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Abstract: This study presents the process employed in prototyping and early evaluation of automotive
perception algorithms. The data generation was performed using an automotive virtual validation
tool. The off-the-shelf simulation framework used was expanded to include phenomenological
sensors model that allowed for a simplified simulation of radars, lidars, and cameras. This paper
extends the description of the methods for the generation of control algorithms. The work presented
also includes a description of relevant data fusion methods for building occupancy grids. Results were
obtained by performing a comparison of algorithm results against ground-truth. This virtual
validation was used to enable early definition and verification of system-level requirements,
narrow down performance assessment methods, and identify performance limitations before data
from real sensors are available.
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1. Introduction

This article deepens the application of virtual validation methods used for occupancy grid
fusion computation that are presented in the previous article [1]. The primary goal behind the use
of virtual validation in the early stages of the project life cycle is the quick identification of system
limitations. Early identification of systems limitations at the concept phase is crucial for reduction
in time and cost of the development. Virtual methods allow us to avoid severe concept reworks at
later stages of the system design. The methodology presented in this article is based on the occupancy
grid principles described by Elfes and Moravec as a tessellation of space into cells, where each cell
contains a probabilistic estimate of its occupancy [2]. The grid format on top of occupancy can convey
information about the particular state of the cells (e.g., movability) [3,4]. General Formula (1) is used to
describe a two-dimensional grid of size NL number of cells in length by NW number of cells in width.{

gij : 1 <= i <= NL, 1 <= j <= NW
}
∈ 〈0, 1〉 (1)

The wide range of applications spans beyond automotives; however, the presented assessment
focuses on scenarios and tools used in the automotive domain. The importance of occupancy grids
in the automotive industry is growing with the growth of complexity in advanced safety systems.
The growing complexity is linked with needs for redundancy in sensor data processing for environment
and obstacle perception. Methods alternative to target tracking are beneficial for the diversification
of potential failure modes in sensor fusion. The process described in the article serves two purposes:
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first, enabling fast prototyping of perception methods in the early stages of a project where real vehicle
data is not yet available, and second, verification of the capability of a virtual validation environment
as a source for data-driven performance evaluation.

Primary novel aspect of the discussed experiments and research is reflected by application
of virtual validation environment to obtain data driven comparison of fusion methods.
Simulation techniques, on the contrary to real world or staged tests allow for rapid tuning,
configuration, parametrization, and execution of the test portfolio [5], as well as rapid reference
data generation. The disadvantages of virtual methodologies however mainly suffer from limited
physical realism of both tests and modeled perception equipment. The scope of this research focuses
on exploring the capabilities of virtual validation methods, and does not seek to determine the absolute
performance of these methods [1].

2. Materials and Methods

The experiment presented in this paper was performed using two test scenarios. Designed scenarios
were chosen to represent highway situations to accurately represent intended-use cases of the
perception system. Both scenarios were executed using the same virtual model (presented in Figure 1)
of a straight section of the highway, bounded by guardrails on both sides, followed by an exit junction,
with an exit sign and impact attenuating barrels. The test scenario models are shown in Figures 2 and 3.
Both scenarios assumed an approximately constant velocity of 126 km/h for the host vehicle along
a straight line in the center lane. Scenario number 1 was executed with an empty road that did not
contain any traffic participants except the host vehicle. Scenario number 2 contained one light and one
heavy commercial vehicle in the right lane (Figure 4) moving with an approximately constant velocity
of 90 km/h. In both scenarios, the host vehicle traveled 350 m over the duration of 10 s.

Figure 5 shows the sensors installed on the virtual validation vehicle that were modeled in the
simulation tool. Sensor information was used for the parametrization of the sensor models. The sensor
models were used to generate the point cloud that was used in further sensor modeling and reference
data generation.

Figure 1. Schematics of the scenario modeled in the environment (H—host vehicle; T1, T2—target
vehicles. Solid line indicates initial and dotted final positions).

Figure 2. Snapshot of the junction in the test environment.



Appl. Sci. 2020, 10, 7629 3 of 16

Figure 3. Snapshot of the junction, exit sign, and impact attenuating barrels.

Figure 4. Snapshot of the scenario, including two commercial vehicles.

Figure 5. Sensor suite on the vehicle model (SRR—Short Range Radar; FLR— Forward Looking Radar;
FLL—Forward Looking Lidar).

2.1. Framework Architecture

The general flow of data in the framework implemented in this study is presented in Figure 6.

