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Abstract: Animportantissue in the existing inverse finite element method (iFEM) is that reconstruction
accuracy cannot satisfy the analytical demand for the flexible structure. To address this issue,
this paper presents a multi-nodes iFEM that reconstructs the displacement of structure based on
surface measurement strains in real time. Meanwhile, in light of the response characteristics of
iFEM, an innovative interpolation method is adapted to regenerate the full field deformation again.
The proposed method substantially expands the size of inverse elements, which reduces the numbers
of sensors and improves the reconstruction accuracy. The effectiveness of the method to predict
displacement is verified by a flexible antenna panel subjected typical boundary conditions.
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1. Introduction

Today, with the rapid development of integrated antenna of radar technology,
morphing-wing-embedded antenna arrays have an extensive application, such as military and
civilian aerospace [1]. However, these structures are subjected to complex loads, such as wind and
atmospheric pressure, which will produce various types of deformation leading to decrease the pointing
accuracy of array antenna dramatically [2]. Therefore, real-time measurement of the deformation of
antenna unit, which provides feedback to actuation and control systems of structure, is significant for
human and environment safety [3,4].

The method on dynamically monitoring the deformation of structure, known as shape sensing,
and the process of precisely approximating the integrated displacements based on strain measurement
belongs to strictly the inverse problem [5]. To settle the inverse problem, Tikhonov et al. proposed
a method included a regularization term to enhance the smoothness degree for approximating
solution [6], and the technique was extensively employed for the inverse procedure. During the
past few decades, the utilization of shape sensing algorithms for practical engineering has been
demonstrated extensively. However, these approaches are mainly classified into the inverse finite
element method (iFEM), modal method, and Ko’s displacement method. Haugse and Foss proposed a
modal method derived from the idea of polynomial basis function or spline function interpolation [7],
which establishes the relationship between strain and deformation mode coordinates explicitly.
Reference [8] use the modal method to reconstruct the displacement field of the beam structure
precisely. However, the reconstruction accuracy is strictly limited on the number of sensors, which are
at least higher than the mode orders extracted from structure. Thus, the method inevitably needs a
high fidelity physical model, which is hard to do outside the laboratory environment. Then, Ko et al.
develop a strategy, referred to as Ko’s displacement method [9], which is based on the Euler-Bernoulli
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beam theory, and are extensively applicable to structural reconstruction such as beams, wing-boxes, and
plates. The technique included the displacement superposition principle, which builds the quantitative
relation about strain and element degrees of freedom definitely, resulting in the true shape sensing of
slender structures. References [10,11] employ the numerical and experimental means to examine its
feasibility. Although the method has a sufficiently accurate reconstruction of a slender structure, it is
not suitable for the regeneration of three-dimensional structures. Hence, a well-suited shape-sensing
algorithm, in addition to satisfying high accuracy, fast calculation, and strong robustness, also needs
to consider the complexity of structural boundary conditions and geometric topology. Due to the
deficiencies of the modal and the KO method, they are not suited for broad use in the field of structural
health monitoring (SHM). Tessler and Spangler proposed an innovative methodology [12], named the
inverse finite element method (iFEM), embodying the aforementioned characteristics required for a
powerful SHM algorithm. The technology is based on the minimization of weighted-least-squares
functional, which generally is applicable to complex structures subjected to complicated boundary
conditions at any time [13]. The framework is sufficiently precise, powerful, and fast for applications
in an engineering structure loaded statically and dynamically. Furthermore, the strain—displacement
relationship was merely considered in the formulation, and materials of structure can be strictly
ignored [14]. Benefiting from the potentiality of iFEM, the complex structure can be equivalent
to simple models topologically, such as beam, plate, or shell. Moreover, based on the kinematic
assumption of the Timoshenko beam theory, an inverse frame finite element is developed by Cerracchio
and Gherlone [15]. References [16-19] have some analyses of three-dimensional frame structures under
static or damped harmonic excitations based on strains produced numerically and experimentally.
Based on the kinematic assumptions of the first-order shear deformation theory (FSDT), Tessler et al.
developed three-node inverse shell element shorted form iMIN3 [20], which profiles the complex
plate and shell structures accurately. Kefal et al. formulated a four-node quadrilateral inverse-shell
element [21], which takes the influence of hierarchical drilling rotation into account, avoiding the
occurrence of the singular value well. However, due to the heterogeneous and anisotropy of composite
and sandwich structures, iFEM based on FSDT may result in slightly insufficient estimates for shape
sense. Then, based on Zigzag displacement deformation theory, Cerracchio et al. and Kefal et al.
improved the iFEM, which is suitable for sensing complex structures [22,23].

