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Featured Application: The article illustrates the workflow towards a new dynamizable plate design,
prototyping and certification; performance data concerning this plate have been reported and can
be used as a reference.

Abstract: The present work illustrates the dynamization of an orthopaedic plate for internal fracture
fixation which is thought to shorten healing times and enhance the quality of the new formed bone.
The dynamization is performed wirelessly thanks to a magnetic coupling. The paper shows the
peculiarities of the design and manufacturing of this system: it involves two components, sliding
with respect to each other with an uncertain coefficient of friction, and with a specific compounded
geometry; there are stringent limits on component size, and on the required activation energy.
Finally, the device belongs to medical devices and, as such, it must comply with the respective
regulation (EU 2017/745, ASTM F382). The design of the dynamizable fracture fixation plate has
required verifying the dynamic of the unlocking mechanism through the development of a parametric
multibody model which has allowed us to fix the main design variables. As a second step, the
fatigue strength of the device and the static strength of the whole bone-plate system was evaluated
by finite element analysis. Both analyses have contributed to defining the final optimized geometry
and the constitutive materials of the plate; finally, the respective working process was set up and
its performance was tested experimentally on a reference fractured femur. As a result of these tests,
the flexural stiffness of the bone-plate system resulted equal to 370 N/mm, while a maximum bending
moment equal to 75.3 kN·mm can be withstood without plate failure. On the whole, the performance
of this dynamic plate was proved to be equal or superior to those measured for static plates already
on the market, with excellent clinical results. At the same time, pre-clinical tests will be an interesting
step of the future research, for which more prototypes are now being produced.

Keywords: fracture synthesis; internal fixation; stress analysis; dynamizable plate; mechanical tests;
medical device manufacturing
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1. Introduction

The incidence of lower limb fractures has been estimated to reach about 300,000 cases per year in
the United States alone. As known, this type of fracture mainly results from a high-energy impact [1]
or a fall from height [2], and is evenly distributed among age groups.

Fracture fixation follows well-established procedures finalised to immobilise the respective
position of bone fragments [3]. The classical approach, called ‘static fixation’, bypasses completely the
fracture site through alternative support structures, which can be placed externally (e.g., the classical
cast) or internally (plates [4], nails [5], etc.). Dynamic fixation [6] is gaining consensus among
orthopaedics, as an alternative technique where only torsional and flexural loads are bypassed by the
bone synthesis device; by contrast, axial loads, produced by body weight or muscle contraction, are left
to the contacting bone fragments [7]. This technique has very specific indications (sufficiently stable
fractures); nonetheless, it deserves greater consideration due to its benefits which can be identified
in a faster rehabilitation as well as an improved new-bone quality [8]. Axial loads were proved to
stimulate the cell proliferation for the periosteal callus formation in the early phase and to accelerate
the bone remodelling in the healing phase [9–11]. Acting as stable fixation devices at the beginning of
the healing process, dynamizable synthesis devices can be converted into dynamic fixation devices at
a later step [12]. That said, it is noteworthy that in the current case, dealing with a plate implanted
through a percutaneous approach, the dynamization was designed to be performed through a magnetic
actuator in order to avoid the need for a surgical operation and to minimize patient discomfort.

Being medical devices, fracture synthesis devices need to be certified in Europe according to
the respective Medical Device Regulation (EU) 2017/745 [13]. As a consequence, the whole design
and manufacturing process was performed accordingly. This study considers how the design has
some peculiarities, compared to static fracture synthesis plates: the plate is actually made of two parts
sliding with respect to each other and all the respective interactions must be studied in relation to
design specifications, such as the maximum source energy demand and device limited size. It is also
shown that the uncertainty of some important mechanical parameters must be included in the design,
for example the friction value of materials to be posed in strict contact, and the pre-load of the spring
to be used for discharging the pin.

In addition, in order to evaluate the structural mechanical response in a realistic environment,
experimental tests were performed, as well as a numerical stress analysis in order to define a reference
geometry complying with osteosynthesis device regulation. Finally, first prototypes were designed
and realised according to an approved company process flow in accordance with ISO 13485:2016 [14].

2. Materials and Methods

First, the main design requirements are outlined. From the functional point of view, the plate
should be made of two components having only one relative movement allowed that is axial sliding;
the size of the whole component should be close to the size of other orthopaedic plates (about
200 × 25 × 10 mm3); the dynamization of the device should be performed with very low force and
power (below 30 N and 50 mW), as allowed by a small electromagnetic actuator.