Figure 6. The Framework Schematics and Data Flow.
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2.2. Scenario and Point Cloud Generation

First, the traffic scenarios are defined, then modeled in the F1 module. Modeling of scenarios
included definitions of traffic participants types and behaviors, planning of the the host vehicle speed
profile and trajectory, as well as definition of stationary highway infrastructure and buildings. This step
was performed using a commercial automotive simulation tool that incorporates modeling of the
vehicle dynamics, actors behavior, and simplified sensor models.

The simulation results incorporate object information, the detection points representing the
environment (computed on a GPU using ray tracing), host vehicle motion and position, and parameters
describing road curvature. A visualization of data D1 is shown in Figure 7.

Figure 7. Modeled detection from stationary infrastructure (barriers) and dynamic target vehicles
(in bounding boxes).

2.3. Sensor Modeling

The purpose of modeling of the sensors is to obtain a realistic lidar and radar detection points
using D1. The goal is achieved with the F2 component by parametrization of sensor pose on vehicle,
temporal characteristics (detection interval and latency), velocity, position and azimuth accuracy.
Calibration parameters are used to add noise to the scenario data [6]. Calibration parameters are based
on the assessment of sensor performance in controlled conditions (anechoic chamber with reference
target) similar to the method described for Aptiv ESR (Electronically Scanning Radar) [7]).

2.4. Occupancy Grid Framework

The implemented framework accommodates two fusion architectures: centralized or
low/measurement-level and decentralized or grid-level [8]. Data and processes F3 D3.1 and D3.2 are
described in this paragraph.

In the decentralized fusion, domain grid data container represented by D3.1 are used before
fusing the grids. In this approach, intermediate caches of grid data were created for each domain.
Table 1 contains the description of the variants and methods.

In the low-level mode, the reflection points and vehicle state information data D2 are utilized for
computing data D3.2. Data caches were used to queue measurements from sensors and vehicle state.

2.4.1. Inverse Sensor Models

Inverse Sensor Models (ISM), are utilized in the process of the calculation of occupancy probability
from the sensor measurements (lidar or radar reflection point). ISMs were utilized in this research to
update the three sigma regions around the detection point.

This research used ISMs without ray-casting to compute the probability of occupancy in
two-dimensional (2D) surroundings of the detection space. In some cases the “hit point” only approach
was used to update just the single cell containing the detection. This approach is popular mainly in
binary grids.
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Table 1. Tested configurations and their naming.

Variant
Abbreviation

Variant
Full Name

Architecture
Variant

Filtering
Mode Method

LL-B
Low Level

Bayes Low Accumulated Bayes

LL-DS
Low Level

Dempster–Shafer Low Accumulated D-S

HL-B
High Level

Bayes High Instantaneous Bayes

HL-M
High Level

Max High Instantaneous Max

HL-LI
High Level

Logarithmic Independent
Opinion Pool

High Instantaneous LIOP

HL-L
High Level

Logarithmic Opinion
Pool

High Instantaneous LOP

HL-I
High Level

Independent Opinion
Pool

High Instantaneous IOP

HL-De
High Level
DeMorgan High Instantaneous DeMorgan

HL-S
High Level

Sum High Instantaneous Sum

FHL-B
Fused High Level

Bayes High Accumulated Bayes

FHL-LI
Fused High Level

Independent Opinion
Pool

High Accumulated LIOP

FHL-L
Fused High Level

Logarithmic Opinion
Pool

High Accumulated LOP

FHL-I
Fused High Level

Independent Opinion
Pool

High Accumulated IOP

2.4.2. Occupancy Probability Calculation

The concept used in this experimental evaluation assumes that the probability of the existence of
an obstacle is described by a Gaussian distribution. The ISMs presented for this application are required
to operate for a 2D occupancy grid. This imposes a need to use a Bi-variate Normal Distribution
function as the probability density function for the calculation of the occupancy probability of the
affected cells. The second one is imposed by the sensors that supply the detection points (radar or
lidar) with information about the position in 2D with respect to the Sensor Coordinate System (SCS)
xscs and yscs and a covariance matrix Σscs for the detection. The ellipse simplification of a banana
shape distribution is used due to the fact of relatively good azimuth resolution of evaluated sensors
with respect to the detection range. Additionally, the detection contains information, such as existence
probabilities ep.

The general formula used for the Probability Density Function (PDF) (2) requires a covariance
matrix Σogcs which describes variances and covariances with respect to the Occupancy Grid Coordinate
System (OGCS).
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PDF(X; µ, Σogcs) =
1

2π
√
|Σogcs|

exp
[
−1

2
· (X− µ)Σ−1

ogcs(X− µ)T
]

(2)

where X contains a position in xi and yj (3) for the PDF values to be calculated.

