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Abstract: In recent decades, many optimization algorithms have been proposed by researchers to
solve optimization problems in various branches of science. Optimization algorithms are designed
based on various phenomena in nature, the laws of physics, the rules of individual and group games,
the behaviors of animals, plants and other living things. Implementation of optimization algorithms
on some objective functions has been successful and in others has led to failure. Improving the
optimization process and adding modification phases to the optimization algorithms can lead to more
acceptable and appropriate solution. In this paper, a new method called Dehghani method (DM)
is introduced to improve optimization algorithms. DM effects on the location of the best member
of the population using information of population location. In fact, DM shows that all members
of a population, even the worst one, can contribute to the development of the population. DM has
been mathematically modeled and its effect has been investigated on several optimization algorithms
including: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm
(GSA), teaching-learning-based optimization (TLBO), and grey wolf optimizer (GWO). In order to
evaluate the ability of the proposed method to improve the performance of optimization algorithms,
the mentioned algorithms have been implemented in both version of original and improved by DM
on a set of twenty-three standard objective functions. The simulation results show that the modified
optimization algorithms with DM provide more acceptable and competitive performance than the
original versions in solving optimization problems.

Keywords: optimization; Dehghani method; modifying; optimization algorithm; population-
based algorithm
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1. Introduction

The purpose of optimization is to determine the best solution among the available solutions for
an optimization problem according to the constraints of problem [1]. Each optimization problem is
designed with three parts: constraints, objective functions, and decision variables [2]. There are many
optimization problems in different sciences that should be optimized using the appropriate method.
Stochastic search-based optimization algorithms have always been of interest to researchers in solving
optimization problems [3]. Optimization algorithms are able to provide a quasi-optimal solution based
on random scan of the search space instead of a full scan. The quasi-optimal solution is not the best
solution, but it is close to the global optimal solution of the problem [1]. In this regard, optimization
algorithms have been applied by scientists in various fields such as energy [4–6], protection [7],
electrical engineering [8–13], topology optimization [14] and energy carriers [15–17] to achieve the
quasi-optimal solution. Table 1 shows the optimization algorithms grouped according to the main
design idea.

Table 1. Optimization algorithms.

Optimization
Algorithms

Swarm-based

General description: Designed based on simulation of the living thing
behavior processes of the plants, and other swarm-based phenomena.

• Particle Swarm Optimization
(PSO) [18], Ant Colony
Optimization (ACO) [19,20],
Spotted Hyena Optimizer
(SHO) [21], Group Optimization
(GO) [22], Artificial Bee Colony
(ABC) [23], Following
Optimization Algorithm
(FOA) [24], Rat Swarm
Optimizer (RSO) [2], Multi
Leader Optimizer (MLO) [1],
Bat-inspired Algorithm (BA) [25],
Emperor Penguin Optimizer
(EPO) [26], Cuckoo Search
(CS) [27], Donkey Theorem
Optimization (DTO) [28],
Teaching-Learning-Based
Optimization (TLBO)
Algorithm [29], Grasshopper
Optimization Algorithm
(GOA) [30], Doctor and Patient
Optimization (DPO) [31], Gray
Wolf Optimizer (GWO) [32]

Ref. [18] The most widely used
algorithm in this group, which is
designed based on modeling the
movement of birds.
Refs. [19,20] It is based on the
modeling the discovery of the
shortest path by ants.
Ref. [29] It has gained wide
acceptance among the
optimization researchers.
This algorithm is a
teaching-learning process inspired
algorithm and is based on the
effect of influence of a teacher on
the output of learners in a class.
Ref. [31] It is designed by
simulating the process of treating
patients by a physician.
The treatment process has three
phases, including vaccination,
drug administration, and surgery.
Ref. [32] It mimics the leadership
hierarchy and hunting mechanism
of grey wolves in nature. Four
types of grey wolves such as
alpha, beta, delta, and omega are
employed for simulating the
leadership hierarchy.

Game-based

General description: Designed based on simulation of different processes
and rules of individual and group games.

• Football Game-Based
Optimization (FGBO) [3], Hide
Objects Game Optimization
(HOGO) [33], Orientation Search
Algorithm (OSA) [34,35], Dice
Game Optimizer (DGO) [36],
Shell Game Optimization
(SGO) [37], Darts Game
Optimizer (DGO) [38]

Ref. [3] It is designed based on
mathematical modeling of football
league rules and behaviors of
football players and clubs.
Ref. [33] It is based on the
simulation of the players
behaviors and their trying to find
a hidden object in the hide object
game.
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Table 1. Cont.

Physics-based

General description: Designed based on the ideation of various laws of
physics.

• Spring Search Algorithm
(SSA) [39,40], Curved Space
Optimization (CSO) [41], Black
Hole (BH) [42], Ray
Optimization (RO) [43]
algorithm, Artificial Chemical
Reaction Optimization
Algorithm (ACROA) [44],
Galaxy-based Search
Algorithm (GbSA) [45], and
Small World Optimization
Algorithm (SWOA) [46]

Refs. [39,40] The simulation of the
Hooke’s law between a number of
weights and springs is used.

Evolutionary-based

General description: They have involved evolution of a population in
order to create new generations of genetically superior individuals [47].

• Biogeography-based
Optimizer (BBO) [48],
Differential Evolution
(DE) [49], Genetic Algorithm
(GA) [50], Evolution Strategy
(ES) [51], and Genetic
Programming (GP) [52].

