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Abstract: Production scheduling is attracting considerable scientific interest. Effective scheduling of 
production jobs is a critical element of smooth organization of the work in an enterprise and, 
therefore, a key issue in production. The investigations focus on improving job scheduling 
effectiveness and methodology. Due to simplifying assumptions, most of the current solutions are 
not fit for industrial applications. Disruptions are inherent elements of the production process and 
yet, for reasons of simplicity, they tend to be rarely considered in the current scheduling models. 
This work presents the framework of a predictive job scheduling technique for application in the 
job-shop environment under the machine failure constraint. The prediction methods implemented 
in our work examine the nature of the machine failure uncertainty factor. The first section of this 
paper presents robust scheduling of production processes and reviews current solutions in the field 
of technological machine failure analysis. Next, elements of the Markov processes theory and 
ARIMA (auto-regressive integrated moving average) models are introduced to describe the 
parameters of machine failures. The effectiveness of our solutions is verified against real production 
data. The data derived from the strategic machine failure prediction model, employed at the 
preliminary stage, serve to develop the robust schedules using selected dispatching rules. The key 
stage of the verification process concerns the simulation testing that allows us to assess the execution 
of the production schedules obtained from the proposed model. 
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1. Introduction 

While conducting their activities, manufacturing enterprises establish a range of various goals. 
Certainly, one of the common strategic business objectives is to strengthen the market position. An 
enterprise that aims to broaden the group of clients, as well as foster the already existing business 
relations, must first and foremost be reliable and deliver quality goods within contractual deadlines 
[1,2]. Therefore, proper planning of works becomes central to sound execution of production 
processes. Production scheduling is the solution that can boost the capacity of manufacturers, hence 
there are numerous scientific publications in the field [3]. Researchers are still taking active efforts to 
optimise the effectiveness of production jobs scheduling in order to streamline the production 
planning process [2,4]. 

Unfortunately, most of the proposed solutions display numerous limitations [5]. It is common 
practice that the job scheduling algorithms build schedules for idealized production environments, 
i.e., assuming a static and stable production flow [5,6]. Thereby, a number of disruptive factors are 
excluded, which would bring the production to a halt in case they occur [7,8]. As a consequence, 
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contractual deadlines would be missed, penalties would be imposed and the manufacturer’s 
credibility would diminish. Among the various uncertainty factors, we can highlight the following [5,9]:  

• disruptions of resource availability (machine or robot failure) 
• disruptions of orders (placement of new orders) 
• disruptions of processes (material shortage, poor product quality) 
• disruptions associated with misestimation of the ongoing process parameters (incorrect 

estimation of operation times) 
• disruptions related to the change in the duration of the operation (employee absence or malaise, 

shorter or extended operation times) 

Scheduling production in real manufacturing systems cannot afford to pretend to be disruption-
free. It is, therefore, of the essence that scheduling endeavors should consider production problems 
under uncertainty, which is capable of having a colossal effect on the timeliness of production [10,11]. 
Given that the more the process changes, the greater its disorganization, the scientific literature in the 
field of scheduling has recently turned towards robust scheduling [5,9]. 

The predictive scheduling method proposed in this work employs Markov chains and ARIMA 
(auto-regressive integrated moving average) models whose combination enables determining the 
values of the machine failure parameters (time to failure and repair time of the machine). In the next 
step time buffers are directly integrated into the scheduling process and determine the completion 
time of the production, which corresponds to the delivery date agreed with the customer. 

Section 2 summarizes the essential information regarding robust production scheduling and 
reviews existing literature. The new methodology for scheduling under machine failure and failure 
prediction is described in Section 3, and the proposed solutions and results are discussed in the 
subsequent section. Conclusions and plans for further research work are presented in the last section 
of the work. 

2. Existing Work on Robust Production Scheduling 

2.1. Essentials of Robust Scheduling 

The purpose of a robust production schedule is predominantly to absorb potential disruptions, 
by allowing variability to the production system parameters. 

Two phases of scheduling are distinguished [9,12]: 

1. Predictive scheduling-related to the planning stage. 
2. Reactive scheduling-related to the production stage. 

A well-executed process of scheduling production jobs must pertain to the first of the phases 
(also referred to as the offline phase) when the available production data give the foundation for 
creating [3]: 

• a nominal schedule-based on the current system parameters, 
• a robust schedule-based on the assumption of uncertainty and variability of production. 

Reasonable scheduling in this phase requires not only implementing appropriate tools but also 
suitable methods for determining uncertainty factors [6]. Unfortunately, there is a distinct paucity of 
solutions that consider the impact of process disruptions [5,6]. 

2.2. Existing Literature on Robust Production Scheduling 

Due to the practical nature of the problem, robust production scheduling solutions are mainly 
developed for flow-shop and job-shop systems, which are the prevailing forms of organization in real 
production systems. 

Although robust task scheduling in a flow-shop environment is rather neglected in the literature, 
a certain number of publications on this issue can be found [13–15]. Various approaches have been 
applied to building robust schedules in a flow-shop environment—from classical local search 
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algorithms [16] to genetic algorithms [17], integer programming applications [18] and dynamic 
programming [19]. However, in an overwhelming majority, the publications are concerned with 
predictive-reactive scheduling, thus, tend to focus on the investigation of effective re-scheduling 
methods [19], and not on the analysis of uncertainty factors itself. 

The second most-investigated scheduling problem is robust production scheduling in job-shop 
systems [20]. This system is a close reflection of a typical production environment, where the order 
of operations is imposed by the technological routes of their jobs. Researchers have long highlighted 
that the real job-shop problem requires a distinctly different approach than the shown by the 
prevailing theoretical tendencies [21], however, to date no clear trend has emerged. Robust 
scheduling solutions proposed in the aspects of job-shop production processes resemble the solutions 
for flow-shop systems inasmuch as they are mainly dedicated to the predictive-reactive approach. 
Standard approaches are shown to draw from various methods, such as genetic algorithms and their 
hybrids [20,22], immunological algorithms [23,24] and stochastic programming [25]. Other authors 
propose robust scheduling methods using expert systems [26]. 

2.3. Machine Failure as the Major Uncertainty Factor 

Although many uncertainty factors can be named, the failure of technological machinery is still 
considered to be the central problem in manufacturing. This disturbance is regarded to have the 
greatest impact on performed processes. Failure will not only halt the production but its 
consequences will linger throughout the remaining production process [5,7]. 

