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Abstract: The transient proper orthogonal decomposition (TPOD) method is applied for order
reduction in the rotor-bearing system with the coupling faults in this paper. A 24 degrees of freedom
(DOFs) rotor model supported by a pair of sliding bearings with both crack and rub-impact faults
is established by the discrete modeling method. The complexity of dynamic behaviors of the rotor
system with the coupling faults is discussed via the comparison of the rotor system with the single
fault (crack or rub-impact). The proper orthogonal mode (POM) energy method is proposed to
confirm the DOF number of the reduced model. The TPOD method is used in the coupling faults
system to obtain the optimal order reduction model based on the POM energy. The efficiency of the
order reduction method is verified by comparing the bifurcation behaviors between the original and
the reduced system. The TPOD method provides the optimal order reduction model to study the
non-linear dynamic characteristics of the complex rotor system with the coupling faults.

Keywords: TPOD method; POM; Rotor; order reduction; dynamics; faults

1. Introduction

The influence of the faults in the rotating machines on the associated dynamic behavior has
been a focus of attention for many researchers. The presence of the faults may lead to a dangerous
and catastrophic effect on the dynamic behavior of rotating structures and cause serious damage
to the rotating machineries. In general, the faults in the rotor system contain the crack fault [1–5],
the rub-impact of rotor-to-stator fault [6–9], the pedestal looseness fault [10–13], the ball bearing
fault [14,15], the misalignment fault, etc. [16–19]. On the basis of the common faults in the rotor
systems, the coupling faults (the looseness and rub-impact, the crack and rub-impact, etc.) usually
occur in the actual rotor systems. The amplitude varies when the cracked rotor is operating, which will
lead to the rub-impact with other units of the rotating machine. However, if the rub-impact fault
occurs, the crack of shaft or impeller may occur on account of the harsh operating conditions and the
strong influence. Few researchers studied the rotor systems with the coupling faults, since they are
more complex than the systems with only single fault [20]. The dynamical characteristics of the rotor
systems with the complex coupling faults should be further explored.
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The rotor systems with faults are high-dimensional and non-linear [21], they are difficult to study
the qualitative characteristics and the calculations are extremely expensive. The situations will be more
complicated if the rotor has compound faults like a crack and anisotropic supports [22]. Consequently,
the identification of mass unbalance [23], which is critical for the safe operation of the machine, can be
a great challenge. The low-dimensional models should be provided to represent the high-dimensional
ones. The common order reduction methods include the center manifold method [24–26], the inertial
manifold method [27–29], the Galerkin method [30–32], the Lyapunov-Schmidt (L-S) method [33,34],
the POD method [35–40], and other order reduction methods [41–43], were summarized by Rega and
Lu in their applied studies of non-linear dynamics, mechanical systems [44,45]. Verdugo [26] used
center manifold theory to analyze a model of gene transcription and protein synthesis, which consists
of an ordinary differential equation coupled to a delay differential equation. The concept of an inertial
manifold for non-linear evolutionary equations, in particular for ordinary and partial differential
equations was introduced in Ref. [28]. Marion proposed [31] a new method of integrating evolution
differential equations—the non-linear Galerkin method. The existence and multiplicity of spatially
nonhomogeneous steady-state solutions were obtained by means of Lyapunov-Schmidt reduction [33].
Ref. [40] introduced tensorial calculus techniques in the framework of POD to reduce the computational
complexity of the reduced non-linear terms.

The POD method is an effective and powerful method for data analysis aimed at obtaining
low-order modes of the original system. On the basis of the order reduction accuracy, the POD method
can not only reduce the DOFs of a system greatly but also improve the computational efficiency [46].
Many researchers applied the POD method in the rotor systems to study the non-linear dynamical
characteristics. Lu et al. [47] proposed the TPOD method based on the inertial manifold method and
applied it in the 23-DOFs rotor system, the efficiency of the order reduction method was verified via
the comparison of the bifurcation diagram and the relative error. The POD method was applied in the
rotor-bearing system to discuss the singularity and the prime vibration of the reduced system [48].
Lu et al. [49] applied the TPOD method to reduce a 7-DOFs rotor system supported by a pair of ball
bearings with pedestal looseness to a 2-DOFs rotor system. The topological structure comparison
of bifurcation verified the efficiency of the order reduction method, and the stability analysis of the
reduced model was studied. The TPOD method was also applied in the rotor-bearing systems with
looseness at one end and both ends, respectively. The POM energy method was used to confirm the
dimension of the reduced systems, the energy also gave expression to the physical significance of the
TPOD method [50]. The TPOD method was applied to reduce the 6-DOFs rotor system model with
cubically non-linear stiffness to a 1-DOF system, and the bifurcation behaviors of universal unfolding
were discussed [51]. The efficiency of the TPOD method was further verified in comparison to the
structure order reduction method based on the reduced rotor system models with the same DOF [52].

The aim of this paper is to apply the TPOD method in the rotor-bearing model for order reduction
to study the dynamical characteristics of the rotor model with the coupling faults. A 24-DOFs rotor
model with both crack and rub-impacted faults is established by the Newton’s second law, it is
compared with the cracked and the rub-impact rotor model to reflect the complexity of the coupling
fault. The POM energy method is used to confirm the dimension of the reduced model. The efficiency
of the TPOD method is presented by comparing with the bifurcation diagrams.