Ref. [50] It has found wide
acceptance in many disciplines,
with application to environmental
science problems. This algorithm
is an optimization tool that mimics
natural selection and genetics.

Each optimization problem has a definite solution called a global solution. Optimization algorithms
provide a solution based on random search of the search space, which is not necessarily a universal
solution, but because it is close to the optimal solution, it is an acceptable solution. The solution that
is provided by optimization algorithms is called quasi-optimal solution. Therefore, an optimization
algorithm that offers a better quasi-optimal solution than another algorithm is a better optimizer
algorithm. In this regard, many optimization algorithms have been proposed by researchers to solve
optimization problems and achieve to the better quasi-optimal solution.

Although optimization algorithms have been successful in solving many optimization problems,
improving the equations of optimization algorithms and adding modification phases to optimization
algorithms can lead to better quasi-optimal solutions. In fact, the purpose of improving an optimization
algorithm is to increase the ability of that algorithm to more accurately scan the problem search space
and thus provide a more appropriate quasi-optimal solution and closer to the global optimal solution.

In this paper, a new modification method called Dehghani method (DM) is proposed to improve
the performance of optimization algorithms. DM is designed based on the use of the algorithm
population members information. In the proposed DM, the information of each population member
can improve the situation of the new generation. The main idea of DM is to amplify the best population
member of an optimization algorithm using population member information. The proposed method is
fully described in the next section.

The continuation of the present article is organized in such a way that in Section 2, the DM is fully
explained and modeled. Following this, Section 3 explains how to implement the proposed method
on several algorithms. The simulation of the proposed method for solving optimization problems is
presented in Section 4. Finally, conclusions and several suggestions for future studies are presented in
Section 5.

2. Dehghani Method (DM)

In this section, first DM is explained and then its mathematical modeling is presented. DM shows
that all population members of the optimization algorithm, even the worst one, can contribute to the
development of the population of algorithm.
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Each population-based optimization algorithm has a matrix called the population matrix,
which each row of this matrix represents a population member. Each member of the population is
actually a vector which represents the values of the problem variables. Given that each member
of the population is a random vector in the problem search space, it is a suggested solution (SS) to
the problem. After the formation of the population matrix, the values proposed by each population
member for the problem variables are evaluated in the objective function (OF). The population matrix
and values of the objective functions are defined in Equation (1).

SS = X =



SS1 = X1 x1
1 · · · xd

1 · · · xm
1 OF1

...
...

. . .
...

...
...

SSi = Xi x1
i · · · xd

i · · · xm
i OFi

...
...

...
. . .

...
...

SSN = XN x1
N · · · xd

N · · · xm
N OFN


, (1)

where, SS is the suggested solutions matrix, X is the population matrix, SSi is the i’th suggested solution,
Xi is the i’th population member, xd

i is the value of d’th variables of optimization problem suggested
by i’th population member, N is the number of population members or suggested solutions, m is the
number of variables, and OFi is the value of objective function for the i’th suggested solution.

Different values for the objective function are obtained based on the values proposed for the
variables by the population members. The member that offers the best-suggested solution (BSS) to
the optimization problem plays an important role in improving the algorithm population. The row
number of this member in the population matrix is determined using Equation (2).

best =
{

the row number o f X matrix withminOF, f or minimization problems
the row number o f X matrix withmaxOF, f or maximization problems

, (2)

where, best is the row number of the member with BSS. The BSS and it’s OF are specified by
Equations (3) and (4).

Xbest : variables value o f minobjective f unction, (3)

Fbest : value o f minobjective f unction, (4)

where, Xbest is the BSS or best population member and Fbest is the value of OF for BSS.
As mentioned, the best member of the population plays an important role in improving the

population of the algorithm and thus the performance of the optimization algorithm. Optimization
algorithms update the status of its population members according to its own process to achieve a
quasi-optimal solution. Accordingly, with the improvement of the best member of the population,
is expected that the population be updated more effectively and the performance of the algorithm in
solving the optimization problem is improved.

DM is designed with the idea of modifying the best population member with the aim of improving
the performance of an optimization algorithm.

In DM, just as the best member is influential in updating the population members, the population
members even the worst member can influence to modification the best member. The measurement
criterion for suggested solutions is the value of the objective function. However, a suggested solution
that is not the best solution may provide appropriate values for some problem variables. The proposed
DM modifies the best member considering this issue and using the values suggested by other of the
population members. This concept is mathematically simulated in Equations (5) and (6).

XDM = Xi,d
DM =

[
x1

best · · · xd
i · · · xm

best

]
, (5)
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Xnew
best =

{
XDM, OF(Xi,d

DM) < Fbest
Xbest, else

, (6)

where, XDM is the modified best member by DM, Xi,d
DM is the modified best member based on the

suggested value for d’th variable by i’th SS, Xnew
best is the new status for best member based on DM,

and OF(Xi,d
DM) is the objective function value for modified best member by DM.

The pseudo code of DM is presented in Algorithm 1. In addition, the different stages of the
proposed method with the aim of improving the best member are shown as a flowchart in Figure 1.

Figure 1. Flowchart of Dehghani method (DM).
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Algorithm 1. Pseudo code of DM

1. For i = 1:Npopulaion Npopulaion: number of population members.
2. For d = 1:m m: number of variables.
3. Update XDM using Equation (5).
4. Calculate OF(Xi,d

DM).
5. Update Xnew

best using Equation (6):
6. If OF(Xi,d

DM) < Fbest
7. Xnew

best = XDM

8. End if
9. End for d
10. End: for i

3. DM Implantation on Optimization Algorithms

This section describes how to implement the proposed DM on optimization algorithms.
The proposed DM is applicable to modify population-based optimization algorithms. Although the
idea of designing optimization algorithms is different, the procedure is the same. These algorithms
provide a quasi-optimal solution starting from a random initial population and following a process
based on repetition and population updates in each iteration.