As mentioned above, the iFEM has prominent advantages, such as robustness, efficiency,
and real-time response. However, the method needs numbers of inverse elements for shape sensing of
flexible structures, leading to increasing the quantities of installing sensor. Therefore, the method is
not directly suitable for a sophisticated antenna structure. This paper establishes a novel interpolation
method to regenerate the structural deformation field based on data from the multi-node inverse
finite element method. The technology optimally compromises the number of sensors and the inverse
element and simultaneously retains the reconstruction accuracy.

The outline of the paper can be summarized as follows. First, the deformation field theory for plate
is presented, and the multi-node iFEM formula is derived based on first-order shear deformation theory
(FSDT). Second, taking the five-node quadrilateral inverse finite element as numerical implementation
to result in the structure deformation. After that, the displacement field of the practical antenna
panel is generated by the proposed method by experimental and numerical analysis approaches,
respectively. According to some response dates from iFEM, the utilization of the innovative fitting
technology restructured the full deformation field of board very well. The results from numerical and
experimental analysis verify the correctness of the method proposed. Finally, the conclusions about
the superiorities of the refined restructure methodology are emphasized.

2. Inverse Finite Element Formulation

Consider a plate with thickness of 2t as the analytical model, and the structure can be described
by the general Cartesian coordinate system, as shown in Figure 1.
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Figure 1. Plate model notion.

According to the Mindlin plate theory, the three-directional displacements relevant to arbitrary
points can be expressed [13].

ux(x,y,z) = u(x,y) +20y(x,y) (1)
uy(x,y,2) = v(x,y) +20x(x,y) 2)
uz(x,y,2) = w(x,y) ®)

where, iy, uy are the plane displacements and u; is the transverse displacement across the thickness
orientation; 6y, 0y are rotations around the x- and y-axes, respectively; and z is the distance from the
selected points to mid-plane of the structure.

The linear strain components are expressed by appropriate derivatives of the displacements.

T T
E=le,ee3}’ = {ux,x/ Oy,yr Uxy + Z7y,x}
T
B = {ey4, e5, eé}T = {Qx,y/ Qy,x/ Oxx + Gy,y} 4)
T
G = {ey, ES}T = {wz,x + Qy/ W,y + Qx}

where, E, B, G indicates membrane, bending curvatures, and transverse-shear strain measures, respectively.
According to the strain relation between any point and three main directions from material
mechanics, the strain at any point of structure can be expressed.

e(xi,y;,0) = éx cos? 0 + €y sin? 0 — Yxy sin 0 cos 0 (5)

Based on the functional theory, the Euclidean distance relationship between the measured strain
and the theoretical strain can be expressed.

n
d(u) = ;1 wi(lle (xi, yi, )= (xi, i, O)I° + e (xi, 24, 0:) e (x;, 23, 0;)I ®)

+lle (yi, 21, 0;) € (yi, 71, 6)I17)

The £° is the measured strain from sensor, ¢ is the theoretical strains associated with location,
which is pasted angle along axis (x, y, z), respectively, and n denotes the numbers of sensors, w; is the
weighting constants controlling the completeness between the analytic strains and their experimentally
measured values.

Based on interpolation method, the deformation of points in the element can be expressed linearly
by the shape function of element and the deformation of nodes. The result of any points in element
can be expressed as follows:

{u,v,w} = ZNiuf, (i=1,2,...m) (7)
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where, N; indicates the interpolation shape function of element, m is the numbers of element nodes,
and u{ is the degree of freedom of element node expressed by nodal vector.