These considerations have led to the following conceptual design (Figure 1):

• The two parts (the ‘body’ and the ‘guide’) are coupled through a dove-tail prismatic guide in
order to allow the axial translation and prevent both flexion and torsion;

• In the ‘locked’ configuration, the axial translation is blocked through a pin, pre-loaded by a spring
and supported, inferiorly, by an inclined plane;

• In the ‘unlocked’ configuration, the lower support of the pin lowers due to a horizontal translation
of the inclined plane, provided by the actuator; the pin is so disengaged by the pre-loaded spring.
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Figure 1. Conceptual design of the plate dynamization system.

All plate components were made with AISI 316LVM steel, which is a standard material usually
adopted for biomedical implants manufacturing.

In the following, details concerning the multibody analysis, the stress analysis, experimental test
and manufacturing flow were reported.

2.1. Multibody Analysis

The design optimization of the locking mechanism between the guide and the body was performed
through a multibody parametric model created with ADAMS View (2019, MSC Software, Santa Ana,
CA, USA).

According to the conceptual design described above, some key components are identified and
parameterized: the inclined plane, whose sliding gives room to the vertical translation of the pin;
the pin which can slide vertically, blocking or unblocking the axial sliding between guide and main
body; the spring preloading the pin and keeping its head in contact with the inclined plane. The key
design parameters playing a major role on the lock/unlock mechanism are therefore:

• Friction coefficients between the inclined plane and the pin head, between the inclined plane and
the main body, and between the pin and its housing;

• The stiffness and the preload of the spring;
• The angle of inclination of the sliding plane.

The required spring pre-load can be minimised through an adequate inclination of the plane; this
same condition would guarantee the reversibility of the motus (blocking action) in case the pin should
return to its housing, as a consequence of a horizontal force, pushing the inclined plane.

The multibody model (Figure 2) was created reproducing some main geometries inside the
software, where the inclination of the plane (Φ) and of the congruent pin head were parameterised with
the respective inclination angle, ranging between 9◦ and 18◦ by steps of 3◦ and varying the coefficient
of friction between 0.15 and 0.60 by a step of 0.15: this minimum value is represented by the coefficient
of friction between AISI 316LVM and polyethylene with the presence of serum lubricant [15]. The only
two contact surfaces were simulated, with the boundary conditions reported in the following:

• The pin is free to translate vertically, with a given friction;
• The inclined plane is free to translate horizontally with respect to the main body, with a given friction;
• The contact between the main body and the guide were modelled by means of an impact

formulation, where a high contact stiffness value was assigned considering that both parts are
made of metal (stiffness k = 100,000 N/mm, damping c = 10 Ns/mm).

• The inclined plane was forced to move horizontally, with a sinusoidal waveform x = 5 sin(2π/12 t)
in order to reproduce both the release and the subsequent lock in 6 s.

The action of the spring element was tuned having parameterised its preload, which ranges
between 20 N and 80 N. The range of variation of the main parameters concerning the multibody
model are reported in Table 1, in which the two main output are represented by both the maximum
force and power required to push and pull the specific unlocking mechanism. Specifically, the power
was calculated as follows, in which F is the locking/unlocking force and v is the horizontal translation
speed:

P = F·v (1)
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Table 1. Details of multibody model variables.

Variable Value

IN
PU

T
D

A
TA Plane Inclination (◦) 9◦–18◦

Friction Coefficient 0.15–0.60
Spring Pre-load (N) 20–80

Spring Stiffness (N/mm) 20
Input Displacement

(mm) 5 sin(2π/12 t)

O
U

TP
U

T
D

A
TA Force Maximum (N)

Power Required (mW)

It was important to evaluate the power because it represent the key specification to choose the
specific direct current (DC) motor to be used to move the mechanism.

To conclude, the static coefficient of friction was considered rather than dynamic coefficient of
friction in order to reach the most conservative estimation.

2.2. Stress Analysis

The stress analysis was performed through a finite element model (FEM), of a more refined design
(Figure 3), taken from an existing plate [16]. This is composed of several parts which can interact
with each other in the following way: (1) the central body can slide along its guide in the unlocked
configuration (with the pin retracted into the main body); (2) the pin can slide along its housing, thanks
to the retraction of the inclined plane which is connected directly to the motor unit; (3) the cover and
the main body are welded together in order to avoid any liquid leakage inside the main chamber.