The pseudo code of implantation of the DM for modifying optimization algorithms is presented
in Algorithm 2. The steps of the modified version of the optimization algorithms using DM are shown
in Figure 2.

Algorithm 2. Pseudo code of implantation of the DM for modifying optimization algorithms

Start.
1. Set parameters.
2. Input: m, OF, constraints.
3 Create initial population.
4. Create another matrix (if there are).
5. For t = 1: iterationmax iterationmax: maximum number of iterations.
6. Calculate OF.
7. Find Xbest.
8. DM toolbox:
9. Update Xnew

best based on DM.
10. Continue the processes of optimization algorithm.
11. Update population.
12. End for t
13. Output: BSS.
End.



Appl. Sci. 2020, 10, 7683 7 of 25

Figure 2. Flowchart of implantation of the DM for modifying optimization algorithms.

4. Simulation and Discussion

In this section, the performance of the proposed DM in improving optimization algorithms is
evaluated. Thus, the present work and the optimization algorithms described in [18,29,32,50,53]
are developed using the same computational platform: Matlab R2014a (8.3.0.532) version in the
environment of Microsoft Windows 10 with 64 bits on Core i-7 processor with 2.40 GHz and 6 GB
memory. To generate and report the results, for each objective function, optimization algorithms utilize
20 independent runs where each run employs 1000 times of iterations.

4.1. Algorithms Used for Comparisons and Benchmark Test Functions

To evaluate the performance of the proposed DM, the following methodology is applied:

(1) Find in the literature five well-known optimization algorithms, such as: genetic algorithm
(GA) [50], particle swarm optimization (PSO) [18], gravitational search algorithm (GSA) [53],
teaching learning based optimization (TLBO) [29] and grey wolf optimizer (GWO) [32].

(2) Modify the optimization algorithms implementing the proposed DM.



Appl. Sci. 2020, 10, 7683 8 of 25

(3) Define the set of twenty-three objective functions and divide it into three main categories:
unimodal [53,54], multimodal [31,54], and fixed-dimension multimodal [54] functions
(see Appendix A).

(4) Implement the present work and the optimization algorithms in the same computational platform.
(5) Compare the performance of the modified and the original optimization algorithms using the

following metrics: the average and the standard deviation of the best obtained optimal solution
till the last iteration is computed.

4.2. Results

Optimization algorithms in the original version and the modified version, using the proposed DM,
are implemented on the objective functions. The simulation results are presented from Tables 2–6 for
three different categories: unimodal, multimodal, and fixed-dimension multimodal functions. The first
category consists of seven objective functions, F1 to F7, the second category consists of six objective
functions, F8 to F13, and the third category consists of ten objective functions, F14 to F23.

To further analyze the simulation results, the convergence curves of the optimization algorithms
for the twenty-three objective functions are shown from Figures 3–7. In these figures, the convergence
curves for the original and the modified versions are plotted simultaneously.

Computational time analysis in accessing the optimal solution is presented in Tables 7–9.
This analysis shows computational time for per iteration, per complete run, and the overall time
required for the original and modified algorithm to achieve similar objective function value. In these
tables, P.I. means per iteration, P.C. means per complete run, and the O.T.S. means overall time required
for the original and modified algorithm to achieve similar objective function value.
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Table 2. Optimization results of genetic algorithm (GA) for original and “modified by DM” versions.

Unimodal Multimodal Fixed-Dimension Multimodal
Original DM Original DM Original DM

F1
Avg 13.2405 1.6151 × 10−11

F8
Avg −8184.4142 −12569.4850 F14

Avg 0.9986 0.9980
std 4.7664 × 10−15 1.1560× 10−26 std 8.3381 × 10−12 1.2202 × 10−21 std 1.5640 × 10−15 3.4755 × 10−16

F2
Avg 2.4794 4.5161 × 10−35

F9
Avg 62.4114 0.0019 F15

Avg 5.3952 × 10−2 3.3882 × 10−03

std 2.2342 × 10−15 7.1717 × 10−51 std 2.5421 × 10−14 3.8789 × 10−19 std 7.0791 × 10−18 2.0364 × 10−18

F3
Avg 1536.8963 2.0620 × 10−16

F10
Avg 3.2218 0.0127 F16

Avg −1.0316 −1.0316
std 6.6095 × 10−13 6.6148 × 10−32 std 5.1636 × 10−15 0 std 7.9441 × 10−16 5.9580 × 10−16

F4
Avg 2.0942 6.6058 × 10−15

F11
Avg 1.2302 0.0272 F17

Avg 0.4369 0.3984
std 2.2342 × 10−15 8.1141 × 10−30 std 8.4406 × 10−16 3.1031 × 10−18 std 4.9650 × 10−17 4.9650 × 10−17

F5
Avg 310.4273 5.9802 F12

Avg 0.0470 8.2396 × 10−7
F18

Avg 4.3592 3.0000
std 2.0972 × 10−13 6.3552 × 10−25 std 4.6547 × 10−18 3.3145 × 10−22 std 5.9580 × 10−16 2.0853 × 10−15

