
applied  
sciences

Article

Artificial Intelligence for the Prediction of Exhaust
Back Pressure Effect on the Performance of
Diesel Engines

Vlad Fernoaga 1 , Venetia Sandu 2,* and Titus Balan 1

1 Faculty of Electrical Engineering and Computer Science, Transilvania University, Brasov 500036, Romania;
vlad.fernoaga@unitbv.ro (V.F.); titus.balan@unitbv.ro (T.B.)

2 Faculty of Mechanical Engineering, Transilvania University, Brasov 500036, Romania
* Correspondence: venetia.sandu@unitbv.ro; Tel.: +40-268-474761

Received: 11 September 2020; Accepted: 15 October 2020; Published: 21 October 2020
����������
�������

Featured Application: This paper presents solutions for smart devices with embedded artificial
intelligence dedicated to vehicular applications. Virtual sensors based on neural networks or
regressors provide real-time predictions on diesel engine power loss caused by increased exhaust
back pressure.

Abstract: The actual trade-off among engine emissions and performance requires detailed
investigations into exhaust system configurations. Correlations among engine data acquired by
sensors are susceptible to artificial intelligence (AI)-driven performance assessment. The influence of
exhaust back pressure (EBP) on engine performance, mainly on effective power, was investigated
on a turbocharged diesel engine tested on an instrumented dynamometric test-bench. The EBP
was externally applied at steady state operation modes defined by speed and load. A complete
dataset was collected to supply the statistical analysis and machine learning phases—the training
and testing of all the AI solutions developed in order to predict the effective power. By extending
the cloud-/edge-computing model with the cloud AI/edge AI paradigm, comprehensive research
was conducted on the algorithms and software frameworks most suited to vehicular smart devices.
A selection of artificial neural networks (ANNs) and regressors was implemented and evaluated.
Two proof-of concept smart devices were built using state-of-the-art technology—one with hardware
acceleration for “complete cycle” AI and the other with a compact code and size (“AI in a nut-shell”)
with ANN coefficients embedded in the code and occasionally offline “statistical re-calibration”.

Keywords: smart device; artificial intelligence; diesel engine; exhaust back pressure; edge computing;
artificial neural network; machine learning; virtual sensor; virtual instrumentation; embedded systems

1. Introduction

Nowadays, diesel engines are the prime movers in commercial transportation, power generation,
and off-road applications. Their major advantages compared to other common alternatives are a
better fuel economy, a lower carbon footprint, and an increased reliability. The demands on engine
performance indicators—increased power output, lower fuel consumption, and emissions—require a
better understanding of engine processes, further experimental investigations, and the implementation
of control strategies based on numerical models.

In four-stroke engines, the process of gas exchange requires a very rapid and total release of
exhaust gas from cylinders into the atmosphere, which is evaluated by exhaust back pressure (EBP),
a flow resistance indicator on the exhaust duct. Unsteady friction and inertial forces, which are
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dependent on gas velocity, shape, and dimensions of the passages, occur. EBP is defined as the gauge
pressure at the turbine outlet for turbocharged engines or at the exhaust manifold outlet for naturally
aspirated engines [1].

Diesel engine control based on numerical models tends to become more complicated as the
number of independent variables increases, so multidimensional, flexible, and adaptive add-ons
based on artificial intelligence (AI) are required; these systems are able to learn from experiments,
solve non-linear problems, use scarce data, and predict phenomena.

To the knowledge of the authors, among the high number of articles studying the artificial neural
network (ANN) prediction of diesel engine performance, there have been a lack of studies with EBP as
an input parameter.

Therefore, the goal of this work was to provide a better understanding of EBP effects on diesel
engine parameters, at different loads and speeds, based on engine experiments and AI simulations
in order to assess the reasonable performance loss (expressed mainly in power loss) caused by the
emission and noise abatement devices.

The main contribution of the paper is the AI application in the interpretation of exhaust pressure
loss consequences; the added value of such an approach is the possibility to assess performance decline
by means of virtual sensors implemented on smart devices.

The opportunity of the applied research was given by recent progress in cost-effective
embedded systems with local processing, storage, and communication capabilities that enable the
edge-computing/cloud-computing paradigm of the IoT (the Internet of Things). Centimeter-scale
smart devices built around a small SoC (system on chip) IC (integrated circuit) with a WiFi and/or a
BLE (Bluetooth Low Energy) radio interface for NFC (near field communications) and a PCB (printed
circuit board) antenna are now able to acquire sensor signals via integrated ADCs (analog-to-digital
converters). Local signal conditioning and lower/medium complexity processing are performed and
results are “published” in the cloud in real-time. These CPS (cyber–physical systems)—the so called
“smart dust”/“radio dust”—can also receive cloud directives and download data flows because they
are fast-enough for “cyber-critical communications” with time constants much smaller than industrial
ones, particularly than vehicular ones. Internet protocols drive IoT WSAN (wireless sensors and
actuator networks) that build a pervasive communication eco-system for a test-bench and even for
vehicular add-ons to traditional CANs (computer area networks)/device nets on-board. The software
subsystems of these compact smart devices are also shrunken down to mini-programs that reside in
flash, non-volatile memory chips. Such firmware is built in a low scale IDE (integrated development
environment), e.g., Arduino™.

The actual efforts to embed AI in smart devices are discussed from the cloud computing/edge
computing perspective.

In terms of methods and apparatus, the study of the EBP effect on diesel engine performance
needed a test-bench with appropriate sensors and instrumentation. The setup of data structures for
AI-based calculation was followed by database preparation for ANN training and testing. AI for
vehicular smart devices was implemented in finite state machine models in an approach similar
to object-oriented programming (OOP). ANNs were detailed in the perspective of computational
needs for cloud AI versus edge AI. The main ANN training algorithm was SGD (stochastic gradient
descent) for BP (back propagation) optimization. The cloud AI implementations were based on
MathWorks MATLAB online (with MaaS (Model as a Service) being the optimal choice of Gaussian
regressor), the Tensorflow backend (with two APIs (application programming interfaces)—Keras and
eXtended Gradient Boosting (XGBoost)) and the ANS Center ANNHUB (for a Levenberg–Marquardt
algorithm implementation). Activation functions were mainly ”ReLU” (rectified linear unit) and
”tanh” (hyperbolic tangent), along with the latter’s shift and scaled version: the “sigmoid”. The edge
AI high-performance solution with the hardware acceleration of AI computations was based on the
NVIDIA Jetson Nano mini-system built around the “Maxwell” SOM (system on module) produced by
NVIDIA. The very compact edge AI solution was based on the “TTGO” micro-system produced by
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LILYGO, centered on the “ESP32” SoC (system on chip) produced by Espressif. As all solutions shared
the common complete dataset collected on the engine experimental bench, a separate test flow was
implemented via National Instruments LabVIEW virtual instrumentation.

The paper is organized as follows: After the Introduction in Section 1, Section 2 details the
related work in the area of EBP and ANN diesel engine optimizations, Section 3 describes the diesel
engine experiments performed on the dynamometric test-bench, detailing engine characteristics,
instrumentation, and operation mode procedures, as well as complete data collection. Section 4
introduces the AI for the needs of vehicular smart devices, particularly for sensor data processing—the
local/centralized placing of AI in a distributed computational environment and AI algorithms applicable
to virtual sensors (mainly ANN and classification trees with linear regression branches). Section 5
is dedicated to cloud AI implementations—via MATLAB online, the specific APIs (application
programming interfaces) like Keras for ANN, XGBoost (eXtended Gradient Boosting), and the
ANNHUB (for an efficient Levenberg–Marquardt implementation). Section 6 is dedicated to the
concrete implementations for edge AI, the first one to promote a maximum of miniaturization (minimal
code running in an extremely compact hardware) and the second one to promote the maximum of
local performance (with hardware acceleration of the AI computation). Section 7 is an interpretation of
the results with a testing and performance assessment, Section 8 is a discussion on practical issues,
alternatives, usability, and sustainability. Finally, Section 9 presents the main conclusions of the paper.

2. Related Works

This section covers EBP investigations, mainly regarding AI-based predictions in diesel engines
and vehicular energy systems. Engine performance is negatively influenced by excessive EBP,
thus requiring a higher pumping work to release exhaust gas. The literature has indicated slight
reduction of power output and an increase of fuel consumption, exhaust temperature, and smoke
emissions. In turbocharged engines, higher EBP means higher turbine outlet pressure, which decelerates
the turbocharger, limits the air mass flowrate aspirated in the compressor, and enriches the air–fuel
mixture [2,3]. Among engine after-treatment technologies, active DPF (Diesel Particulate Filter) is the
most demanding device in terms of pressure drop exigence, and it is thus of paramount importance in
the triggering of thermal regeneration process [4].

There are rather few published papers with experimental measures of EBP. For naturally aspirated
single-cylinder diesel engines, EBP has been varied in the range of 1.1–1.5 bar, which explains the
influence on residual gas fraction and emissions [5,6]; meanwhile, other work [7] has reported increased
smoke and a drop of brake thermal efficiency at low loads.