From the analyzed scientific papers dealing with the topic of machine failure in scheduling, it 
can be seen that the search for methods that will enable approaching the problem of machine failure 
and predicting its occurrence are very much in place. Developing effective prediction methods is 
extremely important from the perspective of robust scheduling [18,19,26]. 

To this end, a probability distribution is among the most widely used approaches in the field of 
failure analysis. Researchers employ typical distributions and their combinations. The failure 
description proposed by Jensen [27] applies a uniform distribution. A similar solution is proposed by 
Al-Hinai and ElMekkawy [28], who, however, assume that the probability of failure is constant. In 
contrast, in their description of production process disturbances, Davenport et al. [29] implement a 
normal distribution, while Mehta and Uzsoy [21] utilize an exponential distribution. The authors 
propose the use of interesting approaches, such as the methods based on combinations of various 
distributions. The latter is used by Gürel et al. [4], who combine normal, triangular and exponential 
distributions. 

Recently, researchers have also investigated the application of typical key performance 
indicators (KPIs) used in maintenance, e.g., MTTF (mean time to failure), MTBF (mean time between 
failures) and MTTR (mean time to repair). In their direct application of the indicators, Deepu [9] and 
Gao [5] analyze specially prepared scenarios that assume a certain frequency of machine failure, i.e., 
high, medium or low, to study the consequences of machine downtime and propose solutions to 
absorb the emerging disruptions to the schedule. With respect to the indirect use of the indicators, 
Kempa et al. [30,31] propose the use of the aforementioned reliability indicators indirectly for the 
purpose of estimating Weibull distribution parameters, while Rosmaini and Shahrul [32] in their 
study, couple the said indicators with statistical methods. These studies, however, suffer from the 
major drawback—the acquisition and use of the respective quantities is treated quite theoretically 
and lacks practical verification on real data of machine failure rates [9,31]. 

In addition to the methods referenced in the preceding paragraphs, a range of alternative failure 
prediction methods can be found in the literature. Jian et al. [20] propose accumulating failures to a 
single occurrence, describing it by means of the MTTR parameter and their original indicator, MBL 
(machine breakdown level). In turn, Rawat and Lad [33] determine failure rates from the analysis of 
machine load time distributions, and Baptista et al. in [34] use artificial neural networks for failure 
analysis. 

Although constituting an interesting and important voice in the robust production scheduling 
studies, these models are associated with certain limitations. Their verification is often carried out on 
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test data, which may not be the most accurate representation of actual problems in manufacturing 
systems. Secondly, the questions arise as to insufficient argumentation regarding the selection of the 
solutions. Consequently, the key aspect of implementing historical data in studies of the failure rate 
of machines is omitted. 

The need to use real data on uncertainty factors is also emphasized by Davenport et al. [29] and 
Kalinowski et al. [35]. Only real knowledge on process disruptions can actually solve actual the 
problems that result from their occurrence. The issue was addressed in our previous work [36], where 
a model for the prediction of technological operation times in the framework of an intelligent job 
scheduling system was conceptualized. The study in question considered the impact of real 
processing time uncertainty on the production schedule and the developed intelligent module also 
implemented ARMA/ARIMA time series models, however, a problem of a different size was 
concerned and the verification was carried out for different production data. While such solutions 
can be found in the literature, the body of knowledge in the field still appears to lack proper depth [6].  

3. Production Scheduling under Technological Machine Failure Constraint 

3.1. Objectives 

This paper formulates a predictive production scheduling process model in the job-shop 
environment under technological machine failure established with the help of Markov chains and 
ARIMA models. Our solutions predict the time of machine failure, as well as the time of repair, and 
constitute an alternative method to the models proposed in the literature. The objective function of 
our predictive production scheduling is to minimize the makespan, i.e., to produce a schedule with 
a minimum completion time of all jobs. 

3.2. Basic Mathematical Notation of the Problem 

Prior to formulating the problem of robust job scheduling under uncertainty in the job-shop 
system, we need to define the elements of the production process: 

• Set 𝑀 is a set of 𝑚 machines (workstations) processing jobs: 𝑀 = {𝑀ଵ, 𝑀ଶ, … , 𝑀௠}. 
 

(1)
• Set 𝐽 is a set of 𝑛 jobs (tasks) to process  𝐽 = {𝐽ଵ, 𝐽ଶ, … , 𝐽௡}. (2) 

Processing job 𝐽௜ on machine 𝑀௝ constitutes an operation, which is called operation j of job i in 
the following. Therefore, it is necessary to define: 
• 𝑀𝑂—a matrix of 𝑚 columns and 𝑛 rows describing the technology (the job order): 𝑀𝑂 = ൣ𝑜௜௝൧, (3) 
where: 𝑜௜௝ —the order position of the operation 𝑗 of job 𝑖 , which is 𝑜௜௝ = 0 when the job is not 
processed on the machine; and 𝑜௜௝ = {1, … , 𝑚}, when it is. 
• Matrix 𝑃𝑇—a matrix describing processing times of operations: 𝑃𝑇 = ൣ𝑝𝑡௜௝൧, (4) 
where: 𝑝𝑡௜௝—the processing time of operations 𝑗 of job 𝑖; for each 𝑜௜௝ = 0, 𝑝𝑡௜௝ = 0. 
• Set 𝐹𝑇ெ௟ of potential machine failure times: 𝐹𝑇ெ௟ = ൛𝑓𝑡ெ௟భ, 𝑓𝑡ெ௟మ, … , 𝑓𝑡ெ௟೥ൟ, 𝑙 ∈ 〈1; 𝑚〉, (5) 
where: 𝑓𝑡ெ௟೥—time to failure of the machine l; where 𝑧 is a natural number representing the z-th 
machine failure. 
• Set 𝑇𝐵ெ௟ of time buffers to include in the nominal schedule (for machine 𝑙) to obtain a robust 

schedule: 𝑇𝐵ெ௟ = ൛𝑡𝑏ெ௟భ, 𝑡𝑏ெ௟మ, … , 𝑡𝑏ெ௟೥ൟ, (6) 
where: 𝑡𝑏ெ௟೥—the size of the time buffer in the schedule at the failure time 𝑓𝑡ெ௟೥; where for 𝑓𝑡ெ௟೥ ≠0, 𝑡𝑏ெ௟೥ ≠ 0. 
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3.3. Prediction of Failure and Machine Repair Times 