2. Basic Theory of the TPOD Method and the Rotor Model with Coupling Faults

2.1. Basic Theory of the TPOD Method

In general, the multiple-DOFs system can be written as Equation (1) via the equivalent transformation:

..
Z = −C

.
Z−KZ + F (1)

where C is the equivalent damping matrix.K is the equivalent stiffness matrix.F is the equivalent
force vector.
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The construction processes are listed as follows:

(1) Provide the initial conditions, proceed numerical simulation and obtain displacement information
from the transient process of various DOFs, which is denoted by z1(t), z2(t), . . . zM(t). M is the
number of DOFs in the system, recording transient time interval displacement sequence of all
DOFs zi = (zi(t1), zi(t2), . . . zi(tN))

T, i = 1, . . . , M. The number of time interval is N and the
interval is equal to each other, the time series form the matrix X = [z1, z2, . . . , zM], the order of X
is N ×M. When calculating the self-correlation matrix T = XTX, the order of matrix is M ×M.
The eigenvector of the matrix can therefore be denoted by ϕ1,ϕ2, . . . ,ϕM, and the corresponding
eigenvalues are λ1 > λ2 > . . . > λM.

(2) U is the matrix formed by the first n orders of T = XTX and it can also indicate that the matrix U
contains the first n largest eigenvalues of T. The order of U is M× n, so we know that the order of
UTU is n× n. Taking the coordinates transformation on system coordinates Z, acquiring the new
coordinates P, Z = UP, substituting Z into Equation (1), gaining the Equation (2):

U
..
P = −CU

.
P−KUP + F (2)

Due to the column vector of U is orthogonal and nonzero, and the matrix UTU is n order diagonal
and full rank, hence there exits inverse matrix of UTU. For the Equation (2), taking (UTU)

−1UT left
multiplication on both sides, we can obtain (3):

..
P = −(UTU)

−1
UTCU

.
P− (UTU)

−1
UTKUP + (UTU)

−1
UTF (3)

Setting CR = −(UTU)
−1UTCU, KR = (UTU)

−1UTKU, FR = (UTU)
−1UTF, then we receive the

Formula (4):
..
P = −CR

.
P−KRP + FR (4)

In this way, the original system is transformed into the n-DOFs reduced system by the
TPOD method.

2.2. The Rotor Model with Coupling Faults

The high-pressure rotor system supported by a pair of sliding bearings with both crack and
rub-impact faults is modeled as a 24-DOFs system by the Newton’s second law, as shown in Figure 1.

Figure 1. Rotor model with coupling faults (crack and rub-impact).

Here we assume that the axial and torsional vibrations of the system and the gyroscopic moment
are neglectful. Oi(i = 1 . . . 12) are the geometric centers of the discs. mi(i = 1 . . . 12) are the equivalent
lumped masses. ci(i = 1 . . . 12) are the equivalent damping coefficients at the position of the lumped
masses. ki(i = 1 . . . 11) are the equivalent stiffness of the corresponding discs. Assume that the crack
occurs on the shaft between the first and second disc. The rotor model is supported by a pair of
liquid-film bearings on both ends.

The schematic diagram of the cracked section is shown in Figure 2a. α is the depth of crack, β is
the intersection angle between the unbalance and the crack normal vector. Law of open and close
describes the effects of crack intersection angle to the shaft stiffness. There are three classic models that
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characterizing the time-varying property of a crack when the rotor is operating: the cosine model [53],
square wave model and hybrid one [54].

Figure 2. Schematic diagram of the cracked section and rubbing model. (a) The cracked model. (b) The
rub-impact model.

In Figure 2a, the initial intersection angle of the cracked normal vector and x-axis is 0. We consider
the case of gravity dominance, the open and close function of crack f (ϕ) can be expressed as the
function of rotating angle ωt. k is the cracked stiffness of rotating shaft, ∆kξ and ∆kη are the stiffness
variations of cracked normal and tangential vectors. The stiffness of rotating shaft with crack is
expressed as:[

kx kxy

kyx ky

]
=

[
k 0
0 k

]
− f (ϕ)

 ∆kξ cos2(ωt) + ∆kη sin2(ωt)
(
∆kξ − ∆kη

)
sin(ωt) cos(ωt)(

∆kξ − ∆kη
)

sin(ωt) cos(ωt) ∆kξ sin2(ωt) + ∆kη cos2(ωt)

 (5)

The expression of f (ϕ) is shown in Formula (6), this model can select the square wave and cosine
model based on the depth of the crack respectively.

f (ϕ) =
{ 1

2 + 2
π cos(ϕ) − 2

3π cos(3ϕ) + 2
5π (5ϕ) − . . . a/R ≤ 0.5

(1 + cosϕ)/2 a/R > 0.5
(6)

The rub-impact model is shown in Figure 2b, it is combined with linear contact force and Coulomb
friction [55], the formula is expressed as:

[
Px

Py

]
=


0 r ≤ r0

kb
(
1− r0

r

)[ x− µ0y
µ0x + y

]
r > r0

(7)

where r is radial displacement, r0 is clearance between rotor and stator, kb is rub-impact stiffness, µ0 is
frictional coefficient, Px and Py represent the rub-impact forces along x and y directions.