For turbocharged engines, a six-cylinder aftercooled 500 kW diesel engine has been investigated
at a constant speed, and the influence of EBP on brake-specific fuel consumption (BSFC), exhaust gas
temperature, and emissions was interpreted [8]. Similarly, the testing of a 63 kW turbocharged and
intercooled diesel engine at a high EBP impeded engine power, torque, and smoke opacity, reporting,
at full load, a drop of power of 9% at an externally applied EBP restriction of 35% out of exhaust duct
free section [9].

Accurate EBP measurement is time-consuming and costly, being impeded by pulsing flow and high
temperatures; that is why the influence of EBP increase has been frequently investigated with numerical
simulation models [5,10]. The exhaust system has been considered a fixed-geometry restriction between
the exhaust manifold and the outlet of the tailpipe being implemented a mean-value model to estimate
the exhaust manifold pressure from a compressible flow equation. Simulations with Ricardo wave
software on a 11-liter submarine diesel engine indicated the reduction of mass flow of air, increased
brake-specific fuel consumption, and increased exhaust temperature [3].

Emission abatement techniques such as exhaust gas recirculation (EGR) can be controlled by the
accurate estimation of EGR mass flowrate, which requires the engine exhaust pressure as input data.
Instead of a physical sensor, virtual sensors are preferred, but their calibration needs real measurements;
for example, the research work of [11] reported a virtual sensor, a model-based exhaust manifold
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pressure estimator that was calibrated with real measurements on a four-cylinder, 1.6 liter turbocharged
diesel engine. Similarly, an exhaust pressure estimator was implemented on a 4.9 liter turbocharged
and intercooled diesel engine fitted with DPF and DOC (Diesel Oxidation Catalyst) that was calibrated
with a physical exhaust pressure sensor for DPF failure detection [12].

An extension of the numerical models for diesel engine study, in terms of number of parameters and
processing capabilities, is related to the use of AI methodologies. The most spread AI technique applied
to combustion engines is an artificial neural network (ANN). An ANN is a black-box identification
technique that is able to automatically learn from examples and to derive models from experimental
data. Initially, output and input variables are connected through unknown relations that can be
predicted by ANN after training and testing stages [13,14].

Many studies using ANNs in the diesel engine field have been reported, starting from two
decades ago; output variables include power [15], torque [16,17], mean effective pressure [15],
brake-specific fuel consumption (BSFC) [16,18–20], brake thermal efficiency [21,22], cylinder
pressure [21], cylinder temperature [23], exhaust gas temperature [16,18,22], emissions [17,21,22,24,25],
and mixture/injection parameters (fuel air equivalence ratio [18], maximum injection pressure, and fuel
flow rates [21]).

Besides the most widely-used input parameters of engine speed and load, studies have
reported power [19], torque [26], fuel injection parameters [19,22,24], cooling fluid temperature [18],
fuel properties [27], biodiesel blend [21,22], and compression ratio [22].

New AI techniques have been developed in order to optimize engine operation in the context
of vehicular energy systems. Among them, deep reinforced learning (DRL) has demonstrated a fair
balance over conflicting objectives, accelerated convergence, and continuous control when applied to
fuel economy [28] and battery energy management implemented on hybrid vehicles [29,30].

The aforementioned ANN studies have not considered the influence of EBP on engine parameters,
so one of the novelties of this study is related to the investigation of the best approach for implementing
AI algorithms working as virtual sensors.

3. Engine Investigations

3.1. Test Facilities and Procedures

The effect of back pressure on engine performance parameters was carried out experimentally on
a 1035-L6-DT series commercial vehicle diesel engine manufactured by the Roman truck company;
the main characteristics of this engine are given in Table 1.

Table 1. Engine technical data.

Characteristic Value

Type Diesel, 4-stroke, turbocharged, direct injection
Cylinder configuration 6-cylinder, in line
Bore × stroke [mm] 121 × 150
Compression ratio 16:1
Rated power [kW] 172
Rated speed [rpm] 2200
Maximum torque [N·m] 900
Maximum torque speed [rpm] 1600

The engine performance was measured in the Engine Testing Laboratory of the Road Vehicle
Institute, Brasov on a DC 300 kW/3000 rpm dynamometric test-bench produced by MEZ-Vsetin.
The engine layout and the positions of the relevant sensors are illustrated in Figure 1. The bench was
instrumented with temperature sensors for exhaust gas, air and cooling fluid, pressure sensors for
charge air, ambient air, oil pressure and EBP, flowmeters for air and fuel, a tachometer for engine
rotational speed, and an exhaust gas opacimeter. The engine load was adjusted by the fuel control
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system, and the speed was adjusted by the dynamometer. The EBP was externally applied by a
mechanical throttle valve installed on the exhaust system of the test-bench, 2 m downstream the
turbine. The adjustment of the EBP was performed manually with intermediate positions calibrated
after the maximum EBP values were fixed at rated speed and full load. The exhaust gas temperature
was measured using a K-type thermocouple (chromel–alumel) inserted in the exhaust gas duct by
means of a bayonet coupling.
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Figure 1. The diesel engine test configuration. Sensors: m—mass flowmeter; n—tachometer;
p—manometer; T—thermometer; and V—volumetric flowmeter.

The air flow rate was measured by a laminar flow MERIAM flowmeter, the fuel flow rate was
measured with a fuel balance produced by AVL List, using the chrono-gravimetric method by measuring
the time required to consume 0.5 kg of fuel in any steady point. A digital inductive tachometer was
used to read engine speed. The exhaust gas and charged air pressures were read on a Hg U-type
manometer and piezo-resistive transducers. In addition to the measurement of engine performance
characteristics, the smoke opacity was measured with a Hartridge Dismoke 435 opacimeter produced
by AVL List that has an effective length of measurement tube of 430 mm, the readings are expressed
both in HSU (Hartridge Smoke Unit) and light absorption coefficients (m−1).

All the instruments met the accuracies imposed by engine testing standard given in Appendix A,
Table A1, along with calculated measure uncertainties. For this engine type, the load was correlated
with injection fuel flow, which was adjusted by changing the position of the fuel pump rack.
No after-treatment device was mounted on the exhaust duct, as the effect of such was simulated by
externally-induced back pressure. Each test started after the engine was warmed up and included a
full load and part load tests at rated engine speed with the fuel pump rack fully opened. There were
an additional six tests aiming to find part-load curves at intermediate positions of the fuel pump rack.
After warming-up, at each set point, the engine was run for 6 min to reach the steady state condition.
The experiments were triplicated and averaged to get more accurate values.

A test matrix of 42 distinct operation modes (7 speeds and 6 loads) were chosen to provide a
wide range of engine performance map. The speed was adjusted from 1000 to 2200 rpm in 200 rpm
increments; the load was set to 100% (full load) and part loads of 90%, 70%, 58%, 48%, and 30%.

In their engine specifications, vehicle manufacturers declare an allowable EBP at which their
engine operates and which should not be exceeded. For the tested engine, this limit is 500 mm water
column (WC) or 4.9 kPa; as a result, during the test, the minimum value of the externally applied
EBP was set to 500 mmWC, and this was considered the reference. The maximum value of the
backpressure was set to 3000 mmWC or 29.43 kPa, six times higher than the reference value. Six steps
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of exhaust back pressure were adjusted from 500 to 3000 mmWC in steps of 500 mmWC for each
distinct speed-load combination.

The six EBPs values were adjusted for the engine rated speed of 2200 rpm and full load; lower
EBPs resulted in lower engine speeds and loads. Finally, for each of 42 distinct engine operation modes,
6 steps of simulated exhaust back pressure were applied, resulting 42 × 6 = 252 points. For the smallest
load (30%) and the highest exhaust back pressure (3000 mmWC), the measurement of parameters at all
the seven speeds was not possible due to the construction of the exhaust throttle valve, so the number
of operation points was 246.

3.2. Test-Bench Data Analysis

The investigated engine performance parameters included effective power, exhaust gas
temperature, brake-specific fuel consumption, boost pressure, and smoke opacity. In the context of this
paper, the effective power is thoroughly analyzed, while for the rest of the parameters, there are more
qualitative considerations. The influence of EBP upon power, illustrated in Figure 2, was evaluated as
a function of load and speed to cover a broad area of engine operation modes.
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The profile of the curves indicates the complexity of the dependencies among variables that
foresee the need for the latest numerical analysis. For a full load, the relative power loss varied
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with increasing speed from 0.41% (1000 rpm) to 3.62% (2200 rpm). At the intermediate load of 58%,
the variation of the relative power ranged from 2.57% (1000 rpm) to 6.34% (2200 rpm); for the further
reduction of the load to 30%, the corresponding figures grew to 5.52% (1000 rpm) and 10.7% (2200 rpm).
These findings were similar to recommended values included in the exhaust product guide by exhaust
system manufacturers for medium and heavy-duty vehicles [31]. The influence of EBP on other engine
parameters is presented in Appendix A.