In the paper, we analyze the system describing the shift on which a failure occurs. Additionally, 
the repair time [37] required for failure removal is analyzed. Let (Ω, ℱ, 𝑃) be a probabilistic space: Ω—sample space (set of elementary events, outcomes), field ℱ is a family of sample space Ω (set of 
all subsets of sample space Ω), 𝑃—probability measure (function that assigns each element from field ℱ the probability, the value between 0 and 1), 𝑁—a set of natural numbers, 𝑅—a set of real numbers, 𝑆 = {𝑠ଵ, 𝑠ଶ, … , 𝑠௞}—a set of possible shifts, 𝑘 ∈ 𝑁, 𝑘 < ∞—the number of possible shifts. 

Definition 1. A family {𝑋௧}௧∈ே of random variables 𝑋௧: 𝛺 → 𝑆 for any 𝑡 ∈ 𝑁 is called a stochastic process 
with discrete time [38,39]. 

At any 𝑡 ∈  𝑁 time, the system can take one of the possible states denoted as 𝑋௧(𝜔) = 𝑥௧ ∈ 𝑆 
and 𝑃(𝑋௧(𝜔) = 𝑠௜) = 𝑝௜(𝑡) value means the probability that the system is in a state 𝑠௜ ∈ 𝑆,1 ≤ 𝑖 ≤ 𝑘 
at a moment 𝑡 ∈ 𝑁, and ∑ 𝑝௜(𝑡) ௞௜ୀଵ = 1. 

Definition 2. A stochastic process {𝑋௧}௧∈ே with a discrete time is called a Markov chain [38,39]. If for each 𝑛 ∈ 𝑁, moments 𝑡ଵ, 𝑡ଶ, … , 𝑡௡ ∈ 𝑁 satisfying the condition 𝑡ଵ < 𝑡ଶ < ⋯ < 𝑡௡ and any 𝑥ଵ, 𝑥ଶ, … , 𝑥௡  ∈ 𝑆, the 
equality: 𝑃(𝑋௧೙ =  𝑥௡|𝑋௧೙షభ = 𝑥௡ିଵ, 𝑋௧೙షమ = 𝑥௡ିଶ, … , 𝑋௧భ = 𝑥ଵ) = 𝑃(𝑋௧೙ = 𝑥௡|𝑋௧೙షభ = 𝑥௡ିଵ), (7)

holds. 

Below we assume 𝑡௡ = 𝑛 ∈ 𝑁. If {𝑋௧}௧∈ே is a heterogeneous Markov chain, then for any 𝑡 ∈ 𝑁 
and 1 ≤ 𝑖, 𝑗 ≤ 𝑘, the value: 𝑃൫𝑋௧ = 𝑠௝ห𝑋௧ିଵ = 𝑠௜൯ = 𝑝௜௝(𝑡), (8)

is the transition probability from 𝑠௜  state at the moment 𝑡 − 1  to 𝑠௝  state at moment 𝑡 . From 
Markov property (7), the conditional probability distribution of the future process state depends only 
on the current state at moment 𝑡, regardless of the past. The matrix 𝑃(𝑡) = ൣ𝑝௜௝(𝑡)൧ଵஸ௜,௝ஸ௞ is called 

the transition probabilities matrix at the moment 𝑡 and the elements of the 𝑃(𝑡) matrix satisfy the 
condition ∑ 𝑝௜௝(𝑡)௞௝ୀଵ = 1 for 𝑡 ∈ 𝑁 and 1 ≤ 𝑖 ≤ 𝑘. 

Definition 3. The Markov chain {𝑋௧}௧∈ே  is homogeneous, if the probabilities of transition 𝑝௜௝(𝑡) do not 
depend on the moment 𝑡 ∈ 𝑁. 

Thus, if for a homogeneous Markov chain [39,40] the matrix 𝑃 = ൣ𝑝௜௝൧ଵஸ௜,௝ஸ௞  satisfies the 

condition ∑ 𝑝௜௝௞௝ୀଵ = 1, 1 ≤ 𝑖 ≤ 𝑘 , then it is known as the one-step transition probability matrix. 
From the above, for a homogeneous Markov chain, the transition probability from 𝑠௜  state at 𝑡 
moment to the 𝑠௝ state at 𝑡 + 𝑛 moment is calculated as follows [38,40]: 𝑃൫𝑋௧ା௡ = 𝑠௝ห𝑋௧ = 𝑠௜൯ = 𝑝௜௝(௡) (9)

where ൣ𝑝௜௝(௡)൧ଵஸ௜,௝ஸ௞ = 𝑃௡, 𝑛 ∈ 𝑁 is the transition probability matrix in 𝑛 steps. 

Definition 4. If  {𝑋௧}௧∈ே is a homogeneous Markov chain and there is a distribution 𝜋 = (𝜋ଵ, 𝜋ଶ, … , 𝜋௞) 
where 𝜋௜ ≥ 0, 1 ≤ 𝑖 ≤ 𝑘 and ∑ 𝜋௜௞௜ୀଵ = 1 satisfying the equation: 𝜋𝑃 = 𝜋 (10)

then the distribution 𝜋 is called the stationary distribution of the homogeneous Markov chain. 

This property means that if at some 𝑛 ∈ 𝑁 moment the chain reaches a stationary distribution, 
then for each subsequent moment greater than 𝑛, the distribution will remain the same. To determine 
the stationary distribution, we solve Equation (10). 
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Let  {𝑥௧}଴ஸ௧ஸ௡  be the realization of Markov chain, where 𝑛௜ = #{𝑡: 𝑥௧ = 𝑠௜, 0 ≤ 𝑡 ≤ 𝑛}  is the 
number of moments for which the system was in 𝑠௜  state, 1 ≤ 𝑖 ≤ 𝑘 and ∑ 𝑛௜௞௜ୀଵ = 𝑛. The value 𝑛௜௝ = #{𝑡: 𝑥௧ = 𝑠௜, 𝑥௧ାଵ = 𝑠௝, 0 ≤ 𝑡 ≤ 𝑛 − 1} represents the number of transitions from the state 𝑠௜ to 
the state 𝑠௝ for 1 ≤ 𝑖, 𝑗 ≤ 𝑘 and ∑ 𝑛௜௝௞௝ୀଵ = 𝑛௜. We calculate the estimator of transition probability 
from 𝑠௜ state to 𝑠௝ state as 𝑝̂௜௝ = ௡೔ೕ௡೔  for 1 ≤ 𝑖, 𝑗 ≤ 𝑘. 