The dynamical equation is shown in Formula (8) and the dimensionless process is expressed
as follows:
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m1
..
X1 + c1

.
X1 + k1(X1 −X2) − f (ϕ)

(
∆kξ cos2(ωt) + ∆kη sin2(ωt)

)
(X1 −X2)

− f (ϕ)
(
∆kξ − ∆kη

)
sin(ωt) cos(ωt)(Y1 −Y2) = Fx

(
X1, Y1,

.
X1,

.
Y1

)
+ m1E1ω

2 cos(ωt + β1)

m1
..
Y1 + c1

.
Y1 + k1(Y1 −Y2) − f (ϕ)

(
∆kξ − ∆kη

)
sin(ωt) cos(ωt)(X1 −X2)

− f (ϕ)
(
∆kξ sin2(ωt) + ∆kη cos2(ωt)

)
(Y1 −Y2) = Fy

(
X1, Y1,

.
X1,

.
Y1

)
+ m1E1ω

2 sin(ωt + β1) −m1g

m2
..
X2 + c2

.
x2 + k1(X2 −X1) + k2(X2 −X3) − f (ϕ)

(
∆kξ cos2(ωt) + ∆kη sin2(ωt)

)
(X2 −X1)

− f (ϕ)
(
∆kξ − ∆kη

)
sin(ωt) cos(ωt)(Y2 −Y1) = m2E2ω2 cos(ωt + β2)

m2
..
Y2 + c2

.
Y2 + k1(Y2 −Y1) + k2(Y2 −Y3) − f (ϕ)

(
∆kξ − ∆kη

)
sin(ωt) cos(ωt)(X2 −X1)

− f (ϕ)
(
∆kξ sin2(ωt) + ∆kη cos2(ωt)

)
(Y2 −Y1) = m2E2ω2 sin(ωt + β2) −m2g

m3
..
X3 + c3

.
X3 + k2(X3 −X2) + k3(X3 −X4) = m3E3ω2 cos(ωt + β3)

m3
..
Y3 + c3

.
Y3 + k2(Y3 −Y2) + k3(Y3 −Y4) = m3E3ω2 sin(ωt + β3) −m3g

...
m6

..
X6 + c6

.
X6 + k5(X6 −X5) + k6(X6 −X7) = m6E6ω2 cos(ωt + β6)

m6
..
Y6 + c6

.
Y6 + k5(Y6 −Y5) + k6(Y6 −Y7) = m6E6ω2 sin(ωt + β3) −m6g

m7
..
X7 + c7

.
X7 + k6(X7 −X6) + k7(X7 −X8) = m7E7ω2 cos(ωt + β7) + Px

m7
..
Y7 + c7

.
Y7 + k6(Y7 −Y6) + k7(Y7 −Y8) = m7E7ω2 sin(ωt + β7) −m7g + Py

m8
..
X8 + c8

.
X8 + k7(X8 −X7) + k8(X8 −X9) = m8E8ω2 cos(ωt + β8)

m8
..
Y8 + c8

.
Y8 + k7(Y8 −Y7) + k8(Y8 −Y9) = m8E8ω2 sin(ωt + β8) −m8g

...
m11

..
X11 + c11

.
X11 + k10(X11 −X10) + k11(X11 −X12) = m11E11ω

2 cos(ωt + β11)

m11
..
Y11 + c11

.
Y11 + k10(Y11 −Y10) + k11(Y11 −Y12) = m11E11ω

2 sin(ωt + β11) −m11g
m12

..
X12 + c12

.
X12 + k11(X12 −X11) = Fx

(
x12, y12,

.
x12,

.
y12

)
+ m12E12ω

2 cos(ωt + β12)

m12
..
Y12 + c12

.
Y12 + k11(Y12 −Y11) = Fy

(
x12, y12,

.
x12,

.
y12

)
+ m12E12ω

2 sin(ωt + β12) −m12g

(8)

τ = ωt, xi =
Xi
c

, yi =
Yi
c

,
.
xi =

dxi
dτ

,
.
yi =

dyi

dτ
,

..
xi =

d
.
xi

dτ
,

..
yi =

d
.
yi

dτ
, M1 =

m1cω2

sP
, M12 =

m12cω2

sP

Xi(i = 1, . . . 12) and Yi(i = 1, . . . 12) represent the vibration displacement of x and y directions.
The dimensionless equation is expressed as Formula (9). fx and fy are the model of dimensionless

non-linear oil-film force, fx = Fx
sP , fy =

Fy
sP . G(x, y,α) = 2

(1−x2−y2)1/2 [
π
2 + arctan y cosα−x sinα

(1−x2−y2)1/2 ] and

V(x, y,α) = 2+(y cosα−x sinα)G(x,y,α)
1−x2−y2 are the S(x, y,α) = x cosα+y sinα

1−(x cosα+y sinα)2 , α directional components of

bearing non-linear oil-film force. c is the bearing clearance, s =
µωRL

P

(
R
c

)2( L
2R

)2
is the Sommerfeld

number. µ is the lubricating oil viscosity, L is the bearing length, R is the radius of the bearing, ω is
the external excitation, P is the loading, and τ is the dimensionless time. The detailed values of the
corresponding parameters of the rotor system are shown as in the Appendix A. The non-linear oil-film
force [56] along x and y directions can be found in Appendix B. We also provide the formulas of the
corresponding parameters in Appendix B.
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..
x1 +

c1
m1ω

.
x1 +

k1
m1ω2 (x1 − x2) −

f (ϕ)(∆kξ cos2(τ)+∆kη sin2(τ))
m1ω2 (x1 − x2)