4. Artificial Intelligence for Vehicular Sensor Data Processing

The graphical analysis of the intricated curving shapes in Figure 2 reveals a rather limited
number of points that cannot accurately describe the effect of EBP on engine power. Even though
the number of 246 experiments is quite high in engine research work, engine control requires a
higher granularity of data on an engine performance map. Engine testing procedures are expensive,
time-consuming, and need special purpose infrastructure; the number of measured vehicle parameters
is limited compared to what can be done with a test-bench, which is why it is highly recommended to
complement the experimental data with predictions based on artificial intelligence.

Unlike stand-alone physical sensors, virtual sensors are embedded mini-systems designed to
calculate and provide data to ECUs (electronic control units). For the current work, the virtual sensor
was basically an ANN or a regressor that was supplied in the normal operation phase with input data
from a number of only N physical sensors (e.g., the simplest and/or most reliable and/or cost-effective
ones), data used for the estimation of the extra value, indexed (N + 1) that are difficult to measure
directly or indirectly via simple calculation formulas. Nevertheless, in the training phase, the AI model
was fed with complete datasets, each including (N + 1) values, which were measured on the engine
test-bench. In the context of the present investigation, as illustrated in Figure 3, the (3 + 1) variables
were engine speed, load, EBP, and power. By applying AI, the fourth variable, effective power, was
obtained based on predictions.
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Figure 3. Transition from physical to virtual sensor.

For modern ECUs, engine control maps have become very intricate with dedicated
hardware/software architectures for each sub-system from air and fuel management to exhaust
after-treatment. AI can replace one or more controllers with efficient smart devices that can be
integrated into an engine’s ECU; such AI-based solutions are able to facilitate the simultaneous
optimization of all apparently contradicting ECU objectives such as fuel economy, lower emissions,
and higher torque and power.

In applied sciences, particularly in the field of ICEs (internal combustion engines), AI is frequently
used to solve computational-intensive problems such as function approximation, prediction and
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process control, and the management of the complicated relationships between inputs and output
variables. Due to this intrinsic complexity, the following paragraphs aim to restrict the presentation of
specific concepts, chosen methods, and developed solutions to smart devices for vehicular applications.
Nevertheless, a multi-disciplinary approach is preserved with some conceptual extensions written
in quotes.

4.1. Placing AI in a Distributed Computational Environment

The resource-intensive modern methods of computational intelligence [32] often involve cloud
computing with theoretically infinite processing power and storage capacity. In Figure 4, these two
aspects of computing are distinctively considered.
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Centralized versus localized computing extends the cloud computing/edge computing problem
to cloud AI/edge AI [33]. Modern telecom technologies of “cyber-critical communications” ensure
time constants that are much smaller than those needed for vehicular applications.

Placing AI near the engine, at “the edge” of a test-bench or vehicular appliance, is a multi-criterial
decision that considers mainly sensor/transducer signal conditioning, data acquisition, multi-point
logging, and pre-processing for compression.

The problem is where the AI-driven “assisted” decision (for real-time automated control) is to
be taken. The solutions presented in this paper demonstrate that state-of-the-art technologies enable
de-centralized optimal decisions via “edge AI” (Figure 4).

In our vision, smart devices with artificial intelligence should be modelled (in a top–down
approach) as FSMs (finite state machines). Appendix B details event-driven models for these smart
devices with AI.

4.2. AI Algorithms Applicable to Virtual Sensors

The extensive AI taxonomy [34,35] starts from the challenging paradigm of algorithms that enable
computers to solve problems they were not explicitly programmed for.

4.2.1. Artificial Neural Networks

Machine learning (ML) frequently uses ANNs that implement synthetic neurons similar
to the cells of the nervous system. The similarity is structural (an ANN is organized
into input-/hidden-/output-layers) but mainly functional and based on the ability to learn.
As electro-chemical neuro-channels enforce synapses, ANNs can iteratively grow—via different types
of successive approximations—some weights to endorse inputs’ specific contributions to intermediary
results or outputs. What is making an important difference between ANNs and the computing of
simple linear combinations is the “activation” of artificial neuron (weighted sum node) output.
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This is very specific to neural signal propagation in the human brain cortex and is fundamental
for “triggering” in event-driven models (detailed in Appendix B). To yield the “activated” neuron’s
final output y(x), an “activation function” is applied to the preliminary weighted sum x in order to
produce the actual output y [36]. For instance, a simple choice that frequently occurs in the next
sections of the paper is that of activating the output y = x only for positive x and to inactivate it, y = 0,
for the rest. This very simple activation function, ReLU (rectified linear unit) is typical of simple
“half-wave rectifiers”. The advantage of being linear is counter-balanced by the disadvantage of
being uncompressed.

One of the most useful activation functions is the hyperbolic tangent, y = tanh (x). It compresses
the neuron’s output between -1 and 1 and is also quasi-linear in reproducing x around 0 (tanh (x) ≈ x
for x ≈ 0, as its derivative tanh’ (0) = 1). There are many activation alternatives; one of them is the
“sigmoid”, y = 1/(1 + e−x), a “scaled” (dividing by 2) and “shifted” (finally adding 1/2) version of tanh.
For x << 0, the sigmoid is similar to ReLU (that “inactivates”, or nullifies, y for a negative x) and similar
to tanh for greater positive x >> 0, with an y also compressed to 1.

The importance of such compression is related to the preliminary “statistical” compression of
an ANN’s main inputs (a procedure detailed in the next sections of the paper), which practically
becomes a pre-normalization, by first subtracting the mean and then dividing the difference by σ,
the standard deviation.

Each normalized sensor output that feeds the ANN is then “statistically 0-centered and compressed”
between -1 and 1 (spurious extreme values—possibly caused by sporadic un-systematic errors—are
less important). This is very practical for a better use of the ENOB (effective number of bits) at the
ADC (analog-to-digital converter) obtained by pre-conditioning the signals (to adapt a sensor’s range
to the ADC range), as detailed in Section 6.

The training of an ANN consists of the iterative optimization of the above-mentioned
neurons’ weights.

Conventional ANNs use “feed-forward” computations results—from the inputs to the neurons of
the first “hidden layer” and so on up to the neurons of the last hidden layer that feed the output(s)
neuron(s). In this case, the usual “learning process” uses the “back propagation” (BP) of the updating
increments of the weights.

These updates aim to minimize the successive approximation errors between the ANN outputs
and the actual (observed and measured) output values of the training set [37]. Iterative optimizations
are done according to a chosen criterion, e.g., the minimization of MAE, the mean absolute error,
or the minimization of the MSE, the mean squared error. For n-dimensional errors e, MAE and MSE
correspond to the L1 and L2 norms, respectively, where Lp = (

∑n
i = 1 |ei|

p ) 1/p [38].
As for the optimization method, iterations aim to reduce (a “descent”) the error (“the gradient”)

in a “stochastic” way via successive approximations.
For edge AI solutions, the chosen method was SGD (stochastic gradient descent), which computes

a new modification of each ANN weight as a linear combination of the previous modification (its
coefficient being the so-called “momentum”) and of the gradient itself (its coefficient being the “learning
rate”). In our case, the ANN inputs were load (L), speed (S), and EBP (p), and the output was the
effective power (Pe).

4.2.2. Classifier Trees

An important alternative to an ANN is the linear regression tree—each branch (computing a
weighted sum with an own set of coefficients) is like an “ANN without activation” decision; this decision
is now represented by the switching to another specific branch.

The regression of sub-domains is apparently profitable for training datasets like the ones produced
at an engine test-bench with specific load and/or speed “steps”. We explored this alternative of
classifier trees using WEKA (Waikato Environment for Knowledge Analysis) [39]. This software
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environment was used, in the broader context of this paragraph, in several AI algorithm assessments
as a comprehensive “workbench for machine learning”.

WEKA encloses many classifiers and regressors (Bayes classifiers, SVMs (support-vector machines)
for supervised ML, etc.), as well as decision trees, e.g., ID3 (Iterative Dichotomiser type 3) or C4.5
(improved version of ID3 of the CART—classification and regression tree— type). In other fields of data
analytics, e.g., clustering, WEKA offers methods like k-means (for groups of k measurement means)
and EM (expectation–maximization) (of the likelihood of a statistical model estimated parameters with
the observed data).

The evaluated classifier tree (applied to the engine test-bench dataset), belonging to a fifth category
(in reference to the above-mentioned type 3 and 4 algorithms) builds a model (M) via a “divide et
impera” procedure, presented in Figure 5. We chose the optimized M5 method (M5P, or the M5
method that has been “pruned” or “trimmed”) that starts with a preliminary data sub-domain division
and then applies the linear M5 model to each such sub-domain. The M5P alternatives offered by
WEKA included RandomTree (random successive approximation of the tree), RandomForest (random
combination of trees), and RepTree (repetitive combination of several trees).
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Nevertheless, precaution is needed in adopting tree models: even if training data may exhibit a
discrete structure for one or more inputs, this may only be frequent on experimental benches (e.g., in the
standard testing of engine duty cycles and/or step-wise dynamometric brake regime) but not in road
vehicles use with continuous load and speed variation.

