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Abstract: The high electric field intensity achieved on the surface of sensors based on metasurfaces
(metasensors) makes them an excellent alternative for sensing applications where the volume of the
sample to be identified is tiny (for instance, thin-film sensing devices). Various shapes and geometries
have been proposed recently for the design of these metasensors unit-cells (meta-atoms) such as split
ring resonators or hole arrays, among others. In this paper, we propose, design, and evaluate two
types of tripod metasurfaces with different complexity in their geometry. An in-depth comparison
of their performance is presented when using them as thin-film sensor devices. The meta-atoms of
the proposed metasensors consist of a simple tripod and a hollow tripod structure. From numerical
calculations, it is shown that the best geometry to perform thin-film sensing is the compact hollow
tripod (due to the highest electric field on its surface) with a mean sensitivity of 3.72 x 107> nm~".
Different modifications are made to this structure to improve this value, such as introducing arms in
the design and rotating the metallic pattern 30 degrees. The best sensitivity achieved for extremely
thin film analytes (5-25 nm thick) has an average value of 1.42 x 10~* nm, which translates into
an extremely high improvement of 381% with respect to the initial hollow tripod structure. Finally,
a comparison with other designs found in the literature shows that our design is at the top of the
ranking, improving the overall performance by more than one order of magnitude. These results
highlight the importance of using metastructures with more complex geometries so that a higher
electric field intensity distribution and, therefore, designs with better performance can be obtained.
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1. Introduction

The use of metasurfaces operating in the terahertz (THz) band for sensing applications has
gained increased attention in the last few years. This is because of the recent and unprecedented
advances achieved in the development of technology in this spectral region [0.1-10 THz], such as
more efficient sources and detectors added to commercial instrumentation like THz time-domain
spectrometers (THz-TDS) [1]. The particular characteristics of the THz band such as the sensitivity
to weak molecular interactions, water absorption, and penetrability through non-polar materials,
have attracted the attention of the scientific community in a wide variety of fields such as security,
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medicine, communications [2], as well as sensing applications [3-9]. Metasurfaces are usually designed
by assembling arrays of subwavelength resonators (meta-atoms), whose electromagnetic response can
be arbitrarily manipulated by selecting the best suitable materials, geometries, and spatial arrangement.
Of particular interest in sensing applications is the fact that meta-atoms produce a high electric field
intensity at their resonance frequency, leading to an enhancement of the interaction of any substance or
analyte under analysis placed on, or at the vicinity of, the metasurface. As a result of such light-matter
interaction enhancement, observable changes in its frequency response arise. This is advantageous
compared to traditional detection methods, whose main weakness lies in the difference of wavelength
and analyte size: the THz wavelength size is of the order of tens to thousands of microns, whereas
typical analyte sample sizes are often below one micrometer [4,5,9-12]. For this reason, there is usually
not enough interaction between the radiation and the sample, and thus, the sensing becomes very
difficult or even impossible.

Thin-film sensing is of high interest in practical applications, especially when measuring substances
in a thin homogeneous sample becomes essential or when the sample amount is too small. Additionally,
it can be used for situations in which it is easier to process a thin-film form of the sample due to
the nature of the substance, such as in biological and chemical sensing [13]. There are different
examples in the literature of metasurfaces designed to perform this type of sensing such as designs
based on split-ring resonators (SRRs) [10,14,15], crosses [8,16], metastructures that exploit very sharp
resonances such as Fano devices or hole arrays [10,17], or more complex geometries or materials such
as graphene-based metasurfaces [18]. There are recent reviews that summarize all this information and
the different types of device proposed in the literature [5]. Whichever the type of metasensor employed,
one of the biggest challenges of THz thin-film sensing is how to achieve a high-quality device in terms
of sensitivity (a parameter that gives a measure of the frequency shift compared to the response of
the empty structure) and figure of merit (FOM, that relates the sensitivity and resonance linewidth).
In practice, it is found that the higher the electric field confinement, the higher the sensitivity and
FOM [4]. The main advantage of metastructures based on meta-atoms lies in the ease of their design
and manufacture since their unit-cell geometries are not very complex. Meta-atoms based on crosses
or SRRs have been extensively studied in other works [8-10,12,14-16].