F6
Avg 14.55 0 F13

Avg 1.2085 2.8065 × 10−5
F19

Avg -3.85434 −3.8627
std 3.1776 × 10−15 0 std 3.2272 × 10−16 2.1213 × 10−20 std 9.9301 × 10−17 9.9301 × 10−16

F7
Avg 5.6799 × 10−03 2.6009 × 10−5

F20
Avg −2.8239 −3.2387

std 7.7579 × 10−19 1.6364 × 10−29 std 3.97205 × 10−16 1.7874 × 10−15

F21
Avg −4.3040 −10.1522
std 1.5888 × 10−15 1.5888 × 10−15

F22
Avg −5.1174 −10.4016
std 1.2909 × 10−15 1.6682 × 10−14

F23
Avg −6.5621 −10.5362
std 3.8727 × 10−15 7.5469 × 10−15
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Table 3. Optimization results of particle swarm optimization (PSO) for original and “modified by DM” versions.

Unimodal Multimodal Fixed-Dimension Multimodal
Original DM Original DM Original DM

F1
Avg 1.7740 × 10−5 6.746 × 10−218

F8
Avg −6908.6558 −12516.1893 F14

Avg 2.1735 0.9980
std 6.4396 × 10−21 0 std 1.0168 × 10−12 9.3549 × 10−19 std 7.9441 × 10−16 5.4615 × 10−19

F2
Avg 0.3411 2.9565 × 10−111

F9
Avg 57.0613 1.5631 × 10−13

F15
Avg 0.0535 0.0034

std 7.4476 × 10−17 1.0736 × 10−126 std 6.3552 × 10−15 0 std 3.8789 × 10−19 2.0849 × 10−18

F3
Avg 589.4920 1.9627 × 10−70

F10
Avg 2.1546 4.7784 × 10−14

F16
Avg −1.0316 −1.0316

std 7.1179 × 10−13 5.0357 × 10−86 std 7.9441 × 10−16 1.1289 × 10−29 std 3.4755 × 10−16 4.4685 × 10−21

F4
Avg 3.9634 1.5239 × 10−97

F11
Avg 0.0462 0.0214 F17

Avg 0.7854 0.4076
std 1.9860 × 10−16 5.8112 × 10−113 std 3.1031 × 10−18 3.1031 × 10−23 std 4.9650 × 10−17 0

F5
Avg 50.26245 2.3706 × 10−13

F12
Avg 0.4806 1.5705 × 10−32

F18
Avg 3 3

std 1.5888 × 10−14 1.9191 × 10−28 std 1.8619 × 10−16 1.2239 × 10−47 std 3.6741 × 10−15 2.5818 × 10−19

F6
Avg 20.25 0 F13

Avg 0.5084 1.3497 × 10−32
F19

Avg −3.8627 −3.8627
std 0 0 std 4.9650 × 10−17 1.2239 × 10−47 std 8.9371 × 10−15 9.0364 × 10−21

F7
Avg 0.1134 0.0110 F20

Avg −3.2619 −3.2744
std 4.3444 × 10−17 1.2412 × 10−27 std 2.9790 × 10−16 3.9720 × 10−21

F21
Avg −5.3891 −10.1532
std 1.4895 × 10−15 3.4755 × 10−15

F22
Avg −7.6323 −10.4029
std 1.5888 × 10−15 1.2909 × 10−15

F23
Avg −6.1648 −10.5364
std 2.7804 × 10−15 7.6462 × 10−15
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Table 4. Optimization results of gravitational search algorithm (GSA) for original and “modified by DM” versions.

Unimodal Multimodal Fixed-Dimension Multimodal
Original DM Original DM Original DM

F1
Avg 2.0255 × 10−17 1.6060 × 10−157

F8
Avg −2849.0724 −12532.65497 F14

Avg 3.5913 0.9980
std 1.1369 × 10−32 0 std 1.0168 × 10-12 2.84717 × 10-12 std 7.9441 × 10−16 4.2203 × 10−16

F2
Avg 2.3702 × 10−08 2.4203 × 10−80

F9
Avg 16.2675 0 F15

Avg 0.0024 8.0939 × 10−4

std 5.1789 × 10−24 8.3748 × 10−96 std 3.1776 × 10−15 0 std 2.9092 × 10−19 3.5153 × 10−28

F3
Avg 279.3439 1.4902 × 10−30

F10
Avg 3.5673 × 10−09 4.3396 × 10−13

F16
Avg −1.0316 −1.0316

std 1.2075 × 10−13 5.4834 × 10−46 std 3.6992 × 10−25 9.0314 × 10−29 std 5.9580 × 10−16 6.4545 × 10−34

F4
Avg 3.2547 × 10−9 7.1301 × 10−71

F11
Avg 3.7375 0.0311 F17

Avg 0.3978 0.3978
std 2.0346 × 10−24 3.5969 × 10−87 std 2.7804 × 10−15 0 std 9.9301 × 10−17 0

F5
Avg 36.10695 23.1212 F12

Avg 0.0362 2.319 × 10−27
F18

Avg 3 3
std 3.0982 × 10−14 5.5608 × 10−15 std 6.2063 × 10−18 1.0829 × 10−42 std 6.9511 × 10−16 1.2909 × 10−35

F6
Avg 0 0 F13

Avg 0.0020 2.5758 × 10−26
F19

Avg −3.8627 −3.8627
std 0 0 std 4.2617 × 10−14 7.7006 × 10−42 std 8.3413 × 10−15 6.3248 × 10−29

F7
Avg 0.0206 7.4501 × 10−4

F20
Avg −3.0396 −3.3219

std 2.7152 × 10−18 1.9394 × 10−29 std 2.1846 × 10−14 1.9860 × 10−25

F21
Avg −5.1486 −10.1531
std 2.9790 × 10−16 1.1916 × 10−24

F22
Avg −9.0239 −10.4029
std 1.6484 × 10−12 1.3505 × 10−34

F23
Avg −8.9045 −10.5364
std 7.1497 × 10−14 5.95808 × 10−45
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Table 5. Optimization results of teaching learning based optimization (TLBO) for original and “modified by DM” versions.