In this work, the goodness of fit test is used to verify Markov property 𝜒ଶ  [40,41]. At the 
significance level 𝛼 ∈ (0,1) , we create a working hypothesis: 𝐻଴: 𝑃(𝑋௧ = 𝑥|𝑋௧ିଵ = 𝑦, 𝑋௧ିଶ = 𝑧) =𝑃(𝑋௧ = 𝑥|𝑋௧ିଵ = 𝑦)  (the chain  {𝑋௧}௧∈ே  meets Markov property) and an alternative hypothesis: 𝐻ଵ: 𝑃(𝑋௧ = 𝑥|𝑋௧ିଵ = 𝑦, 𝑋௧ିଶ = 𝑧) ≠ 𝑃(𝑋௧ = 𝑥|𝑋௧ିଵ = 𝑦)  (the chain  {𝑋௧}௧∈ே  does not meet Markov 
property), where 𝑥, 𝑦, 𝑧 ∈ 𝑆. 

To verify the hypothesis 𝐻଴, we calculate the test statistics: 𝜒௘ଶ = ∑ ∑ ∑ ൫௡೔ೕೡି௡೔ೕ௣ොೕೡ൯మ௡೔ೕ௣ොೕೡ௞௩ୀଵ௞௝ୀଵ௞௜ୀଵ , (11)

which has a 𝜒ଶ  distribution with 𝑘ଷ  degrees of freedom and 𝑛௜௝௩ = #{𝑡: 𝑥௧ = 𝑠௜, 𝑥௧ାଵ = 𝑠௝, 𝑥௧ାଶ =𝑠௩, 0 ≤ 𝑡 ≤ 𝑛 − 2} is the number of transitions from state 𝑠௜ to state 𝑠௝ and next to state 𝑠௩ for 1 ≤𝑖, 𝑗, 𝑣 ≤ 𝑘 . The critical value is a quantile of order 1 − 𝛼  for 𝜒ଶ  distribution with 𝑘ଷ  degrees of 
freedom. We denote as 𝜒ଶ(1 − 𝛼, 𝑘ଷ). If 𝜒௘ଶ < 𝜒ଶ(1 − 𝛼, 𝑘ଷ), then at the significance level 𝛼, there are 
no grounds for rejecting the working hypothesis 𝐻଴. So, we can assume that the chain  {𝑋௧}௧∈ே meets 
Markov property. When 𝜒௘ଶ ≥ 𝜒ଶ(1 − 𝛼, 𝑘ଷ), then at the significance level 𝛼 we reject the working 
hypothesis 𝐻଴ in favor of the alternative hypothesis. Thus, the chain  {𝑋௧}௧∈ே does not meet Markov 
property. 

An ARIMA model, which usually correlates historical values in a time series, is applied to 
forecast the repair time. The behavior of the considered time series can be predicted (i.e., forecast 
with appropriate probability) based on current observation and historical data (dataset). Let  {𝑟𝑡௧}௧∈ே 
denote the sequence of times needed to repair a plant. Because the times needed do remove the 
failures can take only positive values, the variance-stabilizing transformation 𝜀௧ = 𝑙𝑛(𝑟𝑡௧) (12)

can be applied. 
The series {𝜀௧}௧∈ே  is identified using 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑟, 𝑞)  models, 𝑝, 𝑟, 𝑞 ∈ 𝑁  (auto-regressive 

integrated moving average) [42–45]. In this paper, the logarithm of repair time is modelled as follows: 𝛥௥𝜀௧ = 𝛼଴ + 𝛼ଵ 𝛥௥𝜀௧ିଵ + … + 𝛼௣𝛥௥𝜀௧ି௣ + 𝜖௧ − 𝜃ଵ𝜖௧ିଵ − ⋯ − 𝜃௤𝜖௧ି௤ (13)

where {𝜖௧}௧∈ே is a sequence of independent random variables with distribution 𝑁(0, 𝜎ଶ). To estimate 
the integration degree, Augmented Dickey-Fuller (ADF) and the Kwiatkowski-Phillips-Schmidt-Shin 
(KPSS) [42,46,47] tests are applied. 

The Markov chains and ARIMA models are implemented to determine the values of elements 
of sets 𝐹𝑇ெ௟  and 𝑇𝐵ெ௟. The analysis of historical machine failure data leads to determining important 
failure parameters, which can subsequently help establish buffer time periods in the predictive 
production scheduling method. 

4. Experimental Verification of the Proposed Solution 

4.1. Historical Data 

In order to verify the solutions proposed in this publication, a process of robust job scheduling 
is performed on the production data and on historical data of technological machine failure. The 
production data describes the execution of 9 production jobs processed by 12 machines, constituting 
a manufacturing cell (Table 1). The parts are produced in batches of 50 elements (𝑏 = 50) and the 
setup times of individual operations are not taken into account in the production scheduling process 
(uncertainty of setup times is a different factor and requires additional research). Therefore: 
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𝑝𝑡௜௝ = 𝑏 ∙ 𝑡𝑜௜௝, (14)

where: 𝑏—quantity of elements in the production batch, 𝑡𝑜௜௝—operation time. 

Table 1. Production data implemented in the robust scheduling solution. 