X =
[

xi yj

]
(3)

Following µ, which in the general formula is the mean value of the distribution, in this case,
µ determines the position of the detection in OGCS.

µ =
[

xdetogcs ydetogcs

]
(4)

in addition to the co-variance matrix,

Σogcs =

[
σxxogcs σxyogcs

σyxogcs σyyogcs

]
(5)

The sensors report data with respect to SCS. The position of SCS with respect to OGCS is known
due to the fact that the sensor is mounted in a known location on the vehicle chassis and the vehicle
position is tracked with respect to OGCS. The location in the simulation environment can be obtained
directly from a built-in positioning component or in the case of real-world testing using a high fidelity
INS (Inertial Navigation System). Therefore, a rotation matrix R and a translation vector T can be
created to convert the information from SCS to OGCS.

The SCS co-variance matrix Σscs supplied by the senor (6)

Σscs =

[
σ2

xscs σxyscs

σyxscs σ2
yscs

]
(6)

gets rotated (7) to OGCS.
Σogcs = RΣscsR−1 (7)

With all the input information, the computation of the probability for cells of the grid lying within
a three-sigma ellipse (Figure 8) can be carried out by the integration of the PDF for each of the cells (10).
The semi-minor and semi-major axes dimensions can be computed from the Σscs.

Eigenvalues λ1 and λ2 and eigenvectors ~v1 and ~v2 are calculated for the Σscs. Using this
information, we can get the ellipse Equation (8), where s corresponds to the ellipse size.(

x
λ1

)
+

(
y

λ2

)
= s (8)

The value of s can be computed from the desired confidence level for the area we want to update.
To find the orientation of the ellipse, the eigenvector ~vmax corresponding to the maximum

eigenvalue is used (9).

αellipse = atan
(
~vmax(x)
~vmax(y)

)
(9)

The ellipse obtained in these steps is used to select the cells of the grid lying inside of the ellipse
in order to perform an update either by a lookup table with integration results or by numerically
integrating the PDF of selected cell areas. The example of results numerical integration results is shown
in Figure 9.

pij = ep

∫ xi+
1
2 r

xi− 1
2 r

∫ yj+
1
2 r

yj− 1
2 r

PDF(X; µ, Σogcs)dyogcsdxogcs (10)
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Figure 8. Confidence ellipse around the detection with semi-major axis a, semi-minor axis b, and center
coordinates xi, yj of the cell gij.

Figure 9. Computed result of the probability density function integrated on the grid.

2.4.3. Fusing the Probability

The probability fusion methodology can be diversified in three ways:

1. The first diversification comes from the Low and High Level architectures.
2. The second diversification comes from the mathematical method used for the calculation of the

output probability of occupancy. Grid-level fusion, distinguished the updated method from the
fusion method, as it creates a sensor (domain) grid and then fuses them together. This results in
the fact that a different method can be building the domain grid and different one can be fusing
domains. The following section details methods identified in the literature, implemented in the
framework and used for testing [8].

3. The third diversification addresses the use of time filtering in building the input grid or use of
instantaneous (single snapshot of one set of measurements—e.g., a list of radar detections from
one scan) grid. This approach applies only to the High Level approach, where separate grids are
created for sensors or domains. The Low Level grid, by nature, is a time filtered grid.
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A detailed description of the fusion methods used in this study is given below.

• Bayesian Inference Filter (Bayes)

The default approach for filtering in the presented case is the Bayes filter, since the occupancy grid
in most prior work is based on Bayesian probability theory. The Bayesian filter is an extension of
the Bayes estimator applied in cases where the observed values change over time [9]. Originally,
the method finds application in the field of radar tracking to estimate beliefs about the recent
position of targets [10]. The equation’s general form is (11), where p(mt|z1:t, x1:t) is the posterior
probability of occupancy given, z1:t are measurements and x1:t are host poses on the grid.

p(mt|z1:t, x1:t) =
p(zt|mt, x1:t, z1:t−1) · p(mt|z1:t−1, x1:t−1)

p(zt|z1:t−1, x1:t−1)
(11)

However, with respect to future optimized software implementations, a logarithmic approach
presented by Galvez is used where the given probability value p(m) is converted to the log-odds
representation l(m) by means of Equation (12) [8].

l(m) = log
p(m)

1− p(m)
(12)