Unimodal Multimodal Fixed-Dimension Multimodal
Original DM Original DM Original DM

F1
Avg 8.3373 × 10−60 1.1627 × 10−157

F8
Avg −7408.6107 −12569.4866 F14

Avg 2.2721 0.9980
std 4.9436 × 10−76 0 std 3.0505 × 10−12 1.6269 × 10−11 std 1.9860 × 10−16 0

F2
Avg 7.1704 × 10−35 1.9426 × 10−80

F9
Avg 10.2485 0 F15

Avg 0.0033 3.9560 × 10−4

std 6.6936 × 10−50 1.2562 × 10−96 std 5.5608 × 10−15 0 std 1.2218 × 10−17 0

F3
Avg 2.7531 × 10−15 1.0076 × 10−30

F10
Avg 0.2757 4.7961 × 10−15

F16
Avg −1.0316 −1.0316

std 2.6459 × 10−31 5.8751 × 10−46 std 2.5641 × 10−15 1.4111 × 10−30 std 1.4398 × 10−15 9.9301 × 10−19

F4
Avg 9.4199 × 10−15 5.6754 × 10−71

F11
Avg 0.6082 0.0182 F17

Avg 0.3978 0.4085
std 2.1167 × 10−30 2.8775 × 10−86 std 1.9860 × 10−16 6.2063 × 10−18 std 7.4476 × 10−17 9.9301 × 10−17

F5
Avg 146.4564 21.4361 F12

Avg 0.0203 1.5705 × 10−32
F18

Avg 3.0009 3
std 1.9065 × 10−14 2.0654 × 10−21 std 7.7579 × 10−19 1.2239 × 10−47 std 1.5888 × 10−15 1.3902 × 10−26

F6
Avg 0.4435 0 F13

Avg 0.3293 1.3497 × 10−32
F19

Avg −3.8609 −3.8627
std 4.2203 × 10−16 0 std 2.1101 × 10−16 1.2239 × 10−47 std 7.3483 × 10−15 9.9301 × 10−45

F7
Avg 0.0017 3.4102 × 10−4

F20
Avg −3.2014 −3.3104

std 3.87896 × 10−19 2.4849 × 10−27 std 1.7874 × 10−15 9.9301 × 10−18

F21
Avg −9.1746 −10.1531
std 8.5399 × 10−15 0

F22
Avg −10.0389 −10.4029
std 1.5292 × 10−14 0

F23
Avg −9.2905 −10.5364
std 1.1916 × 10−15 0
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Table 6. Optimization results of grey wolf optimization (GWO) for original and “modified by DM” versions.

Unimodal Multimodal Fixed-Dimension Multimodal
Original DM Original DM Original DM

F1
Avg 1.09 × 10−58 2.84 × 10−278

F8
Avg −5885.1172 −11901.9832 F14

Avg 3.7408 1.3948
std 5.1413 × 10−74 0 std 2.0336 × 10−12 4.8808 × 10−14 std 6.4545 × 10−15 8.44062 × 10−16

F2
Avg 1.2952 × 10−34 1.6523 × 10−137

F9
Avg 8.5265 × 10−15 0 F15

Avg 0.0063 0.0043
std 1.9127 × 10−50 1.2275 × 10−152 std 5.6446 × 10−30 0 std 1.1636 × 10−18 3.10317 × 10−28

F3
Avg 7.4091 × 10−15 1.0362 × 10−30

F10
Avg 1.7053 × 10−14 1.0835 × 10−14

F16
Avg −1.0316 −1.0316

std 5.6446 × 10−30 1.2533 × 10−45 std 2.7517 × 10−29 2.8223 × 10−30 std 3.9720 × 10−16 5.9580 × 10−26

F4
Avg 1.2599 × 10−14 2.5914 × 10−47

F11
Avg 0.0037 0.0014 F17

Avg 0.3978 0.3978
std 1.0583 × 10−29 2.1742 × 10−63 std 1.2606 × 10−18 0 std 8.6888 × 10−17 1.2412 × 10−19

F5
Avg 26.8607 4.9282 F12

Avg 0.0372 1.0468 × 10−09
F18

Avg 3.0000 3.0000
std 0 0 std 4.3444 × 10−17 3.2368 × 10−25 std 2.0853 × 10−15 2.0853 × 10−18

F6
Avg 0.6423 9.6762 × 10−09

F13
Avg 0.5763 9.4403 × 10−09

F19
Avg −3.8621 −3.8627

std 6.2063 × 10−17 7.3985 × 10−24 std 2.4825 × 10−16 3.6992 × 10−24 std 2.4825 × 10−15 0

F7
Avg 0.0008 0.0005 F20

Avg −3.2523 −3.2982
std 7.2730 × 10−20 1.9394 × 10−29 std 2.1846 × 10−15 1.8867 × 10−30

F21
Avg -9.6452 −10.1531
std 6.5538 × 10−15 1.1916 × 10−32

F22
Avg −10.4025 −10.4029
std 1.9860 × 10−15 1.1519 × 10−25

F23
Avg −10.1302 −10.5364
std 4.5678 × 10−15 2.7804 × 10−20
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Figure 3. The convergence curves of GA for original and “modified by DM” versions.
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Figure 4. The convergence curves of PSO for original and “modified by DM” versions.
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Figure 5. The convergence curves of GSA for original and “modified by DM” versions.
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Figure 6. The convergence curves of TLBO for original and “modified by DM” versions.
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Figure 7. The convergence curves of GWO for original and “modified by DM” versions.
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Table 7. Computational time analysis on unimodal objective functions (second).