T .
uf:[ui vi wi Oy 0Oy 9zi]/1:(1/2/---m) ®)

Introducing Equations (4) and (5) and into Equation (6), and taking the minimum value of it about
node degrees of freedom, gives rise to the function of shape sensing simultaneously.

Ku® = f¢ 9

where, k° is the element matrix related to only the location layout of strain sensors and the f¢ vector is a
function of the number of strain sensors in the element as well as the measured angle values. These can
be explicitly written, respectively, as

n
Ko=) (B +z-B) 'ml (E+2-B) + 7] (G Gdxdy (10)
i=1

n
o= wiZ (E¢+z- Be)Tml.T-ef (11)
i=1
where, E¢, B¢, G° can be listed by Appendix A, m; is the angle cosine vector, and r is usually assigned a
minimum value [13].
When the element matrix equations are established, the global deformation field can be performed
explicitly according to the transformation relationship from the local to global coordinates.

KU=TF (12)

As K includes the rigid body motion mode of the discretized structure, therefore, it is a singular
matrix. By combining problem-specific displacement boundary conditions, the resulting system of
equations can be reduced from Equation (12)

Kgulz - Fﬂ (13)

where, K, is a 6m X 6m square matrix and invertible [13,24], F, is a 6m X 1 matrix, and U, is a
6m X 1 vector. The solution of Equation (12) is very efficient, because the matrix K, remains unchanged
for a determined configuration of sensors in the process of constant deformation. Moreover, F; needs
to be updated during any deformation cycle in real time. Finally, the unknown vector U, reflects the
structural state as well at any time.

According to general space interpolation methods, all the methods satisfy the estimation formula [25]

m

u(x,y) = Z wi(x, y)u; (14)

i=1

where u(x, y) is the response value at the interpolated point in the structure, w; indicates weighting
function associated to the i-th sample point corresponding to the value u;, and m represents the
numbers of sampling points.

However, the inverse elements divided are evidently bigger than that fem, and the full field
deformation obtained by Equation (12) has a distinct difference. The approximation approach is not
suited for larger inverse elements. Based on the idea of constructing shape function shown [26], one can
adapt a refined interpolation function that the nodes may be in the element rather than only in the
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boundary. The method employs the properties of shape function to improve the precision for a specific
problem. The shape function can be described in the discrete vector

N; = [N,'(xl,yl),Ni(xz,yg), ...... ,Ni(xn,yn)] (15)

where N; is i — th node shape function, (x,,y,) is the coordinate in the element, n indicates the
number of selected positions, and the arbitrarily point of the structure is expressed according to the
interpolation definition

u(x,y) = Nyug + Noup + ... + Nju; (16)

The interpolation methods satisfy the four properties on shape function, and the geometric
characteristics of the structure are described in some sense, overcoming the deficiency of little
physical significances.

3. Numerical and Experimental Examples

The deformation of the antenna reflector is the main factor that affects pointing accuracy In order
to examine the accuracy of iFEM for reconstructing the deformation of the antenna plate, an analysis
between numerical and experiment on the skin antenna plate was presented.

A rectangular plate has a length of 0.560 m, a height of 0.202 m, and a uniform thickness of 3.2 mm.
The plate has an elastic modulus of 1.0 GPa and a Poisson’s ratio of 0.3 and is meshed 675 quadrilateral
elements in analysis software; however, the structure was divided only two inverse quadrilateral
elements (shown Figure 2). In Figure 2, the numbers in red indicate the element nodes, and the square
letters in black denote the sampling points, respectively.

(A 0] g cl

Figure 2. Inverse finite elements model of structure.

First, the deformation of sampling points can be obtained by iFEM. Second, based on these
results, the whole deformation field can be reconstructed by the interpolation method proposed above.
The deformations with two different boundary constraints are analyzed—namely, the left side of the
structure—and both ends are fixed respectively.