Such a “model contamination” due to a pseudo-discrete input data structure is similar to the
“memory effect” caused by scarce training sets; their number can be as low as the number of nodes
available in the ANN models—an odd synthesis could even allocate an unwanted individual neuron
activated only for the respective single set of inputs and delivering just the particular training output.

5. Cloud AI Implementations

As already mentioned, processing and storage resources in the cloud could be considered
“infinite” for our approach, and only communications could theoretically limit the performance of an
edge–cloud–edge vehicular smart device implementation. In the following paragraphs, we detail the
methods (mainly regressors and ANNs) used for running AI algorithms in the cloud for the common
parameters and test-bench datasets introduced in Section 3 and detailed in Appendix A.
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5.1. MATLAB in the Cloud

The first centralized AI solution implemented was based on a modern capability to run MathWorks
MATLAB™ in the cloud (“MATLAB online”) and a special feature to produce a whole range of AI models
that are set to “compete” in the training phase with the option of directly putting the most proficient
one into operation. This extends the GAN—generative adversarial (neural) network—principle for
the optimal selection of ANN algorithms and/or parameters [40]. The advantage is the cloud MaaS
(“Model as a Service”) adaptive offering of the AI algorithm best-suited to a particular optimization
problem and/or a particular data structure.

When running this procedure on the training data Pe (L, S, and p), the AI cloud “recommended”
the linear Gaussian regressor with the Bayesian optimization (indicated in Figure 6) that uses, for its
successive approximations, random variables with a Bayesian distribution that have hyper-parameters
(like the learning rate and the error threshold for approximated weight assessment) that are statistically
independent and compliant with the Bayes’ theorem of conditional probabilities.
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The data uploads in the AI cloud were used to setup MATLAB for the generation of an optimal
prediction model for the effective Pe based on the three inputs of load, speed, and p (the EBP—exhaust
back pressure); details of the common datasets representation are given in Appendix C.

The regression models offered in the cloud and the optimal choice are presented on the right side
of Figure 6.
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5.2. Keras API for ANN

The next evaluated implementation alternative was the Keras application programming interface
(API), a framework that is a very useful handler of the Tensorflow backend [41].

As supporting libraries, we used NumPy, Pandas, and Seaborn for the creation of “tensors”
(the main multidimensional data arrays), data reading, and data analysis, respectively, prior to the
model definition.

For the creation and presentation of the various documents required and produced in the Keras
implementation, Jupyter Notebook was used. Details of the common training, test data input,
normalization, and representation are given in Appendix C.

Figure 7 shows the Keras NN build-up. Each of the two “dense” layers of the ANN had 64
neurons, so, for the three inputs, there were 3 (+1 for the bias) multiplied by 64 = 256 weights for the
first layer; for the second layer, there were (64 + 1) × 64 = 4160 weights; and, for the output neuron 64 +

1 = 65 weights, so the total was 256 + 4160 + 65 = 4481 coefficients.
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The activation function for the first hidden layer was ReLU, and for the second hidden layer, it was
the sigmoid. We tested the optimization (performed via “back-propagation”) using three methods:
RMS (root mean square) minimization, SGD (stochastic gradient descent), and SGD’s improved version
(in terms of memory usage and running time), the ADAM method [42].

For our Keras case-study (layer 1 (64 neurons), activation function ReLU, and layer 2 (64 neurons),
sigmoid activation function), we chose the “optimizer = rms” with the criterion “loss = MSE”,
as described in Section 4.1).

The last phase of this Keras flow was the running of the training process depicted in Figure 8.
For this purpose, the fit method was invoked for the above-configured model. Five-hundred iteration
epochs were ordered (using an own validation_split = 0.2, i.e., 20% out of the normed_train_data).
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In order to evaluate this model, the MSE was computed for the testing set. As seen in Figure 9,
MSE = 0.01.
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5.3. XGBoost API

The eXtended Gradient Boosting (XGBoost) methods [43] are oriented around the iterative
optimization of AI classifiers by the “forced” (“boosted”) combination—without their usual
invalidation—of some classifiers with apparent lower performances; if considered individually
in usual convergence computations, such weaker classifiers could be discharged even from the
beginning, being rejected just after the first successive approximations.

A first XGBoost model (xgbooxt-test-raw) was implemented without the pre-normalization of the
training and test datasets (the three inputs of load, speed, and EBP and the output of effective power)
fed as .CSV (comma separated values) files. A regressor (a combination of linear models) that is quite
performant was obtained—as shown in Figure 10, the ratio “explained” variance (of the predicted
values)/variance of the observed (test) values gave a score of 0.949760939140567, close to the ideal
1 (with the variance being σ2). The model type was “manually” set by the “booster” parameter for
the XGBRegressor (gblinear—as in our case—or gbtree) and, after the training phase, exported (as
xgb_model.dat) by the pickle module imported by Python. This model was also used in Section 6.2.
As seen in Figure 10, the XGBoost implementation in Python was similar to the Keras handling of
Tensorflow models.
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The model was run (in the test phase) as described in Figure 11 by “reading the boost” (“rb”)
model that was “written” (“wb”) in the training phase.
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Figure 11. XGBRegressor prediction of effective power (Pe) = 122.855095 kW for load = 90%,
speed = 1800 rpm, and exhaust back pressure (EBP) (p) = 250 mmWC.

Exposing the xgb_model.dat as an API can be done with a web micro-server generated with
the “Flask” mini-framework programmed in Python. An ‘/api/predict’ HTTP (Hyper-Text Transfer
Protocol) “GET” method directly receives its parameters (“load”, “speed”, and “p”) in the URL
(Uniform Resource Locator) written in the address bar of the browser, e.g., http://localhost:5000/api/
predict?L=90&S=1800&p=250.

The “xgb_model.dat” (imported by pickle into the tiny server.py) returns the “prediction” value.

5.4. Levenberg–Marquardt ANN Implementation via the API of ANNHUB

ANNHUB™ is a machine learning platform offered by ANS Center [44] that is accessible via API
calls that we integrated into the National Instruments™ LabVIEW VIs (virtual instruments). If the
platform is set to design an ANN for prediction, it automatically chooses the Levenberg–Marquardt
(L–M) algorithm. In its particular form for ANN, L–M considers the iterative optimization (in the
training phase) of the weights in a compound estimation of the outputs—not only as a function of
the inputs but also of the series of state variables. These auxiliary state variables are generally chosen
for a formulation of the system’s equations that is as compact as possible. According to control
theory, iterative updates of ANN weights can be a “PID” (“proportional–integrative–derivative”)
linear combination of the estimation error ε, of its integral

∫
ε, and its derivative ε’—e.g., in the L–M

multi-dimensional case, “D” (“derivative”) computation is done with the J (Jacobian) matrices of
derivation operators (reciprocal partial derivatives of all the variables). In this perspective, the SGD
method (briefly described in Section 4), based on gradients, also belongs to the “D” category. Specific to
the L–M algorithm is the addition of a “P” (“proportional”) component—the proportionality coefficient
is called “damping factor” that is adjusted, in each iteration step, to a smaller value (towards a gradual
damping of the “P” part of the updates).

Figure 12 presents the L–M configuration in ANNHUB and the training process with the same
184 + 62 = 246 data sets used in the previous paragraphs; “mu” is the iterative multiplication factor ν
that adjusts the damping factor.
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In Figure A4 of Appendix C (dedicated to data visualization), one can notice the very good overlay
of the predicted outputs on the test outputs and the good value (closed to the ideal 1) of R-squared,
which is the “coefficient of determination” (of the actual observed (test) values by the predicted values),
i.e., the ratio between the variance of the predicted values (the “explained variance” already mentioned
in Section 5.3) and the variance of the unpredicted values.

For various applications of ANNHUB-generated models, at the client-side, different APIs are
offered by ANS Center. For a good integration of cloud AI with the instrumentation, the LabVIEW
API was chosen. As seen in Figure 13, the cloud AI model can be integrated with a “Create ANN”
block only with a “license content” code that can be downloaded (cloud→ edge) only after an (edge
→ cloud) credentials upload.
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6. Edge AI Implementations

6.1. Compact ANN Implementation—“AI in a Nutshell”

The objective of this smart device implementation—edge AI for virtual sensing—is a minimal
computational foot-print for a “hard-coded” ANN, with coefficients included directly in the firmware,
based on a very low cost and compact board (around 10 cm2). This proposed “AI in a nutshell” is built
around a popular SoC (system on chip) and is much smaller than usual SBCs (single board computers).
The experimental data, introduced in Section 3 and detailed in Appendix A, had 246 sets of N + 1 = 4
test-bench measurements: load (%); rotational speed (rpm); p—EBP (mmWC); Pe (the effective power;
in kW). Out of these, 184 sets were randomly chosen for training, and the rest of 62 sets were kept for
testing (Table A2). The chosen architecture of the compact ANN (with two hidden layers) is presented
in Figure 14.