Job Operation Machine Type of Operation tsij * [min] tsij * [h] toij * [min] toij * [h] 

2 

10 M1 Laser1 Laser-cutting sheets 22 0.367 4 0.067 
20 M4 CNC saw Band-saw cutting 6 0.100 0.5 0.008 
30 M3 CNC press Edge bending 16 0.267 3 0.050 

40 M8 Drill Drilling holes and 
threading 

12 0.200 1 0.017 

50 M5 
Metalwor

king 
Metalworking 5 0.083 1 0.017 

60 M6 
MIG 

welder 
MIG welding 8 0.133 5.5 0.092 

6 

10 M1 Laser1 Laser-cutting sheets 12 0.200 0.3 0.005 
20 M2 Laser2 Laser-cutting profiles 14 0.233 1 0.017 

30 M5 
Metalwor

king 
Metalworking 5 0.083 1 0.017 

40 M6 
MIG 

welder 
MIG welding 8 0.133 1 0.017 

50 M10 
Turning 

lathe 
Turning 11 0.183 2 0.033 

9 

10 M1 Laser1 Laser-cutting sheets 20 0.333 5 0.083 

20 M2 Laser2 
Laser-cutting pipes 

and profiles 
12 0.200 2 0.033 

30 M4 CNC saw Band-saw cutting 6 0.100 1 0.017 
40 M3 CNC press Edge bending 25 0.471 6.5 0.108 

50 M8 Drill 
Drilling holes and 

threading 
12 0.200 7 0.117 

60 M5 
Metalwor

king 
Metalworking 5 0.083 2 0.033 

70 M6 
MIG 

welder 
MIG welding 8 0.133 7.5 0.125 

* tsij—setup time, toij—operation time. 

The data describing the failure rate of machines in the scheduled production process have been 
obtained from the computer records of machine operation from a maintenance department (Table 2). 
The collected data describe the failure rate of six technological machines that are crucial for the 
performed production process. The numbers of observations are as follows: 

• Machine M1—197 observations 
• Machine M2—166 observations 
• Machine M3—180 observations 
• Machine M6—157 observations 
• Machine M7—208 observations 
• Machine M8—97 observations 

Table 2. Machine failure and repair time data implemented in the scheduling solution. 

Machine M1 Machine M2 Machine M3 Machine M6 Machine M7 Machine M8 
Failure
–Shift 

[–] 

Repair  
Time 
[min] 

Failure 
–Shift 

[–] 

Repair  
Time 
[min] 

Failure
–Shift 

[–] 

Repair  
Time 
[min] 

Failure
–Shift 

[–] 

Repair  
Time 
[min] 

Failure
–Shift 

[–] 

Repair  
Time 
[min] 

Failure
–Shift 

[–] 

Repair 
Time 
[min] 

3 230 2 50 3 70 1 10 2 20 2 235 
2 120 1 15 3 30 1 50 1 20 1 30 
1 15 2 20 1 35 1 15 1 40 1 15 
2 95 2 20 3 190 3 110 1 20 2 215 
1 80 1 15 2 125 1 120 2 20 2 100 
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2 30 3 250 2 30 2 130 3 80 2 10 
3 130 2 15 3 15 1 30 2 10 1 40 

The nominal and robust schedules are subsequently built based on the data presented above. 
This, however, must be preceded by the prediction of failure parameters with the application of 
Markov chain and ARIMA models, which is described in the next section. 

4.2. Prediction of Machine Failure Parameters 

The failure prediction process is performed using appropriate scripts formulated in the RStudio 
computing environment [48] that enable the analysis in the range described in Section 3.3. 

Modelling the machine failure rates using the Markov chain (containing information on changes 
in production) is performed with the use of the markovchain library. Initially, the collected empirical 
data is verified to check whether they fulfil the properties of the Markov process. The analyses 
confirm that the data from the analyzed machines meet the required properties, which is further 
evidenced by the p-value index (Table 3). The p-value is the probability of obtaining hypothesis test 
results as extreme as the observed results, assuming that the null hypothesis is correct (data chain 
has a Markov property). 

Table 3. Markov process identification results. 

Machine No. p-Value [–] 
M1 0.8922 
M2 0.9051 
M3 0.9510 
M6 0.7361 
M7 0.9684 
M8 0.5618 

In the next stage of the machine failure prediction analysis, the transition rate matrices are 
generated from the collected data. From the obtained information, we determine, at a given 
probability level, the occurrence of subsequent chain elements, which in this study is the probability 
of machine failure occurrence at subsequent production shifts (Table A1). 

For clarity of presentation, the results from calculations are given in the form of transition 
diagrams (Figure 1), which additionally enable determining the probability of failure not only on 
subsequent shifts but also during the current shift (the arrow returning to the node). In Figure 1, 
knots represent shifts and the probability of machine failure during a given shift is given at the 
beginning of each arrow (next to the knot), e.g., for machine M6, the probability that the machine 
failure will occur after shift 1 during shift 2 is 0.593. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 1. Markov chains with transition diagrams for the considered machines: (a) Machine M1; (b) 
Machine M2; (c) Machine M3; (d) Machine M6; (e) Machine M7; (f) Machine M8. 

The second key parameter of failure is its time. To this end, the forecast package is used, which 
enables identifying the elements of ARIMA time series. As a result, the predicted machine failure 
repair times are determined. Before forecasting, each machine is tested to verify whether the process 
is stationary, also the component models are established (autoregression, moving average and the 
integration). In the subsequent step, future repair times are predicted. Due to the fact that in ARIMA 
models, the forecasts may also take negative values, the collected observations have been first 
subjected to variance-stabilizing transformation, and after the prediction, the process is completed 
and their original sets of values are returned. The results from the model identifying exemplary 
predicted times for the 5 subsequent steps of the time series are presented in Table 4. 

Table 4. Predicted machine repair times. 

Machine 
No. ARIMA Model 

Predicted Repair Times [min] 
1 2 3 4 5 

M1 ARIMA(1,0,0) 38.77 42.11 41.90 41.91 41.91 
M2 ARIMA(0,0,0) 39.79 39.79 39.79 39.79 39.79 
M3 ARIMA(1,1,2) 36.78 40.80 40.02 40.16 40.14 
M6 ARIMA(2,0,1) 48.12 37.57 43.20 37.78 42.13 
M7 ARIMA(1,0,1) 54.80 54.20 53.72 53.35 53.06 
M8 ARIMA(0,0,1) 51.83 49.85 49.85 49.85 49.85 

The data below display the disparity between individual machine repair times. Each machine is 
coupled with a different ARIMA model. From the set of possible ARIMA models, we select a model 
that has a smaller AIC (Akaike Information Criterion) value. The analytical process is carried out 
with the exclusive use of autoregression (Machine M1), or the moving average (Machine M8), or a 
combination thereof (Machine M2, M6, M7). In a single case (Machine M2), time variability is a series 
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of independent random variables; therefore, the forecast repair times are established on the basis of 
mean observations. 