Motivated by the promising capabilities of metasurfaces for sensing and their importance for
thin-film detection at THz frequencies, in this work we propose metasensors using meta-atoms
with a geometry consisting of three blades separated from each other by 120 degrees, called “tripod
metasurfaces”. An in-depth comparison between different types of tripod-loop metasurfaces is
performed by studying metastructures with increasingly complex geometries: from simple tripod
metasurfaces made of solid blades (arms) to a hollow tripod metasurface where the electric field
confinement will be shown to be much higher. To carry out a qualitative comparison, we study
the behavior of both metastructures as thin-film sensing devices. As a final step, we analyze more
complex tripod metastructures, to which we add arms or rotations in the metallic pattern (hollow
tripod + arms, hollow tripod + arms, rotated) and compare their performance with other designs
found in the literature.

2. Materials and Methods

The metasensors proposed in this work are designed to operate in absorption within the THz band
of 0.4-0.7 THz. All metastructures were configured as tri-layer designs consisting of a layer of aluminum
(Al) metallic blades printed over a 150 um thick polypropylene (PP) substrate with back metallization
acting as a ground plane. It is important to note that metals within the designed THz frequency range
can still be considered as conductors that can be modeled using finite conductivity [4,19], hence the
back metallic sheet acts as a reflecting layer. The structure dimensions are: periodicity, d = 162.5 pm;
distance between metallic strips, a = 26 pm; metallic strips width, g = 9.5 pm; metallic layers thickness,
t = 0.4 um; and blade width, w = 58.5 um; as shown in Figure 1.
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Solid tripod Hollow tripod

Figure 1. Front view of the designed tripod metasurfaces unit cells. Metallization is represented in
grey and polypropylene (PP) substrate in red.

The designed metasurfaces are simulated using the commercial simulator CST Microwave
Studio™. Floquet ports and periodic boundary conditions are applied to the designed unit cells to
model the metasurfaces as an infinitely replicated array. The PP substrate was modeled as a low-loss
dielectric with a complex relative permittivity epp = 2.25(1 — j1073). The aluminum used for the
pattern and the ground plane was modeled as a lossy metal with electrical conductivity o = 1.5 X
107 S/m, as in [4,19] with the nominal conductivity of aluminum reduced to account for losses due to
roughness. The metasurfaces were illuminated under normal incidence using a vertically polarized
(Ey) plane wave. To evaluate the performance of the designed metasurfaces working as thin-film
sensors, their outer face was coated with different thin-film thicknesses, ranging from 200 nm to 800 nm.
The dielectric permittivity of the analyte used for this purpose was ¢, = 8, as this value has been used
in other studies dealing with biosensing applications [19,20].

3. Results and Discussion

The numerical results of the reflection coefficient for the designed metasensors are shown in
Figure 2. As shown in the figure (black curves), the response of the analyte-free metastructures exhibits
a dip in the reflection coefficient at 551 GHz (hollow tripod, Figure 2b) and 620 GHz (solid tripod,
Figure 2a). Before coating the surfaces with different analyte thicknesses, a study of the electric field
distribution over the surface of the analyte-free structure was carried out, and the results are shown
as insets in the same figure. As shown in Figure 2a,b, there are apparent differences between both
metastructures. While in the solid tripod metastructure (Figure 2a) the electric field is confined only at
the tips of the metallic blades, in the hollow tripod structure, the electric field is also confined inside
the hollow blades, due to the capacitance generated between the metallic strips (see Figure 2b).
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Figure 2. Reflection coefficient for different analyte thicknesses: 0 nm (black line), 200 nm (red line),
400 nm (blue line), 600 nm (cyan line), and 800 nm (dark pink line), for the solid tripod structure (a),
and the hollow tripod structures (b,c). Insets: electric field magnitude over the empty (analyte-free)
tripod metasurfaces. Frequency shift as a function of the analyte thickness, for extremely thin analytes
with average sensitivity for the solid tripod structure (d), and the hollow tripod structures (e,f).