In Appendix A, Table A3 presents the normalization reference parameters. It is assumed that the
statistics were meaningfully contained in the comprehensive training data. The mean and the standard
deviation (σ) values were used extensively, not only for the preliminary normalization but also for the
final de-normalization in the virtual sensor. Any future “statistic re-calibration” of the edge AI smart
device should update not only the ANN weights but also these de-/normalization reference parameters.
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Figure 14. The [3 × 10 × 10 × 1] architecture chosen for the edge AI compact ANN.

The programming system chosen for development of the compact ANN is given in Table 2.

Table 2. The software environment for the development of the “edge AI” ANN (see also Sections 5.2
and 5.3).

Name Description Scope

PyCharm Integrated development environment (IDE) Software development in the
Python programming language

NumPy Libraries package for the Python programming
of scientific computation

ANN training ANN use

PyTorch Python version of the Torch libraries with
methods dedicated to artificial intelligence

ANN training

Pandas Python libraries dedicated to matrix computation ANN training

The “AI in a nutshell” demonstrator was implemented with a cost-effective micro-module, TTGO™,
recently marketed by LILYGO, built around a “WROOM-32” module produced by Espressif [45] and
the well-known ESP32 SoC. Edge-computing local resources are: 4 MB flash program memory, 8 MB
PSRAM (pseudo-static RAM) of working memory, and a CP2104 UART (universal asynchronous
receiver-transmitter) chip.

The outstanding ESP32 capabilities are the WiFi (802.11 b/g/n) and Bluetooth 4.2 BLE (low energy)
protocol with BR/EDR—basic rate/enhanced data rate.

A convenient organic LED (OLED) display (128 × 64 pixels) is managed by an SSD1306 I2C
(inter-integrated circuit) interface chip. As seen in Figure 15, the micro-module also has a T-camera,
a PIR (passive infra-red) AS312 sensor and a BME280 barometric environmental sensor.

Such a versatile LILYGO micro-module does not have many extra GP-I/O (general purpose
input/output) pins left, so three direct wired connections were added to the two multiplexed inputs of
ADC2 (GPIO 2 and 26 to channels 2 and 9) and, respectively, to channel 6 of ADC1 (GPIO34)—for this
last connection, the 10 kΩ pull-up to 3.3 V was interrupted.

In order to comply with the 3.3 V supply voltage requirements of this CMOS (complementary
metal-oxide-semiconductor) board and many others, the three ADC inputs had to be brought,
in advance, in the 0–3.3 V interval. This means they could not be taken directly from the outputs of
different kinds of sensors and needed an intermediate signal conditioning, detailed in Section 7.2 and
Appendix E.

For the above-mentioned chosen ANN architecture, in both hidden layers, the chosen activation
function was ReLU (without compression but linear and, most notably, the simplest to implement in a
compact code).
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As introduced in Section 4.2.1, the chosen BP optimization method was SGD, with the NN (neural
network) benchmark “nn.L1Loss” (minimizing MAE, according to the L1 norm, is one of the most
robust criteria).
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The value of the momentum was 0.9, and the learning rate was lr = 0.001.
After 5000 “epochs” (the number of BP optimization iterations) running on the normalized training

data (182 sets), 10 × 3 = 30 coefficients “hidden1_weight” coefficients and 10 × 1 = 10 “hidden1_bias”
terms (for each neuron’s linear combination of 3 inputs, a free term is added) were obtained for the
three inputs in the 10 neurons of the first hidden layer. For the second hidden layer, 10 × 10 = 100
coefficients “hidden2_weight” coefficients and 10 × 1 = 10 “hidden2_bias” terms were computed.

In the ANN run, the main ANN “exploitation phase” (and also for the testing detailed in the
following), the coefficients obtained after the training phase could be grouped in tables for a compact
matrix calculation. The [1 × 1] result was not obtained via the simple multiplication (starting with the
column vector [3 × 1] of the three inputs written to the right in the following product) [1 × 1] = [1 × 10]
· [10 × 10] · [10 × 3] · [3 × 1]. Instead, as seen in Figure 16, there are needed three preliminary paddings
with 1 elements at the right-side factors: for the [3 × 1] input and for the two [10 × 1] activated hidden
layers’ outputs. Accordingly, it was needed three times, a correspondent padding of the weights arrays
with the column vectors of the biases - at the left-side matrix factors:
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Figure 16. The compact ANN calculation modeled with matrix operations.

As depicted in Figure 17, a 10 × 4 “layer1Weights” array was obtained from the 10 × 3 = 30
coefficients “hidden1_weight” array padded with the 10 × 1 = 10 “hidden1_bias” column vector, and a
10 × 11 “layer2Weights” coefficients array was obtained from the 10 × 10 = 100 “hidden2_weight”
coefficients array padded with the 10 × 1 = 10 “hidden2_bias” column vector.
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Figure 17. The Arduino code (of the compact “edge AI” smart device) with embedded ANN coefficients.

More than half of this very compact code was represented by the embedded coefficients—an
efficient solution that does not require reading of .CSV or similar formatted tables from an “external
file system” that would misuse the reduced resources of such a tiny board.

6.2. NVIDIA Mini-System with Hardware Acceleration of AI Computing

A “cutting-edge” solution—aiming to demonstrate one of the most powerful AI resource
concentrations at “the edge” of the network—was based on the NVIDIA Jetson Nano (V3); see Figure 18.
Though this development kit is remarkable compared with the features of a usual SBC (single board
computer), it is quite cost-effective (priced less than twice that of an average SBC).

The mini-system is driven by a four-core advanced RISC (reduced instruction set computing)
machine “ARM” A57 processor with 4 GB RAM 64 bit LPDDR4 (low-power double data rate) with
25.6 GB/s), multiple high efficiency H.264/H.265 video codecs, Ethernet 10/100/1000BASE-T, and many
other general-purpose interfaces. The dedicated AI software was installed on top of the Linux OS with
TensorRT libraries for “deep learning”.

The main sub-system was the 70 × 45 mm Jetson Nano SOM (“system on module”), with a
special parallel NVIDIA “Maxwell” processing unit. This hardware, directly allocated to ultra-fast
AI computations, has a structure inspired by parallel architectures of the graphic processors with
GPC (graphics processor cluster) chips—each cluster having 5 SMs (streaming multiprocessors).
Parallelism is essential for the “systolic” ANN computations, given the neurons placement and the
“wave” transmission of data flows for the forward propagation (FP).
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detailed to the right.

The Maxwell architecture sustains the “neuromorphic computation”:

− The SMs have processing units with Kernel preemption (a compromise between the prioritization
and parallelism of the processes). These units are called “CUDA (compute unified device
architecture) cores”, with each core having two computing sub-systems (for integers and for real
numbers with floating point) and 16 load/store blocks.

− A Maxwell chip has 128 CUDA cores interconnected by a fast NVLink bus which has a high
bandwidth memory (HBM2 - up to 59.7 GB/s).

− Each SM has 64 K (=65,536) registers of 32 bits and can run up to 64 warps (a “warp” is a grouping
of 32 threads for the parallel execution of an instruction).

In all the software part of the NVIDIA-based implementation, described as follows,
some capabilities that were considered, until now, as cloud-specific could be observed. For instance,
this edge-computing solution used its own embedded server exactly as described in Section 5.3.
Most remarkably, it transfers data using local web services for methods invoking API and for
“publishing” results. This complies with REST (REpresentational State Transfer) [46], the modern
approach of the state-driven models (mentioned in Appendix B). The “RESTful” transition in/out
signaling is done via HTTP and parameters in/out are embedded in GET (or POST) messages’ attributes
directly in the URLs.

On the NVIDIA Jetson Nano, an LXDE—light-weight X11 (version 11 of the X Windows display
protocol)—DE (desktop environment) was installed for intranet(/internet) access compatible with the
X2Go server. In this environment, with “pip3 install” commands, the following were configured:
xboost, pandas, sklearn (like in Section 5.3), and the flask server (that enables ANN computations to be
invoked via APIs like in the cloud solution described in Section 5.3 but now locally). Prior to xboost
installation, with the “cmake” command, compilation was done with the explicit activation of the
CUDA-based hardware acceleration: cmake. -DUSE_CUDA=ON. In Figure 19, it can be seen how
the flask server is started (listening on port 5000 and exposing its services to the localhost) and how
the HTTP command GET is invoked via the above-mentioned xboost API: the AI method “predict”.
This method computes Pe for ANN inputs given as attributes of the GET message—L = 100 (%),
S = 1000 (rpm), and p = 80 (mmWC)—included in the URL written in the address bar of the browser.