The results of the prediction of machine failure parameters are perfectly applicable to robust 
production scheduling. Expressing the time of failure through production shifts allows us to 
determine the intervals in which machine failures are likely to occur. In turn, the forecasted repair 
times could be further employed to the determination of machine inspection and maintenance times. 
Therefore, in the next stage, the obtained analysis results are used to formulate a robust production 
schedule, whose effectiveness is subsequently verified. 

4.3. Production Process Modelling and Scheduling 

Before the obtained prediction results could be subjected to further processing, nominal 
schedules are generated from the real data. Let us assume that the product is manufactured in batches 
of 50 pieces and the objective function of the schedule is to minimize the makespan (𝐶୫ୟ୶).  

The schedules are developed using LiSA (A Library of Scheduling Algorithms) software [49], 
for the analysis of scheduling problems in various environments. The production data serve to 
represent the production system: a set of machines 𝑀 and jobs 𝐽, the technology matrix 𝑀𝑂 and the 
matrix of processing times 𝑃𝑇. To test the alternative versions of scheduling, the choice of the next 
operation is determined by two dispatching rules [50]: 

• LPT (longest processing time) 
• SPT (shortest processing time) 

The robustness of the production schedules is to be provided by the inclusion of the results from 
the predictions of failure parameters using the data describing the states of production shifts set 𝑆 
and predicted repair times 𝑟𝑡௧. As a result, we have managed to determine the elements from the set 
of predicted machine failure times 𝐹𝑇ெ௟  and the service time buffer set 𝑇𝐵ெ௟ . As noted in the 
introduction, the data obtained for strategic machines are analyzed from the perspective of executed 
production processes, hence the discrepancies in the designations in the technology records and the 
schedule. All the data that serve to generate the robust schedule are presented in Table 5. 

Table 5. The data implemented into the robust production schedule. 

Machine No. Elements of Set FTMl [h] Elements of Set TBMl [h] 

M1 FTM1 = {8} TBM1 = {0.646, 0.702, 0.698, 0.699, 0.699} 

M2 FTM2 = {8} TBM2 = {0.663, 0.663, 0.663, 0.663, 0.663} 

M3 FTM3 = {8} TBM3 = {0.613, 0.680, 0.667, 0.669, 0.669} 

M6 FTM6 = {8} TBM6 = {0.802, 0.626, 0.720, 0.630, 0.702} 

M7 FTM7 = {8} TBM7 = {0.913, 0.903, 0.895, 0.889, 0.884} 

M8 FTM8 = {8} TBM8 = {0.864, 0.831, 0.831, 0.831, 0.831} 

Since it is built on the data above, the obtained schedule is robust to machine failure 
disturbances. The procedure for generating the robust schedule is rather straightforward: service 
time buffers 𝑇𝐵ெ௟ are implemented into the nominal schedule in the slots indicated by the set of 
machine failure times 𝐹𝑇ெ௟. The time-to-failure is counted only for the machines processing jobs (idle 
time was disregarded). In the case when a service time buffer is required during the operation, any 
interfering operation was shifted right in the order of jobs. 

4.4. Evaluation Criteria 

To verify the effectiveness of the robust scheduling solutions, as well as for the sake of 
comparative analysis against the nominal schedules, the following assessment criteria are applied: 

• makespan 𝐶୫ୟ୶—total production time, 
• mean completion time 𝐶̅ given by: 
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𝐶̅ = ଵ௡ ∑ (𝐶௜)௡௜ୀଵ , (15) 

where: 𝐶௜—the completion time of job i. 

• mean flow time 𝐹ത given by: 𝐹ത = ଵ௡ ∑ (𝐹௜)௡௜ୀଵ , (16) 

where: 𝐹௜—the flow time of job i. 

• the number of critical operations 𝑌௄ is derived from: 𝑌௄ = ∑ ∑ (𝑦௜௝)௠௝ୀଵ௡௜ୀଵ , (17) 

𝑦௜௝ = ቊ1, 𝑤ℎ𝑒𝑛 ൫𝑡𝑧௜௝ − 𝑡𝑟௜௝ାଵ) = 0൯0, 𝑤ℎ𝑒𝑛 ൫𝑡𝑧௜௝ − 𝑡𝑟௜௝ାଵ) ≠ 0൯ , (18) 

where: 𝑌௄—the number of critical operations, 𝑡𝑧௜௝—the completion time of operation oij (current), 𝑡𝑟௜௝ାଵ—the start time of operation oij + 1 (subsequent). 

The verification of the obtained schedules is performed during the online stage (production 
execution), modelled with the Enterprise Dynamics software in a series of simulation tests. The 
computations serve to determine total completion times of production jobs under strategic machinery 
failure. The modelling tool used in the study allows detecting machine failure times by setting the 
MTTF and MTTR indicators and selected probability distributions (Table 6). The MTTF values are 
specified for the uniform probability distribution (i.e., the machine failure can occur at any time—
from the start of the job on the machine until its completion). On the other hand, the MTTR values 
are determined using the Weibull distribution, obtained for machine repair times from the Cullen–
Frey graph [6]. 

Table 6. Machine failure parameters defined in the simulation environment. 

Machine No. 
(Technology) 

MTTF * MTTR * 

M1 Uniform(0, 16.763) Weibull(0.88, 1.28) 
M2 Uniform(0, 8.673) Weibull(0.75, 1.51) 
M3 Uniform(0, 15.247) Weibull(0.679, 1.72) 
M6 Uniform(0, 22.083) Weibull(0.769, 1.43) 
M7 Uniform(0, 8.34) Weibull(0.973, 1.58) 
M8 Uniform(0, 19.24) Weibull(0.877, 1.45) 

* the parameters are expressed in hours. 

Twenty-five simulations of the production process are performed for each of the LPT or SPT 
schedules. The indicators employed in the assessment of the results from simulations are: 

• Increase of completion time of all jobs ∆𝐶୫ୟ୶ given by: ∆𝐶୫ୟ୶ = 𝐶୫ୟ୶ − 𝐶ᇱ୫ୟ୶ , (19)

where: ∆𝐶୫ୟ୶—increase of completion time of all jobs, 𝐶୫ୟ୶—nominal schedule makespan, 𝐶′୫ୟ୶—
actual (executed) schedule makespan. 