Two different FE models were developed in order to accomplish the whole static and dynamic
performance of the plate. Both models were simulated with Abaqus CAE (2017, Dassault Systemes,
Vélizy-Villacoublay, FR) and were finalized to estimate the fatigue bending strength and the ultimate
static load of the actual plate, with reference to the ASTM F382 regulation. In particular, the first FE
model (FE1 in the following) was built up with the only plate, which was specifically constrained
in order to reproduce the maximum bending moment deriving from the four-point bending test
prescribed by the same regulation. Following this simplified setup, one end of the dynamic fixator was
fully constrained (Figure 4, point A), while an opposite reaction equal to 29 Nm was applied at two
central point corresponding to the middle central body screws and guide screws (Figure 4, points B
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and C). This flexural moment was taken from the fatigue limit of a static plate produced by the same
company, subjected to a pulsating, constant amplitude load (R = 0.1; with R being the ratio between
the minimum and maximum load), in order to be able to compare the respective performance [16].
In addition, a second FE model (FE2 in the following) representing the full experimental setup was
implemented in order to evaluate the static strength of the whole bone-plate system (Figure 5).
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Figure 4. Upper Image—detail of mesh and connections: (a) connection between inclined plane and
main body; (b) connection between the pin and the inclined plane; (c) connection between the main
body and the cover (not represented in the image); (d–e) details of the gap between main body and
guide and between the pin and its housing; Lower image—detail of applied loads: (point A) full lateral
constraint (6 DOF: Degrees Of Freedom); (point B–C) opposite bending moment applied at the master
nodes of the two rigid kinematic joints (RBE2).

The two models were prepared in order to obtain a fine discretization of the initial solid geometry:
the final mesh was made of “tetra 4” elements with an internal “grow rate” of 1.2, which is a good
compromise between the overall refinement and the computational cost of the simulation [17–19].
The final element size ranged between 0.2 to 0.8 mm considering all plate components (Table 2,
Figure 4), while a larger size was selected for the bone and the rollers (Table 2, Figure 5). All reciprocal
interactions were modelled with a standard “pressure-overclosure” formulation, and a specific
exponential behaviour with a given friction. Looking at the main contacts inside the model, it is
important to highlight all the following features concerning internal plate components: (1) the inclined
plane was constrained to the main body next to the motor unit in order to avoid any reciprocal sliding
between these two parts, as happens in the real component (Figure 4, detail a); (2) the pin can slide
into its seat, but is constrained with six low-stiffness axial springs, located along its border in order to
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prevent initial lability inside the model (Figure 4, detail b); (3) the central body and the cover were
constrained along their borders with a rigid “tie” constraint, in order to effectively reproduce the
structural continuity provided by metal welding (Figure 4, detail c); (4) the gap between the guide and
the central body was equal to 0.1 mm along its main borders (Figure 4, detail d), while the gap between
the pin and its housing was set equal to 0.05 mm (Figure 4, detail e), according to plate design.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 14 
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Table 2. Details about finite element mesh of the whole bone-plate system.

Component Element Type Number of Elements Element Size (mm) Material Type

Main Body 3D Tetra4 415,456 0.3–0.8 AISI 316LVM
Guide 3D Tetra4 134,410 0.3–0.8 AISI 316LVM
Cover 3D Tetra4 267,582 0.4–0.5 AISI 316LVM

Pin 3D Tetra4 46,147 0.2–0.3 AISI 316LVM
Inclined Plane 3D Tetra4 33,209 0.4–0.5 AISI 316LVM

Bone 3D Tetra4 230,396 1.8–2.2 Sawbones®

Rollers 2D Shell 21,336 0.8–1.2 Stainless steel
Screws 1D Beam 4 × 8 7 × 3.5 Stainless steel

Total n◦ of
Elements: 1,148,568

Considering the full experimental setup detailed in Figure 5, the following components were
modelled and integrated inside the previous model (FE1 model):

• A standard femur (Sawbones®, Europe AB, Malmoe, Sweden), whose geometry was modified in
order to reproduce a central fracture with the classical “V shape” cutting having 20 mm base;

• Four metallic rollers were modelled and positioned in order to reproduce the exact loading setup
of the four-point bending test (prescribed by ASTM F382 regulation);

• The plate–bone connections were modelled with rigid kinematic joints (RBE2) connected to each
other with specific flexible elements (circular beams whose minimum section has a diameter equal
to 3.5 mm) in order to reproduce the screws contribution inside the model.