Using a DDNS (dynamic domain name server) a simple port forwarding may be configured on a
local router to extend intranet-to-internet access using a public IP address. This modern approach
became “distance-agnostic” (with the same transfers locally or remotely)—a real ubiquitous and mobile
computing solution that could be installed either on the engine test-bench or on vehicles.
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7. Results Interpretation

7.1. ANN Test Flow via Dedicated Virtual Instrumentation

For a thorough verification of all the ANN calculations with a totally separated test flow, a dedicated
National Instruments Virtual Instrument was built in LabVIEW. The virtual instrument (VI) diagram
(detailed in Appendix D) illustrates how test data, individually or as a block (of 62 sets in our main use
case, exercised in most other implementations, Sections 5.1–5.4 and 6.1), could be fed as an Input.csv
file, together with the reference parameters computed from the statistic of the training data (184 sets in
our main use case): the Means.csv and StdDev.csv files, as detailed in Appendix A.

The implemented virtual instrument could be used for various ANN coefficient sets (weights and
bias parameters) for more two-layer models with ReLU activation. Specifically, the versatility of this
VI implementation is given by its scalability to changes in the dimensions of the two hidden layers that
can have even different numbers of neurons/layers.

Figure 20 shows four examples of the compact code (6.1) run with the corresponding virtual
instrument (VI) test verifications.
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For this “edge AI” smart device presented in Section 6.1 (“AI in a nutshell), the ANN verification
is given in Table 3.

As the optimization criterion was MAE, the mean of the absolute error, 0.01992755, was also
considered relevant. Half of this value gives a relative precision of the estimation equal to 0.9963%.
The interpretation of precision as relative to standard deviation is a matter of discussion; in this case,
RMSE division should have been done not to 2σ but to larger intervals up to max–min. For such cases,
the relative precision would be significantly better. However, spurious extreme values, erroneous
measured values that happen to be outside the inputs’ statistic (even if occurring once), can make the
max–min difference a “span” that is useless as reference for the precision. Regarding such “outliers”,
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the MAE criterion is more robust (due to the squaring of the errors, the MSE was more distorted by
spurious inputs).

Table 3. “Embedded” ANN performance assessment for the 62 normalized test values of Pe.

Pe Normalized Pe Normalized Estimated Squared Error

−0.276467615 −0.265836447 0.000113022
0.314357485 0.329886377 0.000241146

. . . . . . . . .
−0.895549567 −0.890819013 0.000022378

MSE = 0.000593327; the square root of MSE results RMSE = 0.024358305. The relative precision of the estimation,
RMSE

2 (after dividing by the interval [σ − (−σ)] normalized, i.e., [1 − (−1)] = 2) = 1.218%.

As seen in Figure 17, the 12 bit outputs of the ADC, between 0 and 4095 = 212
− 1 (for the

converters’ analog input range 0–3.3 V as detailed in Appendix E), were re-shifted by subtracting 2048
(half of the binary span). Re-scaling was not done by division to 2048 but to 4096 (written 4096.0, to
switch the computing into real numbers). This means that, related to normalization, inputs should be
allowed to be between −2σ and 2σ and not only between ± σ. This compromise (the overlaying of the
less probable greater inputs) only affected the MSB (most significant bit) of the digital input.

Nevertheless, the greater time-constants in vehicular applications (particularly in diesel engine
ECUs) allow for some over-sampling of inputs (even if analog channels are multiplexed to the input of
a single ADC)—e.g., with a sampling frequency 2n times greater than fNyquist (double the maximum
frequency in the spectrum of the continuous signal), an effective number of bits, ENOB = n + the
number of bits/sample at the ADC output, can be obtained if a moving average (with a 2n broad
window centered on each ADC output) can be computed.

7.2. Signal Conditioning

Before being submitted to the analog-to-digital converters of the tested smart devices, the different
kinds of signals offered by the various types of sensors have to be pre-conditioned. Most of this
signal conditioning is a “scale and shift” pre-processing; for instance, for the 6.1 edge AI solution,
the sensors output signals had to be brought in the above-mentioned 0–3.3 V interval. The external
add-on miniature sub-systems for signal conditioning are presented in Appendix E.

To close a calibration loop for each physical sensor path, the extra multiplicative factors should be
adjusted iteratively (starting with 1) not in this signal conditioning module but, more conveniently,
directly in the software, increasing or decreasing the shift step (e.g., 2048; see Figure 17) and/or the
re-scaling denominator (e.g., 4096; see Figure 17). For instance, to calibrate the “load” channel, the two
corresponding iterations had to equal the displayed load with 100 (on the mini OLED screen) if the
actual load was exactly 100% on the engine test-bench.

7.3. Comparison of the AI Solutions for Smart Devices

For all the six main implementations, the same train and test data (with 184 and 62 measurement
sets) was used. This was an important common base for the comparison presented in Figure 21.

For the needs of comparison, some of the longer decimals groups could have been truncated
(to only n, where 10−n

≤ sensors accuracy). Nevertheless, for an easier reference, the benchmark scores
were left with the digits after the decimal point exactly as displayed by the various calculation results
in Sections 5 and 6. As shown in the performance column, some of the precision figures had to be
normalized (either dividing by mean Pe = 82.76 kW or by σ − (−σ) = 2σ (=2, normalized)). As the
compact solution of Section 6.1 “edge AI” is both ANN-based and hardware- and software-implemented,
it was necessary to use it as reference, so both precision benchmarks (relative to RMSE and to MAE)
were calculated for this “AI in a nutshell” smart device.
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Due to the large number of neurons in its two “dense” hidden layers (a total of 129 neurons with
a total of 4481 coefficients), the Keras ANN (Section 5.2) had a better precision (relative to RMSE).

There are two solutions based on XGB (Sections 5.3 and 6.2), as well as the solution of Section 5.4
based on an ANN trained with the L–M algorithm, that can be assessed by the R2 benchmark,
R Squared—the ratio between the variance of the predicted values (the “explained variance” already
mentioned in Section 5.3) and the variance of the unpredicted values (it was not considered the
R-Squared = 1 label in Figure 6, for the optimized GPR (Gaussian process regressor) solution of
Section 5.1).

A comparison between the solutions of Section 5.4 versus those of Sections 5.3 and 6.2 could be
done because the statistics of the training and the measured (observed) actual values were adopted as
well for the predicted values (to allow for the quick de-normalization for any individual input).

Thus, in this particular case, the variance of the actual values = variance of the predicted values
+ variance of the prediction errors, i.e., total variance = explained variance + unexplained variance.
The predicted values were totally un-correlated with the prediction errors (this is why they could
not explain the statistics of the values and of their predictions). Thus, in this particular comparison,
the explained variance score ≡ R2 (a common benchmark for the comparison of the solution of
Section 5.4 with those of Sections 5.3 and 6.2).

8. Discussion

The experimental investigations performed on the engine test-bench confirmed the influence
of EBP on engine performance that had been previously reported in literature. Within the limits of
the EBP variation of the present study, which was 3000 mmWC (=29.43 kPa) at the rated speed and
load, the maximum engine power loss reached 3.62%, the BSFC increased with 7.32%, the exhaust gas
temperature rose with 100 ◦C, and the boost pressure decreased with 30% (Appendix A).

The implementation of AI into vehicular sensor data processing regarding the computational
allocation (local and/or centralized) in the distributed environment was discussed.

The cloud-/edge-computing (processing–storage–tele-transmission) was extended in a cloud
AI/edge AI paradigm that was used for the next sections.
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The state-control approach of smart devices (detailed in Appendix B) can be expanded to the
ECUs (electronic control units) that also have on-board real-time diagnosis features and optimal
decision capabilities.

All the needed parametrization can be adaptive (mostly via ANN), and all the needed transitions
can be decided upon with classifiers and other AI means. Such a finite state machine model can
also distribute the localized/centralized tasks according to the edge AI/cloud AI extension of the
edge-/cloud-computing paradigm.

The second part of Section 4 presented the AI algorithms applicable to virtual sensors, emphasizing
ANN and then classifiers and regressors. The resource-intensive parts of AI computation were
considered, at first, in the cloud with “infinite” processing power and/or storage capacity (Section 5)—the
machine learning parts starting with training of the models and up to the adversarial comprehensive
model choice “MaaS” (Model as a Service) introduced in Section 5.1 dedicated to MATLAB in the cloud.

On the unique training and testing data set used in all the use-cases, MATLAB has chosen optimized
GPR (Gaussian process regressor) as the best MaaS invoked via API (application programming interface).

The next cloud AI solution was a Keras API for ANN. The backend computing was based on
Tensorflow libraries handling the main multidimensional data arrays as “tensors”. It was obtained
a competitive “dense” ANN, with many neurons per layer—a step towards WNN (“wide neural
networks”) up to the modern DNNs (“deep neural networks”) with many layers.

The other two API-accessed cloud AI solutions were based on “XGBoost” (XGB eXtended
Gradient Boosting—of iterative optimization classifiers) and on the ANNHUB access to an effective
Levenberg–Marquardt ANN.