With the log-odds representation of both l(m1) inverse sensor model output and l(m2) the
occupancy grid, fusion is performed by summing the log-odds values (13).

l(m) = l(m2) + l(m1) (13)

The Bayes filter is then applied to every updated cell in the occupancy grid in the form of a
log-odds ratio, which corresponds to performing a recursive Binary Bayes Filtering using the
probability from the ISM. This approach tends to increase the a prior probability when the values
exceed a 0.5 threshold and performs oppositely for values below that threshold. The issue is a
correct effect from the statistics point of view, but it is causing problems in real applications of
the methods, “dead locking” in the case of one input (grid cell or inverse sensor model output)
reaching 0 or 1. To prevent this situation, a minimum and maximum probability saturation is set
for the complete grid by a tuneable parameter. This parameter is used to offset the minimum and
maximum values from 0 to, for instance, 0.1 and from 1 to 0.9.

• Dempster–Shafer (D-S)

The Dempster–Shafer evidence theory is the second major mathematical apparatus employed in
the task of building the occupancy grid. This method finds application in the area of tracking
paths of moving targets for the estimation of both belief of existence and non-existence of
false targets [10]. The primary advantage of this method over the Bayesian approach is the
capability for explicit handling of the absence of information—e.g., an unknown state. The second
crucial feature is the ability of the method to identify conflicting measurement information [11].
These advantages come with a cost that requires the definition of more than just the occupancy
probability grid. Additional layers are needed to represent probability masses. Two mass matrices
are needed—occupied

m(O) (14)

and empty
m(E). (15)
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The basis for computing of the cell probability is the Dempster–Shafer combination Formula (16).

m12(X) = (m1 ⊕m2)(X) =


(m1∩m2)(X)

1−(m1∩m2)(∅)
f orX 6= ∅

0 f orX = ∅
(16)

where
(m1 ∩m2)(X) = ∑

A,B∈2Θ |A∩B=X

w1m1(A) · w2m2(B) (17)

and the conversion of masses to probability is calculated by

P(A) = ∑
X∈2Θ

m(X)
|A ∩ X|
|X| (18)

The Dempster–Shafer combination formula applied to the occupancy grid gives the
following formulas:

m12(O) =
m1(O)m2(O) + m1(O)m2({O, E}) + m1({O, E})m2{O}

1−m1(E)m2(O)−m1(O)m2(E)
(19)

m12(E) =
m1(E)m2(E) + m1(E)m2({O, E}) + m1({O, E})m2{E}

1−m1(E)m2(O)−m1(O)m2(E)
(20)

The equations provide a final probability value obtained by the following approach:

P(O) = m(O) +
m({O, E})

2
(21)

• Linear Opinion Pool (LOP)

The method identified in the literature [8] allows for the resolution of conflicting sensor
information [12] based on an opinion pooling methodology [13]. An example application of the
family of opinion pooling methods is pooling opinions from individuals for drawing conclusions
(such as expert opinions) [14].

pc = α ∑
i

wi pi (22)

This method assumes the existence of a weight wi that can represent the contribution of certain
sensors [12].

• Independent Opinion Pool (IOP)

A method which is based on the assumption that the sources are considered to be independent is
a modification of the IOP.

pc = a ∏
i

pi (23)

a = (∏
i

pi + ∏
i
(1− pi))

−1 (24)

The presented modification results in a geometric mean representation of the problem [8,15].

α = [∑
i

wi]
−1 (25)

• Logarithmic Independent Opinion Pool (LIOP)
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Another generalization of prior methods is a weighting process on top of probability distributions,
which comes as a result of splitting the process into two steps: first, a weighted average,
and second, a geometric weighted average [8].

pc = α ∏
i

pwi
i (26)

α = [∏
i

pwi
i + ∏

i
(1− pi)

wi ]−1 (27)

• De Morgan’s Law (DeMorgan)

Another approach proposed for fusing grids or measurement results inside grids is proposed
by Galvez and has a tendency to favor higher probabilities [8]. This method has applications in
text searching and it can be applied to simplify Boolean equations to the use of only AND and
NOR gates.

pc = 1−∏
i
(1− pi) (28)

• Maximum Policy (Max)

The simplest of all approaches proposed in the literature [16] assumes a conservative approach
for taking the highest values of each cell [8].

pc = maxi(pi) (29)

An in-depth description of these methods, along with lookup table plots, can be found in the
work of Galvez [8]. In the remaining sections, evaluations taking into consideration qualitative results
are presented.