GA MGA PSO MPSO GSA MGSA TLBO MTLBO GWO MGWO

F1
P.I. 0.0025 0.0079 0.0011 0.0039 0.0105 0.0129 0.0055 0.0063 0.0025 0.0042

P.C.R. 2.5218 7.9613 1.1309 3.9634 10.5790 12.9160 5.5465 6.3235 2.5969 4.2516
O.T.S. 0.8699 0.2407 2.5412 2.3713 1.8153

F2
P.I. 0.0024 0.0103 0.0019 0.0050 0.0107 0.0138 0.0056 0.0057 0.0027 0.0031

P.C.R. 2.4125 10.3794 1.1945 5.0867 10.7194 13.8475 5.6229 5.7781 2.7101 3.1541
O.T.S. 0.1031 0.2148 4.2400 2.1668 1.1421

F3
P.I. 0.0071 0.1630 0.0035 0.0784 0.0126 0091 0.0115 0.0851 0.0075 0.0918

P.C.R. 7.1174 163.0316 3.5810 78.4169 12.5987 91.2295 11.53338 85.1981 7.5661 91.8338
O.T.S. 3.7623 3.5364 5.5923 44.5162 37.2164

F4
P.I. 0.0023 0.0082 0.0090 0.0038 0.0102 0.0133 0.0035 0.0065 0.0026 0.0075

P.C.R. 2.3254 8.2181 0.9058 3.8641 10.2537 13.3495 3.5392 6.5216 2.6966 7.5614
O.T.S. 0.2793 0.0721 3.5859 1.5757 1.2614

F5
P.I. 0.0031 0.0300 0.0012 0.0138 0.0106 0.0218 0.0041 0.0177 0.0035 0.0015

P.C.R. 3.1018 30.0027 1.2819 13.8921 10.6810 21.8228 4.1720 17.7407 3.5823 15.2196
O.T.S. 0.2677 0.2105 9.8639 0.2629 6.1547

F6
P.I. 0.0024 0.0114 0.0007 0.0048 0.0101 0.0146 0.0032 0.0069 0.0027 0.0114

P.C.R. 2.4156 11.4786 0.7947 4.8365 10.1832 14.6262 3.2010 6.9231 2.7229 11.4774
O.T.S. 0.1558 0.0870 0.5940 0.8843 0.2376

F7
P.I. 0.0047 0.0785 0.0020 0.0381 0.0107 0.0493 0.0067 0.0428 0.0049 0.0390

P.C.R. 4.7185 78.5709 2.0728 38.1957 10.7416 49.3055 6.7193 42.8670 4.9646 39.0686
O.T.S. 4.3080 0.1156 0.9553 6.5309 25.3156

Table 8. Computational time analysis on multimodal objective functions (second).

GA MGA PSO MPSO GSA MGSA TLBO MTLBO GWO MGWO

F8
P.I. 0.0037 0.0320 0.0015 0.0145 0.0108 0.0261 0.0049 0.0175 0.0034 0.0260

P.C.R. 3.7004 32.0411 1.5194 14.5251 10.8230 26.1593 4.9084 17.5273 3.4282 26.0069
O.T.S. 0 0 0 0 0

F9
P.I. 0.0029 0.0128 0.0011 0.0057 0.0103 0.0160 0.0041 0.0084 0.0031 0.0154

P.C.R. 2.9477 12.8883 1.1813 5.7547 10.3758 16.0688 4.1855 8.4233 3.1391 15.3918
O.T.S. 0 0.0404 0.4220 0.1464 0.3783

F10
P.I. 0.0028 0.0149 0.0014 0.0069 0.0105 0.0168 0.0036 0.0092 0.0031 0.0145

3.9092
P.C.R. 2.8721 14.9436 1.4455 6.9011 10.5083 16.8567 3.6440 9.2561 3.1046 14.5384
O.T.S. 0.1703 0.0755 5.2755 0.4661 1.3942

F11
P.I. 0.0038 0.0403 0.0015 0.0196 0.0110 0.0288 0.0049 0.0212 0.0039 0.0289

P.C.R. 3.8680 40.3218 1.5616 19.6877 11.0021 28.8871 4.9292 21.2885 3.9092 28.9343
O.T.S. 0.3821 0.6098 0.6825 0.3316 1.7435

F12
P.I. 0.0102 0.2506 0.0047 0.1188 0.0135 0.1307 0.0148 0.1294 0.0111 0.1383

P.C.R. 10.2150 250.5924 4.7914 118.8262 13.5497 130.7448 14.8773 129.4573 11.1936 138.3059
O.T.S. 0.8169 0.1446 3.1468 1.3416 1.5073

F13
P.I. 0.0099 0.2358 0.0046 0.1201 0.0141 0.1276 0.0145 0.1311 0.0104 0.1414

P.C.R. 9.9011 235.8891 4.6563 120.1492 14.1304 127.6587 14.5221 131.1560 10.4009 141.4475
O.T.S. 1.0468 0.3086 2.0328 0.9692 1.2553

Table 9. Computational time analysis on fixed-dimension multimodal objective functions (second).