The cloud AI approach always has the advantage of MaaS computational-intensive features.
Besides the example of Section 5.1, the solution of Section 5.3 has also an impressive “automatic”
option, GridSearch (offered by the dedicated Sklearn library) for the optimal choice out of a bunch of
models trained with more combinations of parameters.

The MaaS features can be considered a future-proof capability in the trend of “continuous
optimization” (powered by AI) of the running algorithms that could extend the nowadays “continuous
deployment” of micro-services in the cloud.

Accessing AI cloud computations can be used also in mixed solutions, starting with edge DAQ
(data acquisition) and data logging in the cloud and up to “AI caching” in the cloud (of the edge
computations)—a measure that is useful for intermittent connectivity that is frequently seen in
vehicular use-cases.

Even the most compact micro-boards described in Section 6 could easily transfer the N
locally-acquired sensor outputs to the cloud that should return the N + 1 (virtual sensor) output in
real-time as result of a prediction calculation.

The two solutions proposed based on the same virtual sensor use-case are state-of-the art (referring
to the actual market).

The edge AI mini-system with hardware acceleration can take over whole AI types of computing
tasks; part of these computing tasks are usually present in the cloud as the model training phase (even
for the above-mentioned DNN).

The NVIDIA Jetson Nano small-form factor mini-system, managed by an ARM A57 four-core
processor (running a full range of AI software and a Flask micro-server on top a Linux OS) is built
around a NVIDIA Maxwell SOM (system on module). In Section 6.2, it was demonstrated how this
solution can locally perform the complete range of XGBoost computations that were first introduced as
an accessible cloud AI solution (Section 5.3). Most of the cloud AI solutions presented in Section 5
were trained offline. The SOM implementation (Section 6.2) is the only one powerful and versatile
enough for real-time edge–cloud–edge future solutions, with the training data upload/(re-)training of
the model (and adversarial choice or optimization in the cloud)/download and running of the most
advanced (updated or new, not only ANN) versatile model that might also have in-depth scalability.
Nowadays, as smartphones have CPU/GPU/APU (central/graphical/AI processing units), this paper is
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endorsing an edge AI vision on engine instrumenting and control. A Jetson Nano stand-alone “palm”
mini-system, even if operating locally, preserves a cloud-like server control that is “distance agnostic”.
This means it is feasible a scenario of training data to be fetched from the complete instrumentalized
testbed directly to such a small Jetson Nano possible “AI add-on” to the ECU, with a new model
(re-)training, even for the limited update needs of “statistical re-calibration”.

At the other extreme, the very compact edge AI solution “in a nutshell” built around a
super-miniature board of the TTGO™ series manufactured by LILYGO is centimeter-sized and
includes also an OLED mini-display for the three inputs (load, speed and pressure) and the output
(Pe). At this super-miniature extreme, though the micro-board includes a tiny digital camera, too
much image processing is impossible. Currently, there are promising efforts to optimize AI software
libraries—e.g., the new Arduino TinyML (“machine learning”) suite that allows for the compilation of
ML models with a new TensorFlow™ Lite sub-set and code upload on micro-modules managed by the
Arduino IDE (“integrated development environment”).

The compact edge AI implementation of the smart device directly includes the ANN coefficients
(weights and bias) in the code. These coefficients might be simply embedded in the firmware of the
virtual sensors. As shown in Section 7.2, any calibration problem becomes a software update problem.
Assuming that inputs’ statistics (mean and std dev) do not change in the long-term (without any
retrofits in the exhaust and other auxiliary systems of the engine), such a “statistical re-calibration” of
the smart devices is seldom needed; in this cases it is sufficient a simple ANN retraining using the fully
instrumentalized test-bench. For instance, for the “AI in a nutshell” compact solution of Section 6.1,
the new coefficients (the two arrays illustrated in Figure 17) that should be re-loaded in the Flash
memory of the micro-board are updated in the code.

An intermediate edge AI solution (a compromise between implementations like those of Sections 6.1
and 6.2) could involve a “bare-metal” SBC (single board computer—e.g., the very popular Raspberry
Pi) that runs a dedicated Docker container. Such a container (the ideal compromise of the virtual
machine principle and of the stand-alone compiled executable code) could integrate the environment
strictly required for the execution of the AI model without the need to separately install, for instance,
Python and the Tensorflow libraries specific to AI.

Cloud AI solutions do not usually provide access to a trained model. This should not be a problem
due to API access—a convenient alternative used even for the advanced edge AI solution of Section 6.2
(that, as already mentioned, shares the XGBoost computations with the Section 5.3 cloud AI solution).

Even if known and “finite” at the end, a cloud-trained model might need intensive computing in
order to be chosen and calculated. However, as shown in Section 4.2.2 (where a tree classifier was
developed with the M5P algorithm of WEKA), precaution is needed when adopting regression models
(Section 5.1, Section 5.3, and Section 6.2) that are susceptible to contamination by a pseudo-discrete
structure of the training data. From this point of view, the ANN solutions (Section 5.2, Section 5.4,
and Section 6.1) could be preferable.

ANNs have other advantages—mostly if the coefficients are individually known and handled for
different needs of the implementation (e.g., embedded at the quasi-firmware level in the solution of
Section 6.1). ANNs are prone to extrapolations (e.g., to predict the output for inputs that are beyond the
range of those use in the training phase). In a classifier tree (mostly with an unknown model—e.g., cloud
AI), there is still the risk such inputs not having a branch into which to be routed—such inputs might
be considered “outliers”, and the computing system may decide to drop them out. For instance, if EBP
is distanced with more times σ from the mean, an ANN may still give an estimate of Pe and predictable
behavior for an extended input range, that represents a significant practical value for the AI-based
virtual sensor. For example, considering the edge AI solution of Section 6.1, the re-scaling of the 12 bit
outputs of the ADC should be done using a scaling numerator greater than 2048 or even than 4096.
The pre-conditioning of the signal (according to Section 7.2) should be done accordingly with a greater
input divider factor that compresses more of the EBP sensor’s output.
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Regarding the computational overhead trade-off with the cost of the solutions, increasing
the ENOB (effective number of bits), increasing the sampling frequency or even the number of
artificial neurons should be limited by some merit factors like 1/(sensors accuracy) at the test-bench.
Such limitations mean that solution assessment should consider not only the algorithms performance
(the computational efficiency) or the accuracy of the estimations but also practical aspects like the
positioning (edge-/cloud-AI) and all the telecommunication issues and the deployment (up to the
above mentioned “continuous optimization” according to the modifications of data characteristics).

9. Conclusions

This paper is centered on the influence of EBP on diesel engine performance parameters.
Experimental results on instrumentalized engine test-beds were supplied as training data to ANNs
and regressors. These could be further used in stand-alone reliable smart devices for the accurate
prediction of power loss versus externally applied EBP in a whole load/speed engine operation. Two
practical virtual sensors were implemented as cost-efficient edge-AI solutions. One has an extreme
local computational performance (AI with hardware acceleration). The other one has an extreme
compactness (hardware miniaturization and minimal code).

The main benefits of the research work are emphasized below.
The experimental investigation has enriched the relatively scarce literature on engine

EBP-power dependency.
The continuous development software paradigm was extended to the continuous optimization

concept beyond the ANN versus regressors traditional trade off. Though the pseudo-discrete nature of
decision trees and outliers’ treatment favored the ANNs, it was shown that the automatic selection or
update of AI models is now possible in the cloud.

The implementations were framed by an extended range of criteria and a broader perspective
that includes benchmarks, scalability, activation, signal conditioning, and computational resource
allocation for new requirements like extrapolation and calibration.

Striving for constructive details, the state-of-the-art practical solutions aimed to rise the TRL
(technology readiness level).

The novelty brought by the present work is as follows.
To the knowledge of the authors, the application of AI in engine power loss caused by EBP has

not been previously reported.
The cloud AI–edge AI approach supported the applied research of artificial intelligence allocation

in the distributed environment.
The MaaS adversarial choice of the AI model in the cloud was demonstrated with two APIs

(MATLAB and XGB).
The design flow was extended in a distance agnostic AI chain using Jetson Nano. This complete

demonstrator with hardware acceleration could be an ECU add-on capable of the real-time updating
of model parameters and even of model type; the flask server solution and seamless XGB regressor
download illustrates a “model-agnostic” capability.

The compactness of the hardware in the embedded micro-system demonstrator was complemented
by a code-optimization with ANN coefficients in the firmware and put an “embedded AI” solution
into practice. It was shown that these coefficients are suitable with the sporadically offline statistical
recalibration of the “AI in a nutshell” smart device.

During the applied research on vehicular smart devices driven by artificial intelligence, a real
effervescence of innovative solutions was very obvious—the “AI cloud inside” printed on some
commercial modules is still a wish today, but it is almost certain tomorrow.
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Appendix A

Engine Test-Bench Measurement—Data and Interpretation

As mentioned in the conclusion, the quality of AI data processing is conditioned by the foremost
test-bench measurement accuracies and result uncertainties (Table A1).