• Relative increase of makespan 𝐸஼೘ೌೣ given by: 𝐸஼೘ೌೣ = ஼ౣ౗౮஼ᇲౣ౗౮, (20)

where: 𝐸஼೘ೌೣ —relative increase of makespan, 𝐶୫ୟ୶ —nominal schedule makespan, 𝐶′୫ୟ୶ —actual 
(executed) schedule makespan. 
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4.5. Experimental Results 

The first of the verification objectives is to compare the nominal and robust production schedules 
in terms of evaluation criteria. The values of the evaluation indicators of the schedules have been 
determined and are summarized below (Table 7). 

Table 7. Evaluation criteria in the nominal and robust schedules. 

Dispatching 
Rule 

Evaluation Criterion [h] 𝑭ഥ 𝑪ഥ 𝑪𝒎𝒂𝒙 
Nominal 

Sched 
Robust 
Sched 

Elong. 
[%] 

Nominal 
Sched 

Robust 
Sched 

Elong. 
[%] 

Nominal 
Sched 

Robust 
Sched 

Elong. 
[%] 

LPT 23.34 23.86 2.3% 31.94 36.49 14.2% 46.93 53.14 13.2% 
SPT 18.33 19.94 8.8% 20.95 23.42 11.8% 47.26 55.68 17.8% 

From the presented data, it can be seen that the implementation of service time buffers increases 
the completion times of all jobs. As a consequence, in each of the analyzed cases, one additional shift 
is required to complete the production process. This effect is not at all unexpected, given that 
incorporating service time buffers is inseparably connected with elongation. It should be noted, 
however, that in the robust schedule the time spent in the production system is not extended owing 
to the fact that the mean flow time is subject to slight elongation. 

Figure 2 presents the visual interpretation of the nominal and robust SPT schedules. Service time 
buffers are represented by crossed white blocks. 

 
(a) 

 
(b) 

Figure 2. Schedules obtained using the SPT (shortest processing time) rule: (a) nominal, (b) robust. 
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A further indicator of robustness that is of great importance in scheduling is the number of 
critical operations. Scheduling should minimize its value because the stability of the executed process 
is compromised with the rising number of critical operations. In the analyzed example, the number 
of critical operations is considered in relation to individual jobs (𝑌௄௃) and machines (𝑌௄ெ). The robust 
scheduling results with respect to the number of critical operations are presented in Table 8. 

Table 8. The number of critical operations in the nominal and robust schedules. 

Dispatching 
Rule 

Number of Critical Operations [–] 𝒀𝑲𝑱  𝒀𝑲𝑴 
Nominal 

Sched. 
Robust 
Sched. 

Reduction 
[%] 

Nominal 
Schedule 

Robust 
Sched. 

Reduction 
[%] 

LPT 30 24 −20.0% 26 21 −19.2% 
SPT 32 27 −15.6% 25 21 −16.0% 

The incorporation of service time buffers is shown to have a positive effect on the considered 
parameters. The number of critical operations is reduced by up to 20%. This confirms the legitimacy 
of implementing service time buffers, which generate additional space in the schedule and thus can 
prove to be beneficial in the event of machinery failure or other process disruptions. 

Simulation tests are conducted to indicate which of the schedules features a makespan closer to 
the simulated completion time of all jobs. The tests follow the procedure presented in the preceding 
section and their results are given below, in Tables 9 and 10. 

Table 9. Results from simulation: nominal and robust schedules (LPT—longest processing time). 

Sim. No. Executed Schedule (Simulation) C’max [h] 

Increase of Makespan and Relative Increase of Makespan 

Nominal Schedule Robust Schedule 

Cmax [h] 
ΔCmax 

[h] 
ECmax [–] Cmax [h] 

ΔCmax 
[h] 

ECmax [–] 

1 52.15  −5.22 0.90  0.99 1.02 
2 49.75  −2.82 0.94  3.39 1.07 
3 50.93  −4.00 0.92  2.21 1.04 
4 57.57  −10.64 0.82  −4.43 0.92 
5 52.79  −5.86 0.89  0.35 1.01 
6 52.62  −5.69 0.89  0.52 1.01 
7 50.01  −3.08 0.94  3.13 1.06 
8 55.23  −8.30 0.85  −2.09 0.96 
9 50.69  −3.76 0.93  2.45 1.05 
10 53.73  −6.80 0.87  −0.59 0.99 
11 50.62  −3.69 0.93  2.52 1.05 
12 49.26 46.93 −2.33 0.95 53.14 3.88 1.08 
13 51.98  −5.05 0.90  1.16 1.02 
14 51.73  −4.80 0.91  1.41 1.03 
15 50.20  −3.27 0.93  2.94 1.06 
16 52.17  −5.24 0.90  0.97 1.02 
17 50.71  −3.78 0.93  2.43 1.05 
18 51.01  −4.08 0.92  2.13 1.04 
19 50.61  −3.68 0.93  2.53 1.05 
20 50.65  −3.72 0.93  2.49 1.05 
21 49.95  −3.02 0.94  3.19 1.06 
22 50.22  −3.29 0.93  2.92 1.06 
23 51.83  −4.90 0.91  1.31 1.03 
24 52.21  −5.28 0.90  0.93 1.02 
25 50.79  −3.86 0.92  2.35 1.05 
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Table 10. Results from simulation: nominal and robust schedules (SPT). 

Sim. 
No. 