With the condition of complete constraints at line connected node 1 and 2, the concentrated force
of 10N is applied positive at nodes 5 and negative 10N at nodes 8 in the z direction concurrently.
The nodes” deformations calculated by iFEM together with FEM are shown in Table 1.
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Table 1. Results of nodes deformation.

Z Directional Deformation (mm)

Node
FEM iFEM Error
3 11.3 11.1 0.2
4 11.3 11.0 0.3
5 5.4 5.60 0.2
6 50.1 48.1 2.1
7 50.1 50.0 0.1
8 29.3 26.6 2.8

Based on the values of nodes 3-8 by iFEM, one can obtain the sample points A-H by the
general interpolation method. Moreover, acting the nodes A-H together with 5 and 8 as sampling
points, one can regenerate the full-field deformation with the proposed interpolation framework.
The deformation of the whole structure from FEM and iFEM are presented in Figure 3.
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Figure 3. Deformation of the plate structure.

Figure 3 shows the deformed shapes of the plate obtained by different approaches shown from
three different colors lines. The x-axis indicates the points of structure-expressed finite numbers,
and y-axis is the deformation. According to the various interpolation means, iFEM(a) reflects the
deformation trend of the whole structure according to the Equation (13), and iFEM(b) does that by
Equation (15), respectively.

In order to quantitatively analyze the validity of the proposed method, the evaluation indexes
mean error of nodes (ME) and root mean square (RMS) are introduced.

1 .
ME = EZM(X?EM = YEM)| (17)
; 2
;1:1 (XIFEM _ Y;FEM)
RMS = p (18)

where, Xf EM indicates the value provided by the finite element method, YfF EM ig the value from the
inverse finite element method, m and # are the number of nodes and sample points, respectively.

Considering the values from FEM as references, Table 1 lists the results from iFEM. The maximum
deformation of the node along the z direction is 50.2 mm, and the maximum percentage difference is
8. The reconstruction ME is 1.87 mm, and the RMS of the reconstruction accuracy is 2.57 mm from
iFEM(a). However, based on the proposed method, the RMS value of the deformation reconstruction
accuracy is 1.0 mm.
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With case two, lines connected nodes 1 and 2, and at the same time, 6 and 7 are fixed completely,
so the concentrated force of 10N at node 5 and 10N at nodes 8 are applied in the positive z direction.
In comparison, the deformation values of nodes are listed in Table 2. Based on these dates, the profile
of structure can be reconstructed again by iFEM(b), as shown in Figure 4.

Table 2. Results of the nodes deformation.

Z Directional Deformation (mm)

Node
Fem iFEM Error
3 2.27 2.01 0.26
4 2.49 2.11 0.38
5 1.31 1.10 0.15
8 1.83 1.35 0.48
30 —s=— FEM
| —e— iFEM(a)
25| —— FEM(b)
—~20F
£
£
§ st
©
E
.§ 10 |
05
0.0|||||I|I|I|||I|I|I|I|I|I|I|I|I

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
nodes number

Figure 4. Deformation of the plate structure.

Table 2 displays the results from two approaches. The maximum deflection of the nodes is 2.5
mm, and the maximum deviation is 0.1 mm. The reconstruction ME is 0.3 mm, and the RMS of
reconstruction accuracy is 0.3 mm. However, adopting the refined method, the RMS value of the
deformation reconstruction accuracy decreases 0.1 mm.

Figures 3 and 4 depict the total deformed shapes of the plate employing different interpolation
technologies iFEM(a) and iFEM(b) separately. For a view of profiles approaching FEM, the improved
approximating skill raises the reconstruction accuracy dramatically.

In this section, one part of the antenna plate is considered. For the purpose of demonstrating the
effectiveness put forward above, the panel has a length of 0.560 m, a height of 0.200 m, and a uniform
thickness of 3.2 mm. For the aim of according with the simulated condition, 11 holes were arranged on
the board, which was connected to fixed base by way of a bolt and screw. Meanwhile, the magnitude
of the load is controlled by adjusting the nut up and down. The fixed device is shown (Figure 5a).
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Figure 5. The measurement system; (a) fixed device; (b) Fiber Bragg Grating (FBG) demodulator;

(c) Northern Digital Incorporation (NDI); (d) marker; (e) Measurement process.