2.5. Performance Assessment Methods

To compare the quality of discussed fusion methods, reference data D4 are created with the
reference data generation tooling F4. Then it is compared with the analyzed algorithm set results D3.2
using KPI tooling F5. The analysis results are provided in a report D5, with performance indicators for
a given set of input data.

2.5.1. Reference Data Generation

The objective of generating reference data is to obtain an idealistic representation of the test
scenario. Therefore, a relatively high tessellation resolution of 0.05 m compared to 0.2 m in the fused
grid is chosen. Cells in the high resolution reference grid that are physically occupied by stationary
obstacles (barriers, vegetation, curbs, etc.) are flagged. As the analysis focuses on the static grid,
footprints from dynamic objects are removed. In the end, the reference data grid is defined with a
binary state (30). {

rij : 1 <= i <= NLr, 1 <= j <= NWr
}
∈ {0, 1} (30)

The process of performance assessment is explained by a 1D simplification where both the
reference and the computed grids, which normally consist of rectangular cells, are represented by line
segments with given values. In Figure 10, a 1D simplification of a process of ground-truth (reference)
grid creation based on the perfect sensor is presented. The assumption for the reference data is that,
anywhere on the reference grid where there was a registered detection (from the reference sensor)
above the road surface level, the binary occupancy state of that cell is set to true. This process is
performed for the complete length of the tested scenario to accumulate the information using reference
positioning information of the perfect sensor.
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Figure 10. Drawing of the 1D simplification of the reference data generation and comparison
with the high resolution reference data along with the resulting event classification for the
performance assessment.

2.5.2. Proposed KPIs

Every resultant (the 1-D simplification is presented in Figure 10) cell is compared to ground-truth.
The results of grid fusion D3.2 are binarized and undergo spatio-temporal alignment against the
reference map D4. The results are classified as: True Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN). The number in a given class is added [17]. Then, the data are used for
analysis with the following KPI methods:

• Probability of detection

This indicator corresponds to the True Positive Rate (TPR) produced by the algorithm, and its
increase means that the analyzed method is better at detecting actual obstacles, and is therefore
expected to be maximized.

TPR =
TP
P

=
TP

TP + FN
(31)

• Precision

The factor representing Positive Predictive Value (PPV) indicates how good the method is at
judging whether the reported occupied areas are actually occupied. This factor is therefore
expected to be maximized for the best performance.

PPV =
TP

TP + FP
(32)

• Probability Of False Alarm

The False Positive Rate (FPR) shows how bad the method is at the estimation of a certain cell as
free when it is occupied in the scope of all those events and actually free cells in the experiment.
For better performance, this factor has to be minimized, since the severity of false positives is
significant in the Advanced Driver Assistance Systems from a functional safety perspective [18].

FPR =
FP
N

=
FP

FP + TN
. (33)
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• False Discovery Rate (FDR)

The FDR describes a ratio of how many cells identified as occupied were falsely classified. In terms
of a better performing method, this factor must be minimized.

FDR =
FP

FP + TP
. (34)

• F1 Score

F1 Score is also known as a measure of accuracy, or a harmonic mean of precision and accuracy.
The higher the value of this factor, the better the performance of the method.

F1 = 2
PPV · TPR

PPV + TPR
=

2TP
TP = TN + FP + FN

. (35)

• Normalized Occupied Map Score (NOMS)

The NOMS method is a variation of the method used for grid performance evaluation proposed
by Colleens et al. [19]. This method relies on non-binary algorithm outputs (a grid composed of
cells with a probability gradient) A and a filtered reference grid B—obtained by subjecting a binary
reference grid to a spatial filtering that generates gradients of probabilities. The maximization of
the score for this method indicates higher performance.

NOMS = 2∑i [log2(Ai Bi+Āi B̄i)]. (36)

The set of chosen indicators purposely does not include the methods relying heavily on true
negatives due to the sparse nature of the grids. These kinds of indicators were identified as having a
bias on the results.

3. Results

Experimental evaluation was performed using the configurations of the methods and the
architectures. The results of this evaluation are presented in Table 1. The presented methods were run
in both of the test scenarios (Scenario 1—without moving obstacles—and Scenario 2—including two
moving targets). Reprocessing was carried out through the complete processing chain and resulted in
the list of performance indicators presented in the bar plots in Figure 11.