Table A1. Measurement accuracies and result uncertainties.

Measure Unit Accuracy

Torque Nm ±1%
Speed rpm ±2

Temperature K ±1
Pressure kPa ±0.01

Time s ±0.1

Calculated results Unit Uncertainties

Power kW ±1.1%
Hourly fuel consumption kg/h ± 0.2%

The influence of EBP upon the other engine parameters is presented below.
The exhaust gas temperature increases with load and, at a constant load, increases with speed.

At a full load, the difference of temperature with the reference of 4.9 kPa has range of 20–100 ◦C when
speed is increased from 1000 to 2200 rpm.

The brake-specific fuel consumption (BSFC) is defined as the ratio of hourly fuel consumption to
effective power. It varies with speed, load, and EBP. As a general tendency, it decreases with rising
load and increases at higher EBP levels. Our experimental results revealed that for 1000 rpm, the BSFC
increase with EBP was 0.3–2.42%, while for 2200 rpm, it correspondingly rose within 0.3–7.32%, thus
representing a significant rise.

The boost pressure decreased with EBP, with the smallest relative reductions (2.86–5.71%) being
measured for 1000 rpm and the highest relative reductions (3.33–30.83%) being measured for 2200 rpm.

The smoke opacity was proven to significantly increase with EBP on the whole range of speeds
and loads as a consequence of reduced air excess ratio and air mass flowrate.

When EBP increased from 500 to 3000 mmWC, the nonlinear rise of Hartridge smoke unit
varied from 6 to 20 HSU, equivalent to the values of light absorption coefficient k within 0.2–0.5 m−1

and not exceeding the limits imposed by Economic Commission for Europe ECE 24 regulation on
visible emissions.

Engine Bench Data Partitioning

There are different ways of separating training and testing data (for instance, WEKA offers more
options of data segmentation, e.g., percentual randomization or iterative folding).

For most of the solutions (presented in Sections 5.2, 5.3 and 6.1, Section 6.2) out of the 246 data
sets, 184 were randomly chosen in advance for training, and the rest of the 62 sets were kept for testing
(Table A2).
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Table A2. Partition of the engine experimental data.

The 184 Datasets for Training The 62 Datasets for Testing

Load Speed p Pe Load Speed p Pe

100 1000 60 72.1 100 1000 260 72
100 1200 440 94.4 100 1200 270 95
. . . . . . . . . . . . . . . . . . . . . . . .
90 1600 1080 113.7 90 1600 800 114.9
90 1800 600 129.7 90 1800 250 130.3
. . . . . . . . . . . . . . . . . . . . . . . .
70 2000 1380 106.8 70 2000 1560 104.5
. . . . . . . . . . . . . . . . . . . . . . . .
58 2200 1940 92 58 2200 1700 95
. . . . . . . . . . . . . . . . . . . . . . . .
48 1200 570 39.7 48 1200 460 40.6
. . . . . . . . . . . . . . . . . . . . . . . .
30 2200 1260 45.6 30 2200 750 47.9

Table A3 presents the reference parameters for normalization (subtracting the mean and then
dividing the difference by σ).

Table A3. The normalization reference parameters.

Mean (from the Training Data) Standard Deviation (from the Training Data)

Load mean [%] 67.08695652173910 std Load [%] 23.45099060386270
Speed mean [rpm] 1602.173913043470 std Speed [rpm] 400.5372101450430
p mean [mmWC] 762.2826086956520 std p [mmWC] 612.5875771655360

Pe mean [kW] 82.76250000000000 std Pe [kW] 38.92861019322530

Appendix B

Models for Smart Devices with AI

In FSM (finite state machine) event-driven models for smart devices with AI, the basic operating
phase is the state, which a computational block known as an “interrupt service routine”. The decision to
transit to the state is triggered by the corresponding event (the respective “interrupt”). The “operands”
are, more generally, parameters that instantiate the related computation methods that are thus
transformed into objects, from classes, in the paradigm of object-oriented programming (OOP).

In our generic perspective, artificial intelligence should be implemented in the smart devices both
“horizontally” (by parameterization—with values that can be produced, for instance, by ANN) and
“vertically” through an “event calculation” that can estimate the best transition—from an optimal
“state trajectory”, the evolutionary “strategy” of the finite state automaton. Such a decision can be
provided, for instance, by a classifier with AI, as illustrated in Figure A1.
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30 2200 1260 45.6 30 2200 750 47.9 

Table A3 presents the reference parameters for normalization (subtracting the mean and then 
dividing the difference by σ). 

Table A3. The normalization reference parameters. 

Mean (from the Training Data) Standard Deviation (from the Training Data) 
Load mean [%] 67.08695652173910 std Load [%] 23.45099060386270 

Speed mean [rpm] 1602.173913043470 std Speed [rpm] 400.5372101450430 
p mean [mmWC] 762.2826086956520 std p [mmWC] 612.5875771655360 

Pe mean [kW] 82.76250000000000 std Pe [kW] 38.92861019322530 

 

Appendix B 

Models for Smart Devices with AI 
In FSM (finite state machine) event-driven models for smart devices with AI, the basic operating 

phase is the state, which a computational block known as an “interrupt service routine.” The decision 
to transit to the state is triggered by the corresponding event (the respective “interrupt”). The 
“operands” are, more generally, parameters that instantiate the related computation methods that are 
thus transformed into objects, from classes, in the paradigm of object-oriented programming (OOP). 

In our generic perspective, artificial intelligence should be implemented in the smart devices 
both “horizontally” (by parameterization—with values that can be produced, for instance, by ANN) 
and “vertically” through an “event calculation” that can estimate the best transition—from an 
optimal “state trajectory,” the evolutionary “strategy” of the finite state automaton. Such a decision 
can be provided, for instance, by a classifier with AI, as illustrated in Figure B1. 

 
Figure B1. Introducing AI in the basic building block of the smart devices’ FSM (finite state machine) 
model. 

Figure A1. Introducing AI in the basic building block of the smart devices’ FSM (finite state
machine) model.

Appendix C

Input–Output (I/O) Data Visualization

I/O data visualization is both tabular and in various plots. As mentioned in Section 5.2, one of the
most popular web-based environments for interactive multi-language programming and computing is
Jupyter Notebook. It was used for the creation and presentation of the various documents required
and produced in the Keras implementation flow. Figure A2 shows the reading of the training and test
datasets (as detailed in Appendix A), as well as how the normalization is done.

The right-side plot is a result of the pairplot function in seaborn that displays information on
data distribution.
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Figure A2. Training and test data—distribution of the engine-bench measurements shown in
Jupyter Notebook.

One of the most indicative plots was the Pe predictions vs. test values plot that showed the
good performance of the implemented algorithms (like in the I/O representations for Sections 5.1
and 5.4—Figures A3 and A4).
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Figure A3. Performance of the AI cloud model suggested by MATLAB and Pe predictions vs. test
values plot (to the right the predicted Pe values are plotted together with the values of the test data set,
an intuitive illustration of the GPR algorithm’s performance).

Figure A4 illustrates the good overlay of the predicted outputs on the test outputs and the almost
1 R-Squared (the “coefficient of determination”).
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Appendix D

A common verification tool for all the ANN calculations presented in this paper was built in
National Instruments LabVIEW as a dedicated virtual instrument (VI).

As shown in the diagram of Figure A5, the preliminary calculus provides the normalized_input
= (input − mean)/standard_deviation. A transposition is then followed by the first padding
(“bordering”), with a simple 1 element of the normalized_inputs column vector to enable its matrix
multiplication with the above-mentioned already padded “layer1Weights” array (read from the
Weights1_Bias1.csv file). Similar matrix computations are performed at the second layer and at the
output. Each of the ReLU activations at the first and second hidden layers is implemented with
a For Loop that individually checks all corresponding neurons outputs and, if negative, replaces
them with 0 as elements in an array subset enclosed in a case structure. Finally, after reading the
reference Pe parameters (as .csv files containing results of the statistic computation performed not on
testing but on the training data, as emphasized before), the denormalized_output = output_mean +

normalized_output ∗ output_standard_deviation is calculated.
As mentioned in Section 7.1, an advantage of this VI is its scalability to changes in the dimensions

of the two hidden layers. To implement this feature, the required number of activation iterations is
directly obtained by measuring the dimensions of the coefficients (weights and bias) fed to the virtual
instrument ( VI) test.
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Appendix E

Signal Conditioning

The signal conditioning add-on system was built for direct scaling (resistive voltage
divider, with the R”/(R′ + R”) factor) and precise shifting (with a regulated voltage
reference—e.g., 1.65 V = 3.3 V/2—connected to an Operational Amplifier adder) that benefits from an
original solution with common signal ground and power-ground.

The advantage of this solution is the absence of a scaling voltage or current transformer,
thus avoiding serious bandwidth limitations but, nevertheless, preserving a large range for the
allowed sensors and transducers outputs.
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