−
f (ϕ)(∆kξ−∆kη) sin(τ) cos(τ)

m1ω2 (y1 − y2) =
1

M1
fx
(
x1, y1,

.
x1,

.
y1

)
+ E1

c cos(τ+ β1)

..
y1 +

c1
m1ω

.
y1 +

k1
m1ω2 (y1 − y2) −

f (ϕ)(∆kξ−∆kη) sin(τ) cos(τ)
m1ω2 (x1 − x2)

−
f (ϕ)(∆kξ sin2(τ)+∆kη cos2(τ))

m1ω2 (y1 − y2) =
1

M1
fy
(
x1, y1,

.
x1,

.
y1

)
+ E1

c sin(τ+ β1) −
g
ω2c

..
x2 +

c2
m2ω

.
x2 +

k1
m2ω2 (x2 − x1) +

k2
m2ω2 (x2 − x3) −

f (ϕ)(∆kξ cos2(τ)+∆kη sin2(τ))
m2ω2 (x2 − x1)

−
f (ϕ)(∆kξ−∆kη) sin(τ) cos(τ)

m2ω2 (y2 − y1) =
E2
c cos(τ+ β2)

..
y2 +

c2
m2ω

.
y2 +

k1
m2ω2 (y2 − y1) +

k2
m2ω2 (y2 − y3) −

f (ϕ)(∆kξ−∆kη) sin(τ) cos(τ)
m2ω2 (x2 − x1)

−
f (ϕ)(∆kξ sin2(τ)+∆kη cos2(τ))

m2ω2 (y2 − y1) =
E2
c sin(τ+ β2) −

g
ω2c

...
..
x7 +

c7
m7ω

.
x7 +

k6
m7ω2 (x7 − x6) +

k7
m7ω2 (x7 − x8) =

E7
c cos(τ+ β7) + px

..
y7 +

c7
m7ω

.
y7 +

k6
m7ω2 (y7 − y6) +

k7
m7ω2 (y7 − y8) =

E7
c sin(τ+ β7) −

g
ω2c + py

...

...
..
x11 +

c11
m11ω

.
x11 +

k10
m11ω2 (x11 − x10) +

k11
m11ω2 (x11 − x12) =

E11
c cos(τ+ β11)

..
y11 +

c11
m11ω

.
y11 +

k10
m11ω2 (y11 − y10) +

k11
m11ω2 (y11 − y12) =

E11
c sin(τ+ β11) −

g
ω2c

..
x12 +

c12
m12ω

.
x12 +

k11
m12ω2 (x12 − x11) =

1
M12

fx
(
x12, y12,

.
x12,

.
y12

)
+ E12

c cos(τ+ β12)
..
y12 +

c12
m12ω

.
y12 +

k11
m12ω2 (y12 − y11) =

1
M12

fy
(
x12, y12,

.
x12,

.
y12

)
+ E12

c sin(τ+ β12) −
g
ω2c

(9)

Equation (9) is the dimensionless form of Equation (8). The dimensionless Equation (9) can
be written as Equation (10), in which z = (x1, y1, · · · , x12, y12)

T, the expression of c, k, f are shown
as above:

..
z = −c

.
z− kz + f (10)

To facilitate the theory analysis, we implement the Taylor series expansion of the oil-film force,
thus α can be rewritten as:

α = arctan
y + 2

.
x

x− 2
.
y
−
π
2


(
y + 2

.
x
)(

x− 2
.
y
)∣∣∣y + 2

.
x
∣∣∣∣∣∣x− 2

.
y
∣∣∣
− π2

 y + 2
.
x∣∣∣y + 2
.
x
∣∣∣
 (11)

For the convenience of calculation, Equation (10) is written as Equation (12) briefly:

..
Z = −C

.
Z−KZ + F (12)

In Equation (12), C is the damping matrix, K is the stiffness matrix, F is the force vector,
which includes oil-film and external excitation etc. Z = [z1 z2 . . . z24]

T corresponds to [x1 y1 . . . x12 y12]
T

in Equation (10).

3. Discussion of the Dynamical Characteristics and Effects of Systematic Parameters

In this section, we will study the non-linear dynamical characteristics of the rotor with the coupling
faults by comparing the coupling faults with the single fault (crack or rub-impact). Then we will
discuss the effects of the systematic parameters to the coupling fault. Here we define the initial values
as zi = 0(i = 1, 2, . . . , 24),

.
z5 = 0.8,

.
z6 = 0.5,

.
zi = 0.001(i = 1, 2, . . . , 24, i , 5, 6), and the integral step is

π/256.
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3.1. Discussion of the Dynamical Characteristics

Figure 3 shows the four amplitude–frequency curves of the rotor systems with different faults:
the original system without faults; the cracked fault; the rub-impact fault and the coupling fault.
1/2 sub-harmonic vibration occurs in the cracked and coupling system at the frequency of 2ωc, ωc is the
natural frequency. The amplitude of the coupling system is apparently higher than the system with
only crack fault, which indicates that the rub-impact will increase the response amplitude of the crack.
The amplitude of the system with rub-impact bumps up at the frequency of 1000 rad/s(nearby 3ωc),
this result illustrates rub-impact will aggravate the complex motion of the system.