According to the location sensors configuration from the simulation model, the fiber grating
sensors are pasted at the corresponding positions of the experimental board one by one, and the markers
with functions of photosensitization are pasted on the surface of the plate (Figure 5d). The variation
of three-dimensional coordinates can be tracked by a 3D measurement system supplied by NDI
(Waterloo, Ontario, Canada) (Figure 5c), and the surface strain date of structure can be read by the
Fiber Bragg Grating (FBG) demodulator (Figure 5b).

Under the constraint conditions of the cantilever for the test article, the structure subjected to
concentrated force is applied in the positive z direction. The inverse element is produced simplistically
by these markers defined as element nodes at the edge. The markers number is the same as in Figure 2.
The markers’ initial and final position coordinates can be captured by NDI in real time, and the
difference of the two sets of coordinates is the deformation of markers. Based on the measured strains
and markers’ variation, the results from the iFEM analysis and the NDI measurements are shown as
Table 3, and the outline of the whole structure can be viewed in Figure 6.

Table 3. The results of markers deformation.

Z Directional Deformation (mm)

Marker
NDI iFEM Error
3 6.71 6.00 0.71
4 6.92 6.16 0.76
5 2.70 1.85 0.85
6 19.6 16.9 2.70
7 19.7 17.0 2.70
8 12.5 11.6 0.90
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Figure 6. The deformation of the plate structure.

Table 3 lists the results generated from NDI measurements and iFEM, regarding the former as the
benchmark. The maximum deformation of the structure in the Z direction is 19.7 mm. The reconstruction
ME is 1.6 mm, and the RMS of reconstruction accuracy is 1.5 mm. Furthermore, on the basis of the

proposed interpolation technology, the RMS value is 0.9 mm, and the reconstruction accuracy increased

to 0.6 mm.

For the case of fixing two edges of structure, the results of markers’ deformation are shown Table 4.

In addition, the displacement of the full field can be achieved, as shown in Figure 7.

Table 4. The results of the markers deformation.

Z Directional Deformation (mm)

Marker
NDI iFEM Error
3 5.22 4.98 0.24
4 4.86 4.10 0.76
5 1.58 1.06 0.52
6 1.43 1.00 0.43
55 -
—a— FEM
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a0l
a5 |

30
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6 8
markers number

Figure 7. Deformation of plate structure.

The results from Table 4 state that the maximum deformation is 5.2 mm. The value of ME is 1.31
mm, and the RMS is 1.33 mm; otherwise, the RMS calculated by the proposed method is 0.80 mm.
Figures 6 and 7 depict the deflection curve of integrated panel in different ways, considering the
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NDI as an actual value, the curve smoothed by the improved interpolation method is preferable to
approximate the real profile.

4. Discussion

Through the analysis of the estimated factors, the values significantly decrease in different degrees
based on the proposed method. Meanwhile, the tendency of approaching the practicing deformation
also verifies the effectiveness proposed method. Furthermore, the methodology is suitable for practical
engineering applications.

5. Conclusions

A multi-node iFEM is presented for the shape sensing of a flexible structure with strain sensors
installed at discrete locations. The method is based on the minimization of a weighted-least-squares
functional that accounts for the complete set of strain measures consistent with Mindlin plate
theory. Otherwise, based on the results from iFEM, adapting the refined interpolation technique to
reconstruct the full field deformation again. The approach can have an accurate approximation for
big inverse finite elements. Moreover, the method has the advantages of simultaneously achieving
extrapolation and interpolation calculation for elements. Then, several case studies were performed
and demonstrated the computational efficiency and high accuracy with respect to different forms of
the loading structural responses.