Executed Schedule (Simulation) C’max 

[h] 

Increase of Makespan and Relative Increase of Makespan 

Nominal Schedule Nominal Schedule 

Cmax 
[h] 

ΔCmax 
[h] 

ECmax [–] 
Cmax 
[h] 

ΔCmax 
[h] 

ECmax [–] 

1 51.86  −4.60 0.91  3.82 1.07 
2 53.32  −6.06 0.89  2.36 1.04 
3 52.11  −4.85 0.91  3.57 1.07 
4 55.09  −7.83 0.86  0.59 1.01 
5 54.27  −7.01 0.87  1.41 1.03 
6 55.36  −8.10 0.85  0.32 1.01 
7 52.55  −5.29 0.90  3.13 1.06 
8 52.65  −5.39 0.90  3.03 1.06 
9 51.60  −4.34 0.92  4.08 1.08 
10 53.19  −5.93 0.89  2.49 1.05 
11 53.99  −6.73 0.88  1.69 1.03 
12 51.07 47.26 −3.81 0.93 55.68 4.61 1.09 
13 53.76  −6.50 0.88  1.92 1.04 
14 51.54  −4.28 0.92  4.14 1.08 
15 55.85  −8.59 0.85  −0.17 1.00 
16 54.55  −7.29 0.87  1.13 1.02 
17 53.95  −6.69 0.88  1.73 1.03 
18 51.47  −4.21 0.92  4.21 1.08 
19 51.69  −4.43 0.91  3.99 1.08 
20 50.71  −3.45 0.93  4.97 1.10 
21 51.75  −4.49 0.91  3.93 1.08 
22 53.29  −6.03 0.89  2.39 1.04 
23 54.03  −6.77 0.87  1.65 1.03 
24 53.47  −6.21 0.88  2.21 1.04 
25 52.11  −4.85 0.91  3.57 1.07 

The schedules generated with the LPT and SPT dispatching rules are shown to outperform the 
nominal schedule. Their accuracy of predictions is closer to the production data established in 
simulations. At a closer investigation, the LPT schedules (Table 9) exhibit good compliance of robust 
and simulated makespans. The schedule is robust for an average of 1.56 h longer than the simulated 
process; however, considering the nominal schedule, the completion time of all jobs is on average 
4.65 h shorter. The comparable makespan length of the robust schedule and the executed production 
schedule is further confirmed by the mean value of indicator 𝐸஼೘ೌೣ, which amounts to 1.03 for the 
robust schedule, and 0.91 for the nominal schedule.  

A similarity of a comparable magnitude is also shown to occur in the production process 
simulations conducted according to the SPT schedules (Table 10). The mean makespan of the nominal 
schedule is −5.75 h, while of the robust schedule 2.67 h. In the same case, the mean relative increase 
is 0.89 for the nominal schedule and 1.05 for the robust schedule. 

Nevertheless, it should be noted that in several simulations (for both the LPT and SPT rules), the 
nominal schedules display a closer resemblance to the executed production process; still, the robust 
and the executed schedules also show a good fit (e.g., simulation 2 for the LPT rule, or simulation 18 
for the SPT rule). 

To summarize, the data obtained in the study clearly indicate that the schedule with service time 
buffers achieves a closer resemblance to the simulated makespan. 

Figures 3 and 4 display the results for makespan increase indicators, which provide further 
evidence confirming the legitimacy of our solutions. The proximity of the robust schedules to the 
simulated schedules is again highlighted by their being situated close to the dashed line. 
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Figure 3. Increase of makespan in LPT and SPT schedules. 

 
Figure 4. Relative increase of makespan in LPT and SPT schedules. 

Robust production schedules generated with the application of our solutions determine 
makespans closer to the simulated completion times of all jobs in the simulated production conditions 
under technological machinery failure uncertainty. This is evidenced by several indications, e.g., the 
fact that for the robust schedules, the values of ∆𝐶୫ୟ୶ tend to be close to 0 (Figure 3), whereas in the 
case of 𝐸஼೘ೌೣ around 1 (Figure 4). Values 0 and 1 of the considered indicators denote igh compliance 
of the robust schedule with the production execution (simulation). 

5. Summary and Conclusions 

The execution of production processes is associated with the occurrence of various uncertainty 
factors. Disruptions generate problems that may have a marked effect on production schedules. 
Therefore, more effort is required in developing techniques and methods that affirm the relevance of 
uncertainty factors in manufacturing and propose viable solutions. Robust scheduling exhibits the 
required potential to cope with disruptions and, thus, should be studied further. 

In this investigation, the aim was to design a robust production scheduling method with the 
implementation of Markov chain theory and ARIMA models that will provide for the negative effects 
of technological machinery failure. The analyses reveal that the inclusion of machine failure in the 
production schedule results in the extension of the performance indicators, mean flow time, mean 
job completion time, as well as the central criterion describing the performance of the production 
system—the completion time of all jobs (makespan). However, the elongation remains within the 
reasonable limits given that the production is carried out according to failure-inclusive schedules. 
The simulations evidence that the robust schedules bear a closer similarity to the simulated 
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production process than their nominal equivalents. In other words, the proposed model generates 
high-accuracy makespan while increasing the robustness and stability of the schedule. 

To extend our research in the future, we intend to develop improved models that will: provide 
for the management of other uncertainty factors in production scheduling (e.g., disruptions related 
to transport, availability of materials or employee absence), enable reactive scheduling of production 
jobs or extend the versatility of the proposed solutions over other manufacturing systems. Our 
current findings and methodologies should make a noteworthy contribution to the theory of 
production scheduling, as well as appeal to practitioners representing various manufacturing 
industries and different-sized enterprises. 
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Appendix A 

In the table below, the rows and columns describe individual production shifts. The probability 
of the machine failure during a given shift is derived from the matrix by setting the shift number in 
a given row against an appropriate column, e.g., for Machine M6, the probability that the machine 
failure will occur after shift 1 during shift 2 is 0.593 (first row, second column). The procedure of 
machine failure probability calculation is described in detail in Section 3.3 (Definition 4). 

Table A1. The transition rate matrix for each machine in the production system. 

Transition Rate Matrix 
Machine M1 Machine M2 Machine M3 

shift 1 2 3 shift 1 2 3 shift 1 2 3 
1 0.132 0.566 0.302 1 0.100 0.500 0.400 1 0.262 0.426 0.311 
2 0.324 0.203 0.473 2 0.328 0.262 0.410 2 0.300 0.250 0.450 
3 0.333 0.420 0.246 3 0.463 0.352 0.185 3 0.466 0.345 0.190 

Machine M6 Machine M7 Machine M8 

shift 1 2 3 shift 1 2 3 shift 1 2 3 
1 0.222 0.593 0.185 1 0.244 0.476 0.280 1 0.241 0.448 0.310 
2 0.361 0.230 0.410 2 0.415 0.169 0.415 2 0.286 0.257 0.457 
3 0.463 0.390 0.146 3 0.583 0.233 0.183 3 0.406 0.375 0.219 
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