Figure 3. Comparison of amplitude–frequency curves.

Figure 4 shows the bifurcation diagrams of the rotor systems with different faults: (a) the oil-film
fault; (b) the crack fault; (c) the rub-impact fault; (d) the coupling fault. It is clear that the bifurcation
behaviors vary with different rotor faults. The obvious period-doubling bifurcation occurs at the second
order natural frequency of the cracked fault system. The period-doubling bifurcation also occurs in
the coupling fault system, but the amplitude is much larger. When the rotating speed is 1000 rad/s
(nearby 3ωc), the amplitude of the rub-impact fault system suddenly increases, which indicates that
the rub-impact fault can give rise to the complex motion of the system.
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Figure 4. Bifurcation diagrams.

When ω = 350 rad/s (nearby the primary resonance), the time history curves of the four systems
are drawn clearly in Figure 5. The curves contain both the transient and steady-state processes.
The transient process of the oil-filmed system (Figure 5a) vanishes in about two periods, the other three
systems (Figure 5b–d) need three periods. This indicates that the stability of the system with faults
can’t be kept in comparison to the normal system. Meanwhile, in Figure 5d, the steady-state signal of
the coupling fault is not standard sinusoidal, which has a visible difference in the other three systems.
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Figure 5. Time history curves of x1 when ω = 350 rad/s. (a) The oil-filmed system. (b) The cracked
system. (c) The rub-impacted system. (d) The coupled system.

In Figure 6, it shows the trajectories of the orbit of shaft center of the four systems. The motion
curves in (a) and (c) are all elliptical. The major axis and minor axis of ellipse of the oil-filmed system
is longer than the rub-impact system. The trajectories of the orbit of shaft center of cracked (b) and
coupling (d) faults are the closed curves similar to ellipse, but the bottom is a little narrow. The crack
fault is the main reason to change the ellipse of trajectories of the orbit of shaft center as closed curves
similar to the ellipse near the primary resonance.

We use the comparison of the phase portraits (Figure 7) to verify the results in Figure 6 based on
the same initial values and rotating speed. In Figure 7a,c, it is easy to discover that the phase portraits
are both the closed curves similar to circle, and the diameter of the oil-filmed system is larger. In the
other two figures (Figure 7a,c), the curves are both irregularly closed.
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Figure 6. Trajectories of the orbit of shaft center of o1 when ω = 350 rad/s. (a) The oil-filmed system.
(b) The cracked system. (c) The rub-impacted system. (d) The coupled system.

Figure 7. The phase portraits of o1 when ω = 350 rad/s. (a) The oil-filmed system. (b) The cracked
system. (c) The rub-impacted system. (d) The coupled system.
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Remark 1. The crack and coupling faults have greater effect to the motion state near the primary resonance.
Moreover, the rub-impact fault has more obvious effect to the vibration amplitude at the frequency of primary
resonance. The variations of the dynamical characteristics in Figures 5–7 can provide theory guidance to the
fault diagnosis of the non-linear rotor-bearing system.

Similar to the discussions before, we study the time histories, trajectories of the orbit of shaft
center, phase portraits of the four different systems at the frequency of 1/2 sub-harmonic vibration
(730 rad/s) in Figures 8–10. In Figure 8, the time histories contain the transient process and the stable
motion state, the four systems vary from transient to stable state after 15π, so the three different faults
have little effect to the dynamical characteristics of the systems near the frequency 2ωc. The signal is
similar to sinusoidal after the oil-filmed (Figure 8a) and cracked system (Figure 8c) leads to periodic
motion. The signals of the other two systems (Figure 8b,d) are more complex relative to oil-filmed and
cracked systems.

Figure 8. Time history curves of x1 when ω = 730 rad/s. (a) The oil-filmed system. (b) The cracked
system. (c) The rub-impacted system. (d) The coupled system.
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Figure 9. Trajectories of the orbit of shaft center of o1 when ω = 730 rad/s. (a) The oil-filmed system.
(b) The cracked system. (c) The rub-impacted system. (d) The coupled system.

Figure 9 analyzes the trajectories of the orbit of shaft center of the four different system when
ω = 730 rad/s. The motion curves of the oil-filmed and rub-impact systems (Figure 9a,c) are similar to
ellipse. In comparison to Figure 9a,c, double-loop curves are embodied in the cracked and coupling
systems. There is one intersection in the cracked system and two intersections in the coupling system,
this result indicates that the crack fault is a key factor in the appearance of double-loop curves at 2ωc.
The rub-impact fault may affect the topological structures of the double-loop curves.

As is clearly seen in Figure 10a,c, the phase portraits of the oil-filmed and rub-impact systems are
the curves similar to ellipse. The curves in Figure 10b,d are both double-loop, the two loops are closer
in the cracked system relative to the coupling system. This result also verifies that the crack fault can
lead to double-loop curves, the rub-impact fault affects the topological structures of phase portraits.
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Figure 10. The phase portraits of o1 when ω = 730 rad/s. (a) The oil-filmed system. (b) The cracked
system. (c) The rub-impacted system. (d) The coupled system.

