 14.44 [60];

3.06 [61]; 3.784 [107]; 7.59 [108]

5.774465

Biomass 3.783 [94] 3.783

Tidal 0.9741 [99]; 1.73 [102]; 2.048 [103] 1.5840

Table 8. R2 values in the energy prediction literature.

Sources of
Energy R2/References Average R2

Solar 0.705 [67]; 0.987 [80]; 0.9962 [87]; 0.9 [88]; 0.931 [89]; 0.99 [129];
0.8506 [140]; 0.967 [131]; 0.99 [109] 0.9240

Wind 0.99874 [16]; 0.995 [18]; 0.992 [44]; 0.878902 [45]; 0.9544 [46]; 0.9033 [52];
0.99376 [107]; 0.9892 [108] 0.96316

Hydropower 0.79 [91] 0.79

Biomass 0.999 [93]; 0.93 [94]; 0.9028 [96] 0.9439

Geothermal 0.86 [105] 0.86

Wave 0.7823 [98] 0.7823

Table 9. Values of R2 and MAPE.

Reference Sources of Energy R2 MAPE

[45] Wind 0.878902 17.1076
[46] Wind 0.9544 8.64
[87] Solar 0.9962 2.8559
[94] Biomass 0.93 3.783

[129] Solar 0.99 0.22
[131] Solar 0.967 7.4
[107] Wind 0.99376 3.784
[108] Wind 0.9892 7.59

4. Conclusions

Due to concerns caused by climate change and global warming recently, the issue of renewable
energy is booming. Thus, accurate prediction of renewable energy power becomes crucial, and plenty
of related studies have been conducted. In addition, the complexity of various environmental
conditions in renewable-energy-generation systems resulted in the inappropriateness of using closed
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mathematical forms to describe renewable-energy-generation systems [136]. Therefore, applications of
machine-learning models have been gradually popular in the renewable-energy predictions. This study
reviewed machine-learning models in energy predictions in recent years and analyzed this topic
from aspects of machine-learning models, renewable energy sources, data pre-processing techniques,
parameter selection algorithms, and prediction performance measurements.

Findings of this study can be summarized as follows. First, the applications machine-learning
techniques to renewable energy have been increasing and the uses of artificial intelligence techniques
and hybrid models in solar-energy and wind-energy predictions are the majority. Secondly,
the decomposition method is more often employed than the other data pre-processing techniques for
machine-learning models in renewable-energy predictions. Thirdly, extreme-learning machines and
support-vector machines are two machine-learning models most frequently applying metaheuristics to
parameter selection. Finally, machine-learning models with larger R2 values lead to more accurate
renewable-energy predictions in terms of MAPE.

Some possible future research directions for machine-learning models in renewable-energy
prediction are depicted as follows. First, it can be observed that most topics of machine-learning
technology in renewable-energy predictions have been focused on solar or wind energy forecasting.
Thus, instead of solar and wind-energy predictions, the other types of renewable-energy predictions,
such as tidal energy, biomass energy, wave energy, hydraulic power, and geothermal energy, could
be potential fields for the future work. In addition, artificial intelligence techniques and hybrid
models could be promising ways in forecasting renewable energy. Secondly, data pre-processing
methods do influence prediction performances of machine-learning models in renewable-energy
predictions. However, this issue has not attracted many attentions yet. Thus, the analysis of data
preprocessing techniques and machine-learning models in renewable-energy predictions is maybe
another direction for future research. Finally, parameter selection influences the performance of
machine-learning models in renewable-energy predictions a lot. Thus, to improve performances of
machine-learning models in renewable-energy predictions, the use of new metaheuristics, such as a
coronavirus optimization algorithm [150] for machine-learning parameter selection, is an encouraging
opportunity for future research.
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