Figure 11. Colored bar plots of KPI results per scenario. TPR—True Positive Rate, PPV—Positive
Predicted Value, F1 Score, FPR—False Positive Rate, FDR—False Detection Rate, NOMS—Normalized
Occupancy Map Score.
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Figure 11 presents the results for Scenario 1 and Scenario 2. The relation between a higher
sensitivity of a method (having a higher True Positive Rate and Positive Predicted Value) and its
susceptibility to false classification when subjected to clutter (having higher False Detection Rate and
True Positive Rate) was observed. This is reflected in small differences of the F1 score. This relation
can also be observed in the raw probability of occupancy presented in a form of snapshots in
Figures 12 and 13.

Figure 12. Snapshots of resultant occupancy grid for fusion variants in the first row: LL-B, LL-DS,
HL-B, HL-M, HL-LI, HL-L, HL-I; in the second row: HL-De, HL-S, FHL-B, FHL-LI, FHL-L, FHL-I for
Scenario 1).

Figure 13. Snapshots of resultant occupancy grid for fusion variants in the first row: LL-B, LL-DS,
HL-B, HL-M, HL-LI, HL-L, HL-I; in the second row: HL-De, HL-S, FHL-B, FHL-LI, FHL-L, FHL-I for
Scenario 2).
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Overall, most of the methods have lower performance in Scenario 1 (visible in blue in Figure 11)
compared to Scenario 2 (visible in red in Figure 11). This observation relates to the inability of the
performance assessment method to explicitly handle occlusions and dynamic objects.

Looking at the results presented in the Figure 12, observations on practical aspects of the
methods can be made. An important practical factor for all methods is that the obstacles, such as
impact attenuating barrels, are properly reported by all the tested configurations, so this means that
methods should satisfy simple object avoidance perception needs. In the cases of High Level Bayesian,
Fused High Level Bayesian, Fused High Level Logarithmic Independent Opinion Pool and Fused
High Level Independent Opinion Pool, we can see a tendency in the suppression of false occupancy in
the right emergency lane, which is considered positive for the methods’ performances in applications,
such as emergency trajectory planning. The mentioned methods, however, present much lower
maximum range at which the occupancy from guardrails are accumulated, which can have a negative
effect in case of application—i.e., for map matching.

During the course of the analysis of the probability representation presented in Figure 13,
inconsistency in the occupied areas was identified in the right lane. Further investigation of the
observed behavior led to the conclusion that deficiencies in the sensor simulation process resulted in
false ground detection. Those deficiencies result in a reduction in reliability of the KPIs and create
an opportunity for further development. The second observation related to the influence of sensor
model “spreading” of probability influences the overall performance, depending on the method used
for fusion. This indicates that the performance of given method could be adjusted by fine tuning or
modifying the ISM.

4. Discussion

The research presented in this article investigated the use of an automotive virtual validation
tool-chain for prototyping perception algorithms.

The key takeaways from the presented research indicate that the virtual tool-chain employed in
this experiment allows:

• Early identification, testing, and definition of architectures and system level approaches.
• Quick development of the prototype software.
• Proofing of validation concepts.
• Early identification of architecture limitations.
• Integration and definition of the functional requirements when the hardware is not yet available.
• Extremely high scenario repeatability in comparison to real world testing.
• Generation of high precision reference data that would not be possible to obtain using a reference

lidar mounted on a moving platform.

These features are crucial for complex system providers for the definition of products to better
correspond with the customer’s technical needs.

The employed tool-chain will aid in the generation of dangerous scenarios—e.g., dense traffic,
that would require vast effort and cost to be produced in the real world with controlled conditions.
The tool-chain can also help in the definition of KPIs (Key Performance Indicators) and the validation
of their reliability.

The limitations of this approach are related to its ability to realistically represent the critical
properties of test scenarios and sensors. Those limitations, however, underline that the final validation
and performance assessment of more technically mature products requires the extensive use of
real data.

Virtual validation frameworks will benefit from increasing the realism of sensor models,
which will lead to the more widespread adoption of virtual validation in perception algorithm
development. The reduced ability to represent physical phenomenon in the evaluated simulation
process decreased the reliability of the proposed performance assessment scheme. This was reflected



Appl. Sci. 2020, 10, 7629 15 of 16

in the fact that a set of numerical KPIs has been identified to be not consistent with expert assessment.
Numerical results obtained from the comparison indicate that the higher the sensitivity of the method,
the more prone it is to clutter and noise. A valid testing methodology requires tailoring depending on
the application of the perception module to yield useful results.

The solution used as a module F3 did undergo testing in a real world environment. The results of
the real world tests will be used as the subject of further dissemination, including a comparison of
results between simulated and real environments.
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