Remark 2. In Figures 8–10, the crack fault affects more to the rotor system at the frequency of 2ωc. The signal of
cracked fault system is more complex, the double-loop curves occur in both trajectories of the orbit of shaft center
and phase portraits, the period-doubling bifurcation occurs in Figure 4b. The rub-impact fault will not affect the
natural structures of the cracked characteristics. Hence, the dynamical characteristics near the frequency of 2ωc

can be regarded as the important judgments to verify the crack fault of the rotor-bearing system.

In Figure 11, the four figures (Figure 11a–d) show the time histories of the rotor-bearing models
at the frequency of 3ωc. There exists a certain difference between the four faults of the rotor system.
The difference of the time history can provide theory guidance to the fault detection of the rotor system.



Appl. Sci. 2020, 10, 7415 14 of 26

Figure 11. Time history curves of x1 when ω = 1020 rad/s. (a) The oil-filmed system. (b) The cracked
system. (c) The rub-impacted system. (d) The coupled system.

As is shown in Figure 12, it shows the orbit of shaft center diagrams of the oil-film, crack,
rub-impact, coupling fault when ω = 1020 rad/s (the third order natural frequency). Based on the
constraint of the displacement of rub-impact fault, the orbit of shaft center is easier than the other three
curves. However, the displacement is the largest, which indicates that the rub-impact fault arouses
the larger motion near the third order frequency. The orbit of shaft center of the crack fault is more
complex than that of the oil-film fault. The complexity of the orbit of shaft center of the coupling fault
is situated between the oil-film fault and crack fault.
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Figure 12. Trajectories of the orbit of shaft center of o1 when ω = 1020 rad/s. (a) The oil-filmed system.
(b) The cracked system. (c) The rub-impacted system. (d) The coupled system.

Figure 13 shows phase diagrams of oil-film, crack, rub-impact and the coupling systems at the
frequency of ω = 1020 rad/s. Oil-film rotor causes complex motion at this time. The phase diagram of
the rub-impact fault is annular narrow band, it is a quasi-periodic attractor. The sort of the four fault
cases can be given based on the complexity of the attractor: crack, coupling, oil-film and rub-impact.

Remark 3. By comparing the results in Figures 11–13, we can obtain the conclusions as follows: the crack fault
can arouse the 1/2 sub-harmonic vibration, the violent vibration at the frequency of 3ωc can be aroused by the
rub-impact fault. At the frequency of primary resonance, the rub-impact and coupling fault may give rise to the
reducing of the first order critical speed, while the crack and coupling fault may cause the structural variation of
trajectories of the orbit of shaft center and phase portraits. The crack can restrain the vibration amplitude at the
frequency of 3ωc in the coupling system, the crack also arouses the trajectories of the orbit of shaft center and
attractor more complex.

Remark 4. The shaft stiffness varies with the open and close of crack periodically when the crack fault occurs,
which may make the trajectories of the orbit of shaft center and attractor structure more complex. When the full
annular rub occurs, the vibration amplitude is restrained. Meanwhile, the frictional force and restriction will
reduce the complexity of the attractor.
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Figure 13. The phase portraits of o1 when ω = 1020 rad/s. (a) The oil-filmed system. (b) The cracked
system. (c) The rub-impacted system. (d) The coupled system.

3.2. The Effects of Systematic Parameters

We will discuss the effects of systematic parameters of the rotor system to the dynamical characteristics
of the coupling fault. The systematic parameters include cracked depth, clearance between rotor and stator,
stator stiffness, eccentricity. The bifurcation and amplitude–frequency behaviors will be provided as the
values of the systematic parameters vary.

3.2.1. The Cracked Depth

The effect of the cracked depth variation on dynamical characteristics of the coupling fault
is investigated in this section. As is shown in Figure 14a,b, they reflect the bifurcation diagrams
of the coupling fault systems with the cracked depth a = 0.6R and a = R. Figure 15 shows the
comparison of frequency-amplitude curves of two cracked depths. As the cracked depth decreases,
the stiffness variation decreases correspondingly, so the first order critical speed of the coupling fault
rotor slightly increases. The period-doubling bifurcation vanishes at the frequency of 2ωc, the 1/2
sub-harmonic vibration amplitude of the relevant amplitude–frequency characteristic decreases at the
same time (Figure 15). Since the crack fault characteristic does not play the main role and even vanishes,
the rub-impact fault emerges, the vibration amplitude suddenly increases at the frequency of 3ωc.
This change demonstrates the crack is the main factor to generate 1/2 sub-harmonic vibration in the
coupling system again, there will be more effect with the increase of the cracked depth. The rub-impact
fault will result in the amplitude of the coupling fault peaking at the frequency of 3ωc, there is reversible
inhibition of the crack to the amplitude aroused by the rub-impact. The restrain will be stronger as
the cracked depth increases. When ω ∈ (1100, 1200), the cracked depth will have little impact to the
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amplitude based on the comparison of the amplitude–frequency curves (Figure 15). In comparison to
the bifurcation diagrams (Figure 14), the complex motion state of the system changes.

Figure 14. Bifurcation diagrams for coupled fault system. (a) a = 0.6R. (b) a = R.