The results demonstrated that sufficiently accurate reconstruction can be achieved for the problems
considered herein based on a small number of sensors.
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Appendix A
The matrix E¢, B¢, G° in Equations (9) and (10) can be defined as

[Nix 0 0 0 0
EE=| 0 Ny 00 0
Niy Nix 0 0 0|
000 0 N
BP=|{0 00 Ny 0
000 Ny N
00 Nijy 00
E ix
- , —1,2
G ooz\lwoo(Z 2,3...m)

References

1. Kim, S.W.; Kim, E.H.; Rim, M.S,; Shrestha, P; Lee, I.; Kwon, I.B. Structural Performance Tests of Down Scaled
Composite Wind Turbine Blade using Embedded Fiber Bragg Grating Sensors. Int. ]. Aeronaut. Space Sci.
2011, 12, 346-353. [CrossRef]

2. Arnold, EJ.; Yan, ].B.; Hale, R.D.; Rodriguez-Morales, F.; Gogineni, P. Identifying and Compensating for
Phase Center Errors in Wing-mounted Phased Arrays for Ice Sheet Sounding. IEEE Trans. Antennas Propag.
2014, 62, 3416-3421. [CrossRef]


http://dx.doi.org/10.5139/IJASS.2011.12.4.346
http://dx.doi.org/10.1109/TAP.2014.2314455

Appl. Sci. 2020, 10, 7620 110f12

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

Akl, W.; Poh, S.; Baz, A. Wireless and distributed sensing of the shape of morphing structures. Sens. Actuators
A Phys. 2007, 140, 94-102. [CrossRef]

Hopkins, M.A; Truss, ].M.; Lockyer, A.J.; Alt, K.; Kinslow, R.; Kudva, ].N. Smart skin conformal load bearing
antenna and other smart structures developments. In Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC,
Structures, Structural Dynamics and Materials Conference, Kissimmee, FL, USA, 7-10 April 1997.
Maniatty, A.; Zabaras, N.; Stelson, K. Finite Element Analysis of Some Inverse Elasticity Problems. J. Eng. Mech.
1989, 115, 1303-1317. [CrossRef]

Maniatty, A.M.; Zabaras, N.J. Investigation of regularization parameters and error estimating in inverse
elasticity problems. Int. |. Numer. Methods Eng. 1994, 37, 1039-1052. [CrossRef]

Foss, G.C.; Haugse, E.D. Using Modal Test Results to Develop Strain to Displacement Transformations.
In Proceedings of the SPIE—The International Society for Optical Engineering, Philadelphia, PA, USA,
24-25 October 1995; Volume 2460, p. 112.

Bogert, P.B.; Haugse, E.D.; Gehrki, R.E. Structural shape identification from experimental strains using
a modal transformation technique. In Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures,
Structural Dynamics and Materials Conference, Norfolk, VA, USA, 7-10 April 2003; p. 1626.

Ko, W.L,; Richards, W.L.; Fleischer, V.T. Applications of the Ko Displacement Theory to the Deformed Shape
Predictions of the Doubly-tapered Ikhana Wing; NASA Technical Paper NASA/TP-2009-214652; NASA:
Edwards, CA, USA, 2009.

Ko, W.L.; Fleischer, V.T. Extension of KOStraight-beam Displacement Theory to Deformed Shape Predictions of
Slender Curved Structures; NASA: Edwards, CA, USA, 2011.

Jutte, C.V.; Ko, W.L.; Stephens, C.A.; Bakalyar, J.A.; Richards, W.L. Deformed Shape Calculation of a Full-Scale
Wing Using Fiber Optic Strain Data from a Ground Loads Test; Rept, TP-215975; NASA Langley Research Center:
Hampton, VA, USA, 2011.

Tessler, A.; Spangler, ].L. A Variational Principal for Reconstruction of Elastic Deformation of Shear Deformable
Plates and Shells; NASA TM-2003-192445; NASA: Edwards, CA, USA, 2003.

Tessler, A.; Spangler, J.L. Inverse FEM for full-field reconstruction of elastic deformations in shear deformable
plates and shells. In Proceedings of the 2nd European Workshop on Structural Health Monitoring, Munich,
Germany, 7-9 July 2004.