When using this type of unit cells for sensing applications, it becomes essential to have the
maximum possible electric field concentration to increase the sensitivity to dielectric changes in the
vicinity of its surface. The sensing performance of both metastructures was studied by coating them
with a dielectric thin-film acting as an analyte, with dielectric permittivity ¢, = 8, and thicknesses
ranging from h,; = 200 nm to /i, = 800 nm. The reflection spectra for the different analyte thicknesses are
plotted in Figure 2a,c. As observed, a redshift of the resonance dip occurs when the analyte thickness
increases, as expected. For completeness, this frequency shift as a function of the analyte thickness
is plotted in Figure 2d,e where the redshift is clearly shown. To obtain a quantitative estimation of
the sensing performance, we calculate the sensitivity of each structure, defined as S = (Af/fy)/h, and
measured in nm~!, where Af = f — fo, with f the resonance frequency for each analyte thickness, h,, and
fo the resonance frequency without the analyte. With this definition, we obtain an average sensitivity
of 3.54 x 107> nm™! for the solid tripod structure, and an average sensitivity of 3.72 X 107> nm™! for
the hollow tripod structure. These results translate into an improvement of the hollow structure of
approximately 5% with respect to the solid tripod. As mentioned above, this can be because the electric
field confinement is more distributed along the surface of the hollow tripod, making it more sensitive
to changes in the refractive index around the surface of the structure.
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The previous results suggest that one of the most critical factors for a good sensing device is to
have large electric field confinement. To verify this, new metastructures were designed, based on the
hollow tripod. First, we modify the strip width g (see dimensions in Figure 1) and the gap between
strips, a, to optimize these parameters, and to achieve as deep a resonance as possible. Based on this
analysis, it was found that the best dimensions are those in the inset of Figure 2e with: 2 = 30 pm and
g =7.5pm. As observed in the curves of the reflection coefficient for different analyte thicknesses
(Figure 2c), the frequency shift obtained is significantly larger than in the previous cases. Specifically,
a maximum frequency shift of 4.36% is achieved for an analyte thickness of 800 nm (Figure 2f). This
provides a mean sensitivity of 6.4 X 107> nm™1, giving rise to a 172% improvement regarding the hollow
structure. In addition to being easy to design and manufacture, this structure is largely insensitive to
the angle of polarization (as shown in the Supplementary Material), which is advantageous for sensing
applications where it is vitally important to position the sample in the correct alignment.

Once the optimal dimensions of the structure have been found, we continue this work by
introducing changes in the design to improve the sensitivity and, therefore, the quality of the
metasensor device. One way to enhance the electric field concentration is by adding arms to each of
the three vertexes of the metallic pattern, as shown in the insets of Figure 3. In order to know the
optimal length of these arms, we performed a parameter sweep of their length. The length of the arms
(larm) varied from 5 pm up to the maximum, limited by the size of the unit cell, see Figure 3. The best
results were achieved for an arm’s length equal to or less than 10 pm, obtaining a higher quality factor
resonance in the bare structure. Thus, due to the greater ease of manufacture, we have chosen an arm’s
length of 10 pm.

Reflection coeff. (dB)

16 | Lyrm =95 um E(?jé:égﬁ:
450 500 550 600 650

Frequency (GHz)

Figure 3. Reflection coefficient for different arm lengths (linear sweep from 0 to 95 um) of the hollow
tripod structure. Insets: schematic representation for arm lengths of 0 um (top) and 95 pm (bottom).

To compare the sensitivity achieved with the previous metastructures, we coated the new design
with the same analyte thicknesses as before, obtaining the reflection coefficient results plotted in
Figure 4a. When varying the analyte thickness between 200 and 800 nm, a maximum frequency
shift of 5.09 GHz was obtained (see Figure 4c) with a mean sensitivity of 7.32 x 10~ nm™}, leading
to an improvement of 196% with respect to the hollow tripod. As can be observed in Figure 4a,
this structure allows us to detect much thinner thicknesses than 200 nm, so we coated the structure
with very thin films, with thicknesses ranging from 5 nm to 25 nm. The reflection coefficient and
corresponding frequency shifts for these thicknesses can be seen in the inset of Figure 4a. With these
results, we calculate a mean sensitivity of 1.27 X 107 nm~! (improvement of 341% respect to the hollow
tripod structure, which is not able to detect such ultrathin thicknesses, as shown in the supplementary
material). As a final step, we rotate the metallic pattern of the metasurface unit cell 30° to perform
the last comparison. The reflection coefficient and frequency shift achieved are shown in Figure 4b,d.
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As observed, the performance of this design is similar to the previous one (without rotation), which
agrees with the results found in [21] for single particles (non-periodic) plasmonic tripods with Cj
rotational symmetry. If we calculate the maximum frequency shift and the mean sensitivity again,
the resulting values are 5.1 GHz, and 7.35 X 107 nm~! for analyte thicknesses between 200 and 800 nm,
respectively, which are approximately identical to the previous case. The mean sensitivity with very
thin films (5 to 25 nm) was also calculated obtaining a mean value of 1.42 x 1074 nm™1, leading to
an improvement of 381% with respect to the hollow tripod, and thus becoming the best option for
sensing applications. Table 1 summarizes the maximum frequency shift and sensitivity achieved for
the different metastructures studied in this work.