Figure 15. Comparison of the amplitude–frequency curves.

3.2.2. Clearance between Rotor and Stator

This section discusses the effects of clearance between rotor and stator to the coupling fault.
Similarly, Figures 16 and 17 present the bifurcation and amplitude–frequency when the clearance is
0.12 and 0.18, respectively. When the clearance varies, the clearance has little impact on the vibration
amplitude and critical speed of the coupling system. Near the frequency of 2ωc, the amplitude of
1/2 sub-harmonic resonance decreases as the clearance decreases, the amplitudes of the systems with
different clearance are similar when ω ∈ [2ωc, 3ωc]. The amplitude will have a sharp increase as the
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clearance decreases at the frequency of 3ωc, the rub-impact fault characteristic enhanced obviously,
which once verifies that the sudden increase of the 3ωc amplitude of the coupling fault system is
primarily caused by the rub-impact fault. At the high frequency (over 1100 rad/s), the amplitude
increases a little when the clearance decreases. The topological structures of the bifurcation diagram
will be more complex in comparison to Figure 16b.

Figure 16. Bifurcation diagrams for coupled fault system. (a) r = 0.12. (b) r = 0.18.

Figure 17. Comparison of the amplitude–frequency curves.

3.2.3. Stator Stiffness

The effects of the stator stiffness variation to the bifurcation behaviors and amplitude–frequency are
studied in this section. We select two different parameter values to discuss the comparison of bifurcation
(Figure 18) and amplitude–frequency (Figure 19) of the coupling fault system: the first is 500 N/m,
the second is 1000 N/m. In Figure 19, we can see clearly that the variation of the stator stiffness has
little impact on the primary frequency, vibration amplitude and critical speed. 1/2 sub-harmonic
resonance amplitude increases as the stiffness decreases. At the frequency of 3ωc, the amplitude
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changes obviously when the stiffness decreases. The complex motion region is simpler when the
stiffness is 500 N/m.

Figure 18. Bifurcation diagrams for coupled fault system. (a) k = 500. (b) k = 1000.

Figure 19. Comparison of the amplitude–frequency curves.

3.2.4. Eccentricity

Finally, we study the effects of the eccentricity variation to the coupling fault system. Figures 20
and 21 present the comparison of bifurcation and amplitude–frequency of two different eccentricities
(0.00015 mm and 0.00012 mm). As is shown in Figure 21, the amplitude increases when the eccentricity
magnifies at the frequency of primary resonance. 1/2 sub-harmonic resonance is more obvious near the
frequency of 2ωc, it is clear that the annulus of the period-doubling bifurcation is larger. When the
frequency is over 2ωc, the amplitude decreases as the eccentricity increases, this result indicates that
increasing the eccentricity appropriately can improve the stability of the system under a certain speed.
However, in the high frequency region, the bifurcation behaviors will be more complex when the
eccentricity increases, in other words, the non-linear dynamic characteristics will be more complex.
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As is discussed above, the eccentricity of the system has more impact to dynamical characteristic of the
amplitude–frequency and bifurcation at the frequencies of primary resonance, 2ωc, 3ωc, high frequency.
The eccentricity may affect the visualizations of different faults at each frequency range.

Figure 20. Bifurcation diagrams for coupled fault system. (a) b = 0.00015. (b) b = 0.00012.

Figure 21. Comparison of the amplitude–frequency curves.

Remark 5. The systematic parameters play a key role in the rotor models, the variations of the parameters will
affect the dynamical characteristics of the rotor-bearing system. We make a preliminary study on the effects
of cracked depth, clearance between rotor and stator, stator stiffness, eccentricity to the bifurcation diagrams
and amplitude–frequency curves. This research is only a beginning to discuss the variations of the dynamical
characteristics with the systematic parameters. We can also use the frequency-spectrum analysis to describe the
effects of the variations of the parameters.
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4. The Optimal Reduced Model Based on the POM Energy

The first few order POMs pertaining to the rotating speed of the rotor will be discussed to confirm
the dimension of the reduced model in this section.

In Figure 22, it shows the first three order POM energy curve of the 24-DOFs rotor model with the
coupling fault. It is clear that the three order POMs occupy 98.7% energy when the rotating speed is
about 1120 rad/s, so we can obtain the optimal order reduction model at this speed based on the POM
energy method. The POM energy method has been applied in Ref. [50], then we use the TPOD method
in Section 2.1 to reduce the 24-DOFs rotor model to a 3-DOFs one.

Figure 22. The POM (proper orthogonal mode) energy of the 24-DOFs (degrees of freedom) model
with coupling fault.

The dynamical equation of the order reduction model can be expressed as:

..
P = −C3

.
P−K3P + F3 (13)

Remark 6. The POM can provide the physical significance of the TPOD method. The POM energy can reveal
the amount of occupation of the dynamical characteristics of the reduced model relative to the original one.
The POM energy method is applied to confirm the dimension of the order reduction model. Then we use the
TPOD method to get the optimal reduced model at the corresponding rotating speed.

5. The Efficiency of the Order Reduction Method

In this section, we will discuss the efficiency of the order reduction method via the bifurcation
analysis of the original and the reduced system.