For all plate components the AISI 316LVM steel was assigned as constitutive material, having an
elastic modulus equal to 187.5 GPa and a Poisson’s ratio equal to 0.3, and considering a linear and
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isotropic behavior; the respective non-structural Sawbones® (0.6 GPa of elastic modulus and 0.3 of
Poisson’s ratio) was assigned to the bone, and a standard Stainless steel (210 GPa of elastic modulus
and 0.3 of Poisson’s ratio) to the beams and the rollers. Due to the multiple contacts involved, a static
non-linear simulation was carried out with an initial step size of 0.01.

2.3. Experimental Tests

The experimental test was carried out with the Instron Electropuls E3000, an axial-torsional machine
capable of delivering up to 3000 N of axial load and up to 25 Nm of torque. According to the most recent
calibration, the axial load cell has a resolution equal to 0.001 N and a repeatability below 0.124%. ASTM
F382 regulation (the gold standard for osteosynthesis devices) prescribes carrying out a four-point
bending test in order to identify the bending stiffness and the bending strength of the device. In this
particular case, the unusual shape of the bone plate, which has no holes along the main body, requires
the adaptation of the standard prescriptions in order to solicit the critical portion of the device. In order
to evaluate the bone plate in a realistic configuration, a femur anatomical replica (Sawbones®, Europe
AB, Malmoe, Sweden) was used as extension for the loads application. Two conditions were tested:
(1) the bone plate mounted on an integer femur and (2) the bone plate mounted on a fractured femur
(B2 diaphyseal fracture from AO/OTA classification). The integer sample was used to simulate the
bone behaviour when an ‘ideal’ healing process has terminated.

The testing machine was equipped (Figure 6) as follows:

1. The upper grip bears two rollers, whose distance was set equal to ‘a’ (83 mm);
2. The lower grip bears two supports, whose distance is equal to ‘2 h + a’ (237 mm).
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Experimental tests were displacement controlled at a rate equal to 5 mm/min. Flexural stiffness
was calculated from the force-displacement curve, as the slope of its initial linear portion, according to
ASTM F382 regulation. The output data were checked against the similar static fixation device whose
stiffness was equal to 253 N/mm and whose bending moment at failure was equal to 79 kN mm [16].

2.4. Manufacturing Flow

The first prototypes were built, according to the European Regulation 2017/745 for medical
devices, and the whole workflow was established by a manufacturing company holding ISO
13485:2016 certification.
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3. Results and Discussion

3.1. Output of the Multibody Model

Findings have confirmed the relevant role of the coefficient of friction on the system performance
and revealed a linear (R2 = 0.99) relationship between this coefficient and the maximum required
power. For sake of clarity, since the main objective of the multibody analysis was to minimize the
aforementioned power, only the case involving the lowest coefficient of friction of 0.15 is reported in
the following.

The main outputs of the multibody model are reported in Figure 7: the higher the inclination, the
smaller the unlocking force, and the higher the locking force; the higher the spring pre-load, the higher
the unlocking and locking forces. On the whole, the minimization of the unlocking power that is the
main objective of this analysis would require a higher plane inclination (18◦) and a minimum spring
pre-load (20 N), able to guarantee pin motion, overcoming friction forces between the pin and the
respective hole. In the last conditions, the required power to unlock the plate is equal to 18 mW, while
re-locking would require above 50 mW; as such, this possibility was discarded for the time being,
which meant that the plate could be dynamized, but it could not revert to its locked configuration even
if the required force would fall within specifications (20 N).Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 14 
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3.2. Output of the Finite Element Model

The more interesting result concerning the stress analysis is reported in Figure 8 where the plate
and its internal components were analyzed (FE1 model). The peak von Mises stress is reached in a very
localized zone and is equal to 340 MPa; this would correspond to an average stress equal to 187 MPa
and a stress amplitude equal to 153 MPa considering an R = 0.1 factor for the fatigue test. According to
data reported by the producer, the stress amplitude limit of the plate constitutive material is equal to
400 MPa for R = −1 (fully reversed loading), its ultimate load is equal to 920 MPa, and its yield stress is
equal to 800 MPa [20]; this results in a stress amplitude limit equal to 261 MPa for R = 0.1, according to
the Haigh diagram for fatigue strength. In conclusion, the safety factor of the plate resulted in being
equal to 1.70 (261/153), which is an acceptable value according to ASTM F382.
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In addition, it should be noted how a very unfavorable estimation is being performed: the peak
load is reached in a very localized area at a taper of the main body section; as such, it would result
in local plasticization which finally would provide a residual stress opposite to the applied stress
(considering that fatigue stress is performed with a pulsating stress, as required by orthopedic plate
certification). These results are confirmed also by the FE2 model, in which the maximum static load
was simulated according to experimental test. Both von Mises stresses and the maximum contact
pressure testify that the plate is safe in terms of static strength; the most stressed point in terms of static
strength remains the same, as considered in the FE1 model, with a maximum stress equal to 923 MPa
(Figure 9), while a maximum contact pressure of 376 MPa is localized at the most stressed area of the
pin (Figure 10). In addition, considering the 33% of the maximum load, which would correspond to a
bending moment equal about to 25.3 Nm, the peak stress is equal to 299 MPa (Figure 11), confirming a
good approximation obtained with the simplified setup (FE1 model).
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3.3. Experimental Tests