01 6
N “he (©) 4+
- h,=10 nm >
- h,=15nm ~ 4
- - h,=20 nm 7/

— 8- —hﬁ%gnm /e 3
[aa) = h,=200nm , ry
- -12. = h,=400 nm = 2 g
= h,= 600 nm / R
S = h,=800 nm 7 S,..=9.9x 10 nm? 1 c
- -16 T o 8 )
¥ 500 550 600 650 0 200 400 600 800 =
: 0- 6 Q
S = 1,;=0nm (d) /J'S “:;_.
g * S o & -
2 - h,=15nm // 4 :
E o v - 3 &

1 siemm | o 2

16 =500 m / Swg=1x10%mm? |1

500 550 600 650 0 200 400 600 800

Frequency (GHz) h, (nm)

Figure 4. Reflection coefficient for different analyte thicknesses for the hollow tripod structure with
arms (a), and the hollow tripod structure with arms, and rotated (b). Insets: zoom of the reflection
coefficient for both metastructures and extremely thin film analytes (0—25 nm). Frequency shift as
a function of the analyte thickness, with average sensitivity for the hollow tripod structure with arms
(c), and the hollow tripod structure with arms, and rotated (d).

Table 1. Comparison of the most relevant quality parameters of the three tripod-metastructures studied
in this work when working as thin-film sensors where the analyte thickness deposited varies between
200 and 800 nm (top), and for ultra-thin analytes between 5 and 25 nm (bottom).

h,; (nm) Tripod Structure Af max (%) Mean Sensitivity (nm~1)
Solid 1.89 3.54 x 107
Hollow a = 26 um 255 3.72 x 1070
200-800 Hollow a = 30 pm 436 6.40 x 107>
Hollow + arms 5.09 7.32 x107°
Hollow + arms, rotated 5.11 7.35 x 107>
505 Hollow + arms 0.50 127 x 1074
B Hollow + arms, rotated 0.60 142 x 1074

As a final step, a comparison with other works found in the literature was carried out, in which
similar designs in terms of complexity and dimensions were analyzed (note that we tried to keep
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the dimensions compatible with standard photolithography techniques). To make a fair comparison
of all designs, we used a new sensitivity definition that also takes into account the operational
frequency, and the analyte refractive index (otherwise, we would be benefiting those works in which
the refractive index is higher) as S = (Af/fo)/(ha'114), with h, the analyte thickness, and 7, the analyte
refractive index. This comparison can be seen in Table 2. As shown, this work could be on the top of
the ranking, achieving a high sensitivity for thicknesses of analyte several orders lower than other
designs. A possible explanation for this better performance could be that the hollow tripod has a field
distribution with more distributed hot spots along the unit cell and not concentrated at small areas,
similar to what happened in our previous paper [4].

Table 2. Comparison of different values of sensitivity achieved in different works, calculated as
S = (Af/fo)/(ha'ng), with h, the analyte thickness and 1, the analyte refractive index, in refractive index
units (RIU), and ordered chronologically.

Reference hg (nm) n, (RIU) fo (GH2) Af (GHz) Sensitivity (nm-RIU)~1
Ref [22], 2018 2000 1.01 2250 16 3.52x 1070
Ref [23], 2018 16 000 1.6 2260 200 3.45x 1070
Ref [24], 2019 250 1.6 396 1 6.3 x 107°
Ref [7], 2019 10 000 1.4 1550 10 4.6 x1077
Ref [12], 2019 7 8 1000 3 5.35 x 107
This work 5 V8 604 0.6 7 %1070

4. Conclusions

To conclude, we have reported in this work three different tripod-based metasurfaces working as
thin-film sensors in the THz band. We have shown that the higher electric field concentration on the
surfaces, the larger the frequency shift, and sensitivity results. To corroborate this fact, two different
metastructures have been initially studied, a solid tripod and a hollow tripod metasurface, with higher
electric field confinement, obtaining average sensitivities of 3.54 X 107> nm™! and 3.72 x 107 nm™!,
respectively. Other metastructures have been designed, to improve the sensitivity, by changing the
unit cell parameters, including additional elements in the metallic pattern of the unit cell, such as
arms, or rotating the structure pattern, thus obtaining the best design with an average sensitivity of
1.42 x 10~* when measuring extremely thin analytes, meaning an improvement of 381% with respect
to the initial hollow tripod structure. Finally, we have performed a comparison with other designs
found in the literature, with similar complexity and dimensions, showing that our designed structure
is on top of the list, improving most of the previous works by more than one order of magnitude.
These results emphasize the importance of using metastructures with complex geometries for sensing
applications, in which the electric field is distributed throughout the surface and not only at discrete
points, such as metageometries.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/18/6504/s1:
Figure S1: Spectral transmission of the simple tripod metasurface plotted as a function of the polarization angle.
Figure S2: Reflection coefficient for different ultrathin analyte thicknesses.
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