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Abstract: In this paper, rectangular multi-Gaussian Schell-model (MGSM) array beams, which consists
N×D beams in rectangular symmetry, are first introduced. The analytical expressions of MGSM array
beams propagating through free space and non-Kolmogorov turbulence are derived. The propagation
properties, such as normalized average intensity and effective beam sizes of MGSM array beams are
investigated and analyzed. It is found that the propagation properties of MGSM array beams depend
on the parameters of the MGSM source and turbulence. It can also be seen that the beam size of
Gaussian beams translated by MGSM array beams will become larger as the total number of terms,
M, increases or coherence length, σ, decreases, and the beam in stronger non-Kolmogorov turbulence
(larger α and l0, or smaller L0) will also have a larger beam size.

Keywords: optical wave propagation; array beam; multi-Gaussian Schell-model source; non-Kolmogorov
turbulence

1. Introduction

In past years, the topic of beams propagating in atmospheric turbulence has been explored,
and different models, such as Kolmogorov and non-Kolmogorov turbulences, were given to describe
the atmosphere. The propagation properties of beams, such as average intensity, polarization,
scintillation index, and degree of coherence, were widely investigated in Kolmogorov turbulent
atmosphere [1–11] and non-Kolmogorov turbulence [12–22].

However, the array beams were widely studied because they can provide higher power output than
single beam. The Talbot effect, which describes the periodic beam propagating in studies of self-imaging,
was investigated [23,24], and array beams with orbital angular momentum can also be generated based
on Talbot effect [25,26]. In free space communication, the properties of coherent array beams propagating
in free space and turbulent atmosphere have been widely investigated [27–30]. According to previous
work, the partially coherent beams can reduce the effects of turbulent atmosphere [31], thus the
evolutions of partially coherent array beams in turbulence, such as Gaussian Schell-model array
beams [3,32–34], radial phase-locked array beams [35–40], and optical coherence vortex lattices [41],
were also investigated. The multi-Gaussian Schell-model (MGSM) beams will evolve into flat-topped
beams, thus the beams generated by a MGSM source have attracted much attention [42–48]. Considering
the special properties of MGSM beams, it will thus be very interesting to investigate the array beams
generated by a MGSM source. In this paper, we first introduce the model of a rectangular MGSM array
beam, and then investigate the evolutions of MGSM array beams propagating through free space and
non-Kolmogorov turbulence.
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2. Propagation Analysis of MGSM Array Beams

2.1. Analytical Expressions of MGSM Array Beams

Recalling the descriptions of MGSM beams, the spectral degree of coherence of the MGSM source
takes the form as follows [49]:

µ(r10, r20) =
1

C0

M∑
m=1

(
M
m

)
(−1)m−1

m
exp

− (x10 − x20)
2

2mσ2 −
(y10 − y20)

2

2mσ2

, (1)

with

C0 =
M∑

m=1

(−1)m−1

m

(
M
m

)
, (2)

where C0 represents normalization coefficient, σ is the initial correlation coherence length, M is total
number of terms of MGSM source, and r0 = (x0, y0) is the position vector.

Considering the diagram of a N ×D array beam in rectangular symmetry, the cross-spectral
density (CSD) of a rectangular N ×D MGSM array beam generated by a MGSM source is described by
the following:
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where N and D are odd numbers and represent the orders of individual off-axis MGSM beams along
the x- and y-axes, X0 and Y0 denote separations distances along the x- and y-axes, and w0 represents
the beam waist. The contour graphs of N ×D MGSM array beams in source plane z = 0 are plotted in
Figure 1, which shows that the distance between the different beamlets will increase as the off-axis
parameters X0 and Y0 increase.
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Figure 1. The contour graphs of N ×D MGSM array beam at the plane z = 0. (a) N = 3, D = 1,
(b) N = 3, D = 1, (c) N = 5, D = 2, and (d) N = 3, D = 3.

2.2. Propagation Theory

Considering the extended Huygens–Fresnel integral, the CSD of N ×D MGSM array beams in
non-Kolmogorov turbulent atmosphere at the plane z is written as follows [15–20]:
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where k = 2π/λ is the wave number with λ as the wavelength. The definitions of ψ(r0, r) can be found
in reference [19], and as follows:

〈
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exponent. The non-Kolmogorov power spectrum Φ(κ,α) can be described by the following [15–17]:
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n is the turbulent structure constant with units m3−α; κ0 = 2π/L0, where L0 is the outer scale;

and κm = c(α)/l0, where l0 is the inner scale; and
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where Γ(x) denotes the Gamma function. Substituting Equations (6)–(8) into the definition of 1/ρ2
0,

we can obtain the following:
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where Γ(x, y) represents the incomplete Gamma function.
Thus, the propagation CSD of N×D MGSM array beams in non-Kolmogorov turbulent atmosphere

are derived as follows:
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where WND(x, z) and WND(y, z) are given as follows:
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where j = x or y in all locations of equations. When j = x, the symbols h and Λ represent n and X in all
equations, respectively. When j = y, the symbols h and Λ represent d and Y in all equations, respectively.

The intensity [50] and effective beam widths [51] along the x- and y-axes of N ×D MGSM array
beams propagating through non-Kolmogorov turbulent atmosphere can be written as follows:

I(r, z) = W(r, r, z), (15)
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〉 , (16)

Substituting Equations (10)–(14) into Equation (16), the effective beam widths of a N ×D MGSM
array beam propagating through non-Kolmogorov turbulent atmosphere can be obtained as follows:
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Due to the symmetrical characteristics, the effective beam size Wx and Wy will have similar
properties. Thus, only the effective beam size Wx is investigated in the following numerical analysis.