Figure 12 shows the output of the experimental tests performed on the integer (orange curve) and
on the fractured (blue curve) samples. As a consequence of the healing process, the secant stiffness of
the bone/plate system can improve up to 20.2%. According to experimental tests, the integer sample
sustained the load up to 2000 N without damage (the test stopped at 2000 N to prevent prototype
failures), while the fractured one failed at 1957 N: the plate remained intact, but the bone broke, in fact
a second fracture was indeed visible in proximity of the right lower support. Taking as reference this
second result, which was more comparable with an ASTM F382 standard four-point bending test,
the peak load was 18% lower than 2400 N, measured for the reference static plate, but it was estimated
to be satisfactory, considering the performance of other orthopaedic plates on the market [16]. With
reference to finite elements results reported in the previous paragraph, it should be noted how the
maximum bending moment from experimental tests has resulted in being equal to 75.3 Nm (obtained
by multiplying half load, 978.5 N by its arm equal to 77 mm) which is far beyond 29 Nm applied
in the finite element model to compare its results to other obtained for a similar non-dynamizable
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plate; in addition, even 75.3 Nm did not produced failure of the plate or any of its components in
static experimental tests, confirming findings from numerical FE analysis. The same experimental tests
allowed us to calculate the bending stiffness of this plate which resulted in being equal to 370 N/mm,
that is +46% compared to the static reference plate. Experimental error could not be evaluated since
one single specimen was considered; however, similar tests on the reference plate resulted in a 5%
variability of results.
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3.4. Manufacturing Flow

Once the component was designed in detail, the respective manufacturing flow had to be set up,
according to the Medical Device Regulation (EU) 2017/745 for medical devices. Its main steps were:

• Step 1: Sourcing of raw materials;
• Step 2: Machine processing: folding, milling, drilling, threading, wire erosion; roughing, burr

removal; washing; packaging in labelled bags;
• Step 3: Acceptance check;
• Step 4: Acceptance; belt sanding; polishing; washing; final check; packaging, shipping;
• Step 5: Solvent washing; sandblasting; quality control (QC), single packaging in plastic trays;
• Step 6: Acceptance check;
• Step 7: Marking; washing; preliminary packaging (Clean Room ISO 7 Operational);
• Step 8: Sterilization;
• Step 9: Acceptance check;
• Step 10: Final packaging and labelling; release.

At this stage, experimental and numerical tests demonstrated that the new dynamizable plate
behaved adequately from a mechanical point of view compared to other devices already on the market.
Ongoing tests are focusing on the evaluation of the locking/unlocking mechanism, as well as on the
transmission system design. To allow marketing of the plate, the preliminary analysis presented here
will be followed by a rigorous campaign of mechanical tests on a number of replicas able to ensure
statistical consistency. According to ASTM F382, both static and fatigue testing will be performed and
a rationale will be built for the device certification request to the notified body.

4. Conclusions

A new dynamizable plate for fracture synthesis was designed and tested in order to define its global
structural strength according to current medical device regulations. Its main peculiarity is that it allows
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a non-invasive dynamization to be performed in the post-operative period, to shorten healing times
and enhance the quality of the new formed bone. A careful parametric study of the locking/unlocking
mechanism was carried out through a detailed multibody model, where the main variables were
outlined in order to minimize global power consumption. A detailed FE model was set up in order
to evaluate the fatigue strength of the component according to ASTM F382 regulation, confirming
its good performance compared to a reference plate already on the market. Experimental tests were
carried out in order to evaluate the maximum strength of the whole bone-plate system, in terms of
flexural strength and maximum bending moment and a complete FE model was developed in order to
check by means of maximum stress the global structural strength of the same bone-plate system.
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