GA MGA PSO MPSO GSA MGSA TLBO MTLBO GWO MGWO

F14
P.I. 0.0010 0.0472 0.0082 0.0249 0.0104 0.0264 0.0269 0.0434 0.0161 0.0328

P.C.R. 1.0468 47.2794 8.2528 24.9162 10.4771 26.4766 26.9827 43.4908 16.1510 32.8053
O.T.S. 0.6287 0.1399 0.4855 0.2652 0.3096

F15
P.I. 0.0023 0.0034 0.0007 0.0013 0.0038 0.0047 0.0038 0.0039 0.0014 0.0029

P.C.R. 2.3853 3.4227 0.7764 1.3148 3.8712 4.7457 3.8933 3.9249 1.4375 2.9109
O.T.S. 0.1309 0 0.9101 0.3985 0.1430

F16
P.I. 0.0020 0.0031 0.0006 0.0008 0.0035 0.0038 0.0029 0.0033 0.0011 0.0018

P.C.R. 2.0042 3.1025 0.6528 0.8631 3.5103 3.8281 2.9861 3.3501 1.1685 1.8361
O.T.S. 0.2672 0.0442 0.5542 0.1176 0.1103

F17
P.I. 0.0019 0.0021 0.0005 0.0006 0.0033 0.0038 0.0027 0.0029 0.0010 0.0014

P.C.R. 1.9120 2.1799 0.5358 0.5988 3.3251 3.8600 2.7069 2.9407 1.0611 1.4350
O.T.S. 0.1188 0 0.6116 0.2421 0.2306
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Table 9. Cont.

GA MGA PSO MPSO GSA MGSA TLBO MTLBO GWO MGWO

F18
P.I. 0.0018 0.0025 0.0004 0.0006 0.0035 0.0037 0.0029 0.0030 0.0010 0.0015

P.C.R. 1.8757 2.5166 0.4211 0.6029 3.4917 3.7297 2.9081 3.0689 1.0903 1.5060
O.T.S. 0.0979 0.0576 1.1963 0.1772 0.2609

F19
P.I. 0.0025 0.0037 0.0008 0.0014 0.0037 0.0048 0.0035 0.0041 0.0016 0.0026

P.C.R. 2.5233 3.7541 0.8540 1.4255 3.7397 4.8479 3.5075 4.1393 1.6122 2.6632
O.T.S. 0.4878 0.0811 1.4218 0.0983 0.4146

F20
P.I. 0.0028 0.0051 0.0009 0.0021 0.0045 0.0056 0.0036 0.0083 0.0017 0.0042

P.C.R. 2.8411 5.1640 0.9246 2.1016 4.5773 5.6775 3.6700 4.8358 1.7797 4.2165
O.T.S. 0 0.0846 0 0.1673 0.1526

F21
P.I. 0.0027 0.0056 0.0010 0.0023 0.0044 0.0057 0.0041 0.0054 0.0020 0.0045

P.C.R. 2.7466 5.6009 1.0173 2.3777 4.4041 5.7909 4.1728 5.4967 2.0670 4.5858
O.T.S. 0.1158 0.0913 0 2.1696 0.5408

F22
P.I. 0.0030 0.0071 0.0010 0.0030 0.0041 0.0064 0.0048 0.0065 0.0022 0.0050

P.C.R. 3.0287 7.1416 1.0454 3.0463 4.1996 6.4820 4.8034 6.5908 2.2729 5.0265
O.T.S. 0.1123 0.3930 1.2738 0.4395 0.6946

F23
P.I. 0.0035 0.0089 0.0012 0.0039 0.0045 0.0075 0.0051 0.0080 0.0026 0.0065

P.C.R. 3.5326 8.9343 1.2184 3.9863 4.5094 7.5026 5.1003 8.0755 2.6291 6.5630
O.T.S. 2.0295 0.0757 1.2981 0.2980 0.7469

4.3. Discussion

Exploitation and exploration abilities are two important indicators in evaluating optimization
algorithms. The exploitation ability of an optimization algorithm means its power to provide a
quasi-optimal solution. An algorithm that offers a better quasi-optimal solution than another algorithm
has a higher exploitation ability. The unimodal objective functions F1 to F7, which have only one
global optimal solution without local solutions, are applied to analyze the exploitation ability of
optimization algorithms. The results presented in Tables 2–6 show that the proposed DM by modifying
the optimization algorithms is able to increase the exploitation ability of the optimization algorithms
and as a result more suitable quasi-optimal solutions are provided by the modified version.

The exploration ability means the power of the optimization algorithm to scan the search space
of an optimization problem. Given that the basis of optimization algorithms is random scanning of
the search space, an algorithm that scans the search space more accurately is able move towards a
quasi-optimal solution by escape from local optimal solutions. In the second and third category of
objective functions F8 to F23, there are multiple local solutions besides the global optimum which are
useful to analyze the local optima avoidance and an explorative ability of an algorithm. Tables 2–6
show that the modified version with the DM of optimization algorithms has a higher exploration
ability than the original version.