On the basis of the POM energy curve (Figure 22), we can obtain the 3-DOFs reduced model when
the rotating speed is 1120 rad/s. As is shown in Figure 23, we can see clearly that the reduced system
(Figure 23b) preserves the period-doubling bifurcation, the rotating speed of complex motion and the
topological structure of the original one (Figure 23a). The comparison of the bifurcation diagrams
verifies the efficiency of the TPOD method, we can also use other dynamical behaviors (phase portraits,
amplitude–frequency curve, etc.) to discuss the efficiency [49,50], we don’t state one by one here.
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Figure 23. Bifurcation diagrams. (a) The original system. (b) The reduced system.

Remar 7. The reduced order reduction model obtained by the TPOD method preserves the dynamical
characteristics of the original one well. The TPOD method is proposed by the present authors, it is applied in the
rotor models supported by the sliding bearings or ball bearings with looseness. The efficiency of the order reduction
method applied in the rotor system with coupling fault further generalizes this method. The Runge-Kutta method
is used to calculate the dynamic response, and we can obtain the results in Figures 3–23. It is promising to
adapt this method to the uncertainty quantification of faulted rotor systems with parametric variabilities [57–60].
Fortran Language is used to solve the dynamic equation.

6. Conclusions and Outlooks

The non-linear dynamic characteristics of the rotor system with the coupling faults have been
discussed in this paper. A 24-DOFs rotor system supported by a pair of sliding bearings with both crack
and rub-impact faults has been established by the Newton’s second law. The coupling faults have been
studied via comparing the single fault (crack or rub-impact). The effects of the systematic parameters
(cracked depth, clearance between rotor and stator, stator stiffness, eccentricity) to the coupling faults
have also been presented by comparing with the bifurcation and amplitude–frequency characteristics.
The POM energy method has been used to confirm the DOF number of the reduced system. The TPOD
has been applied to reduce the original system to a 3-DOFs one, the efficiency of the optimal order
reduction model has been verified via the comparison of the bifurcation diagrams. The POM energy is
a direct method to obtain the optimal reduced system of high-dimensional non-linear dynamic system.
The dynamic characteristics analysis of the rotor system with coupling faults and the applications of
the TPOD method can provide qualitative guidance to the common faults in rotor system and prior
information of fault diagnosis.

Further studies on this subject are being carried out by the present authors in the three aspects:
the first is to study the dynamical characteristics of the ball bearing rotor model with the coupling
faults; the second is to study the coupling faults of the rotor system with uncertainties based on the
polynomial dimensional decomposition and other methods.
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Nomenclature

C equivalent damping matrix
K equivalent stiffness matrix
F equivalent force vector
M number of DOFs
Oi(i = 1 . . . 12) geometric centers of the discs
mi(i = 1 . . . 12) equivalent lumped masses
ci(i = 1 . . . 12) equivalent damping coefficients
ki(i = 1 . . . 11) equivalent stiffness
ω rotating speed
α depth of crack
β intersection angle between unbalance and crack normal vector
k stiffness of cracked rotating shaft
∆kξ,∆kη stiffness variations of cracked normal and tangential vectors
r radial displacement
r0 clearance between rotor and stator
kb rub-impact stiffness
µ0 frictional coefficient
Px, Py rub-impact forces along x and y directions
Xi, Yi(i = 1, . . . 12) vibration displacement of x and y directions
fx, fy dimensionless non-linear oil-film force
c bearing clearance
s Sommerfeld number
µ lubricating oil viscosity
L bearing length
R radius of the bearing
P loading
τ dimensionless time

Appendix A

m1 = m12 = 50 kg, m2 = m11 = 47 kg, m3 = m10 = 44 kg, m4 = m9 = 41 kg, m5 = m8 = 38 kg, m6 = m7 = 35 kg, R = 60 mm,
c1 = c12 = 1800 N · s/m, c2 = c11 = 1700 N · s/m, c3 = c10 = 1600 N · s/m, c = 0.11 mm, c4 = c9 = 1500 N · s/m,

c5 = c8 = 1400 N · s/m, c6 = c7 = 1300 N · s/m, ki = 2.5× 108 N/m(i = 1, · · · , 11), L = 30 mm, β3 = π
2 , E3 = 0.18 mm,

µ = 0.018 pa · s, Ei = 0(i = 1, · · · , 12, i , 3),µ0 = 0.15, βi = 0(i = 1, · · · , 12, i , 3), kb = 1× 103 N/m, r = 0.18 mm

Appendix B

{
fx
fy

}
= −

[(x−2
.
y)2

+(y+2
.
x)2

]
1/2

1−x2−y2 ×

{
3xV(x, y,α) − sinαG(x, y,α) − 2 cosαS(x, y,α)
3yV(x, y,α) + cosαG(x, y,α) − 2 sinαS(x, y,α)

}
α = arctan

(
y+2

.
x

x−2
.
y

)
−
π
2 sign

(
y+2

.
x

x−2
.
y

)
−
π
2 sign(y + 2

.
x)

G(x, y,α) = 2
(1−x2−y2)1/2 [

π
2 + arctan y cosα−x sinα

(1−x2−y2)1/2 ]

V(x, y,α) = 2+(y cosα−x sinα)G(x,y,α)
1−x2−y2 , S(x, y,α) = x cosα+y sinα

1−(x cosα+y sinα)2
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