3. Numerical Examples

In this section, we numerically investigate the evolutions of N×D MGSM array beams propagating
through free space and non-Kolmogorov turbulent atmosphere by applying the derived formulae. In the
numerical simulation, unless other values are given, the following parameters are used: w0 = 5 mm,
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λ = 1550 nm, X0 = Y0 = 5 cm, N = D = 3, σ = 3 mm, M = 40, C2
n = 10−12 m3−α, α = 3.5, L0 = 20 m,

and l0 = 1 mm.
The normalized intensity of N ×D MGSM array beams propagating through free space (C2

n = 0)
and non-Kolmogorov turbulent atmosphere are illustrated in Figures 2 and 3, respectively. According to
Figure 2, we can see that the N ×D MGSM array beams in free space will maintain the rectangular
distribution of beamlets in the short propagation distance. As z increases, the individual beamlets will
gradually translate into a flat-topped beam caused by the influence of the MGSM sources. As z further
increases, the individual flat-topped beams will overlap with each other. Eventually, the MGSM
array beam will translate a solid beam; at last, the MGSM array beams will involve into a beam with
flat-topped profile. While N ×D MGSM array beams propagating through non-Kolmogorov turbulent
atmosphere will have similar evolution properties with array beams in free space, the individual
beamlets in non-Kolmogorov turbulent atmosphere will overlap with each other more rapidly than
the array beams in free space at the same distance, z = 200 (Figures 2b and 3a). As z further
increases, the array beams in non-Kolmogorov turbulent atmosphere will evolve into a Gaussian
beam. The phenomenon in Figures 2 and 3 can be explained as the general beams propagation in
atmosphere can translate into Gaussian beams [52]. To view the effects of non-Kolmogorov turbulent
atmosphere, the cross sections of N ×D MGSM array beams with N = D = 3 through non-Kolmogorov
turbulent atmosphere for the different C2

n are shown in Figure 4. It can be seen that the MGSM array
beams propagating through non-Kolmogorov turbulent atmosphere with a larger C2

n will translate into
a larger Gaussian-like beam spot more rapidly than in free space (C2

n = 0) at the same distance z.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 11 
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The effects of coherence length, σ, on N ×D MGSM array beams with N = D = 3 propagating
through non-Kolmogorov turbulent atmosphere are illustrated in Figure 5. As can be found, the MGSM
array beams with smaller σwill evolve into a Gaussian beam more rapidly with increasing propagation
distance z, and will have a larger spot. To investigate the effective beam size of a Gaussian beam
translated by the MGSM array beam, Figure 6 gives the effective beam size Wx of the Gaussian beam
for different C2

n and σ. One can see that Wx of a Gaussian beam obtained by a MGSM array beam will
increase with the increase of C2

n or the decrease of σ.
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By changing the parameters M and N = D, the effective beam size for MGSM array beams
propagating through non- Kolmogorov turbulent atmosphere is shown in Figure 7. As can be found,
when the propagation distance z remains the same, the Gaussian beam translated by the MGSM array
beams with larger M can have a larger effective beam size. When M = 1, the MGSM array beam
will reduce into a GSM array beam, which will have the smallest effective beam size. While, in the
influence of N = D, we can find that as z increases, the effects of N = D on the effective beam size
of the Gaussian beam will disappear. These results mean that the MGSM array beams with different
N = D will have almost the same effective beam size. Thus, the larger the N = D, the higher the power
the Gaussian beam will have. This phenomenon is beneficial for free space optical communications
using MGSM array beams.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 11 
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The influences of non-Kolmogorov turbulent atmosphere parameters α, L0, and l0 on Wx are
shown in Figure 8. When z increases to z = 1000 m, the MGSM array beams will become the Gaussian
beam, the effective beam size, Wx, of the Gaussian-like beam translated by the MGSM array beams will
increase with α, and a decrease of l0 or an increase of L0. The phenomenon can be explained as follows:
The strength of non-Kolmogorov turbulent atmosphere depends on α, L0, and l0.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 11 

  
Figure 6. The xW  of N D×  MGSM array beams with 3N D= =  propagating through non- 

Kolmogorov turbulent atmosphere. (a) different 2
nC  and (b) different σ . 

  

Figure 7. The xW  of N D×  MGSM array beams propagating through non-Kolmogorov turbulent 
atmosphere. (a) different M , (b) different N D= . 

The influences of non-Kolmogorov turbulent atmosphere parameters α , 0L , and 0l  on xW  are 
shown in Figure 8. When z increases to 1000mz = , the MGSM array beams will become the Gaussian 
beam, the effective beam size, xW , of the Gaussian-like beam translated by the MGSM array beams will 

increase with α , and a decrease of 0l or an increase of 0L . The phenomenon can be explained as 

follows: The strength of non-Kolmogorov turbulent atmosphere depends on α , 0L , and 0l . 

  

 

Figure 8. The Wx of N ×D MGSM array beams propagating through non-Kolmogorov turbulent
atmosphere. (a) different α, (b) different L0, and (c) different l0.

4. Conclusions

In conclusion, the rectangular MGSM array beams composed by N×D MGSM beams in rectangular
symmetry are given, and the intensity and effective beam size of MGSM array beams in free space and in
non-Kolmogorov turbulent atmosphere were investigated. Based on the derived equations, the results
show that the MGSM array beams propagating through non-Kolmogorov turbulent atmosphere will
become a Gaussian beam caused by the non-Kolmogorov turbulent atmosphere, while array beams
propagating through free space will translate into flat-topped beams. With an increase in C2

n and L0,
or and decrease of α and l0, the Gaussian-like beam will have a larger beam size. With M increases or σ
decreases, the array beams will also evolve into beams with a larger spot. The obtained results may be
beneficial for free space optical communication.
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