Tessler, A.; Roy, R.; Esposito, M.; Surace, C.; Gherlone, M. Shape Sensing of Plate and Shell Structures
Undergoing Large Displacements Using the Inverse Finite Element Method. Shock. Vib. 2018,
2018, 1-8. [CrossRef]

Gherlone, M. Beam Inverse Finite Element Formulation; LAQ Report; Politecnico di Torino: Turin, Italy, 2008.
Gherlone, M.; Cerracchio, P.; Mattone, M.; di Sciuva, M.; Tessler, A. Beam shape sensing using inverse Finite
Element Method: Theory and experimental validation. In Proceedings of the 8th International Workshop on
Structural Health Monitoring, Stanford, CA, USA, 13-15 September 2011.

Gherlone, M.; Cerracchio, P.; Mattone, M.; Di Sciuva, M.; Tessler, A. An inverse finite element method
for beam shape sensing: Theoretical framework and experimental validation. Smart Mater. Struct. 2014,
23, 045027. [CrossRef]

Gherlone, M.; Cerracchio, P.; Mattone, M.; Di Sciuva, M.; Tessler, A. Dynamic shape reconstruction of
three-dimensional frame structures using the inverse finite element method. In Proceedings of the 3rd
ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake
Engineering, Island of Corfu, Greece, 26-28 May 2011.

Gherlone, M.; Cerracchio, P.; Mattone, M.; Di Sciuva, M.; Tessler, A. Shape sensing of 3D frame structures
using an inverse Finite Element Method. Int. |. Solids Struct. 2012, 49, 3100-3112. [CrossRef]

Tessler, A.; Hughes, TJ.R. A three-node mindlin plate element with improved transverse shear.
Comput. Methods Appl. Mech. Eng. 2012, 50, 71-101. [CrossRef]

Kefal, A.; Oterkus, E.; Tessler, A.; Spangler, ].L. A quadrilateral inverse-shell element with drilling degrees of
freedom for shape sensing and structural health monitoring. Eng. Sci. Technol. Int. J. 2016,19,1299-1313. [CrossRef]
Cerracchio, P.; Gherlone, M.; di Sciuva, M.; Tessler, A. Shape and stress sensing of multilayered composite
and sandwich structures using an inverse finite element method. In Proceedings of the 5th International
Conference on Computational Methods for Coupled Problems in Science and Engineering, Ibiza, Spain,
17-19 June 2013.


http://dx.doi.org/10.1016/j.sna.2007.06.026
http://dx.doi.org/10.1061/(ASCE)0733-9399(1989)115:6(1303)
http://dx.doi.org/10.1002/nme.1620370610
http://dx.doi.org/10.1155/2018/8076085
http://dx.doi.org/10.1088/0964-1726/23/4/045027
http://dx.doi.org/10.1016/j.ijsolstr.2012.06.009
http://dx.doi.org/10.1016/0045-7825(85)90114-8
http://dx.doi.org/10.1016/j.jestch.2016.03.006

Appl. Sci. 2020, 10, 7620 120f 12

23. Kefal, A;; Tessler, A.; Oterkus, E. An enhanced inverse Finite element method for displacement and stress
monitoring of multilayered composite and sandwich structures. Compos. Struct. 2017,179,514-540. [CrossRef]

24. Barber, J.R. Computational Elasticity: Theory of Elasticity, Finite and Boundary Element Methods; Alpha Science
Int’l Ltd.: Oxford, UK, 2008.

25.  Baitsch, M.; Hartmann, D. Piecewise polynomial shape functions for hp-finite element methods. Comput. Meth.
Appl. Mech. Eng. 2009, 198, 1126-1137. [CrossRef]

26. Shi, J.; Zheng, K,; Tan, Y.; Yang, K.; Zhou, G. Response simulating interpolation methods for expanding
experimental data based on numerical shape functions. Comput. Struct. 2019, 218, 1-8. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1016/j.compstruct.2017.07.078
http://dx.doi.org/10.1016/j.cma.2008.05.016
http://dx.doi.org/10.1016/j.compstruc.2019.04.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Inverse Finite Element Formulation 
	Numerical and Experimental Examples 
	Discussion 
	Conclusions 
	
	References