The convergence curves shown in Figures 3–7 visually show the effect of the proposed DM on the
modifying the optimization algorithms. In these figures it is clear that the modified version moves
with more convergence towards the quasi-optimal solution.

The simulation results of optimization algorithms to solve the optimization problems show that
the modified version of the optimization algorithms with the DM are much more competitive than the
its original version. Therefore, the proposed method has the ability to be implemented on a variety of
optimization algorithms in order to solve various optimization problems.

The result of computational time analysis for both original and modified by DM versions is
presented in Tables 7–9. In these tables, three different time criteria are presented, which are the
average time per iteration (P.I.), the average time per complete run (P.C.R.), and overall time required
for the original and modified algorithm to achieve similar objective function value (O.T.S.). Due to the
addition of a correction phase based on proposed DM, P.I. and P.C.R. have been increased compared to
the original version. Table 7 shows that except for four cases (TLBO: F3, GWO: F3, F5, and F7), in all
unimodal objective functions, the modified version provides the final solution of the original version
in less time. Tables 8 and 9 show that the modified version of the studied algorithms for all F8 to F23

objective functions provides the final solution of the original version in less time.
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5. Conclusions

There are various optimization problems in different sciences that should be optimized using
the appropriate method. The optimization algorithm is one method to solve such problems, and it
can provide a quasi-optimal solution by random scanning in the search space. Many optimization
algorithms have been proposed by researchers which have been applied by scientists to solve
optimization problems. The performance of optimization algorithms in achieving quasi-optimal
solutions is improved by modifying optimization algorithms. In this paper, a new modification method
has been presented for optimization algorithms called Dehghani method (DM). The main idea of the
proposed DM is to improve and strengthen the best member of the population using the information
of the population members. In DM, all members of a population, even the worst one, can contribute to
the development of the population. The various stages of DM have been described and then has been
modeled mathematically. The DM has been implemented on five different optimization algorithms
including GA, PSO, GSA, TLBO, and GWO. The effect of the proposed method on modifying the
performance of optimization algorithms in solving optimization problems has been evaluated on
a set of twenty-three standard objective functions. In this evaluation, the results of optimizing the
objective functions set has been presented for both the original and the modified by DM version of
the optimization algorithms. The results of simulation and implementation of DM on the mentioned
optimization algorithms with the aim of optimizing the optimization problems show that the proposed
method improves the performance of the optimization algorithms. The optimization of different
objective functions in the three groups unimodal, multimodal, and fixed-dimension multimodal
functions indicates that the modified version with the proposed method is much more competitive
than the original version. Moreover, the convergence curves visually show that the modified version
moves with more convergence towards the quasi-optimal solution.

The authors suggest several ideas and proposals for future studies and perspectives of this study
to researchers. The main potential for these ideas is to be found in modifying various optimization
algorithms using DM. DM may also be used to overcome many objective real-life optimizations as well
as multi-objective problems.
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Abbreviations

Acronym Definition
ABC Artificial Bee Colony
ACO Ant Colony Optimization
ACROA Artificial Chemical Reaction Optimization Algorithm
BA Bat-inspired Algorithm
BBO Biogeography-Based Optimizer
BH Black Hole
BSS Best-Suggested Solution
CS Cuckoo Search
CSO Curved Space Optimization
DM Dehghani Method
DGO Dice Game Optimizer
DGO Darts Game Optimizer
DPO Doctor and Patient Optimization
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DE Differential Evolution
DTO Donkey Theorem Optimization
ES Evolution Strategy
EPO Emperor Penguin Optimizer
FOA Following Optimization Algorithm
FGBO Football Game Based Optimization
GA Genetic Algorithm
GP Genetic Programming
GO Group Optimization
GOA Grasshopper Optimization Algorithm
GSA Gravitational Search Algorithm
GbSA Galaxy-based Search Algorithm
GWO Grey Wolf Optimizer
HOGO Hide Objects Game Optimization
MLO Multi Leader Optimizer
OSA Orientation Search Algorithm
PSO Particle Swarm Optimization
RSO Rat Swarm Optimizer
RO Ray Optimization
SHO Spotted Hyena Optimizer
SGO Shell Game Optimization
SWOA Small World Optimization Algorithm
SS Suggested Solution
TLBO Teaching-Learning-Based Optimization
OF Objective Function

Appendix A

Table A1. Unimodal objective functions.

F1(x) =
∑m

i=1 x2
i [−100, 100]m

F2(x) =
∑m

i=1|xi|+
∏m

i=1|xi| [−10, 10]m

F3(x) =
∑m

i=1

(∑i
j=1 xi

)2
[−100, 100]m

F4(x) = max{ |xi| , 1 ≤ i ≤ m } [−100, 100]m

F5(x) =
∑m−1

i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2)

]
[−30, 30]m

F6(x) =
∑m

i=1([xi + 0.5])2 [−100, 100]m

F7(x) =
∑m

i=1 ix4
i + random(0, 1) [−1.28, 1.28]m

Table A2. Multimodal objective functions.

F8(x) =
∑m

i=1 −xi sin
(√
|xi|

)
[−500, 500]m

F9(x) =
∑m

i=1

[
x2

i − 10 cos(2πxi) + 10
]

[−5.12, 5.12]m

F10(x) = −20 exp
(
−0.2

√
1
m

∑m
i=1 x2

i

)
− exp

(
1
m

∑m
i=1 cos(2πxi)

)
+ 20 + e [−3.2, 3.2]m

F11(x) = 1
4000

∑m
i=1 x2

i −
∏m

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]m

F12(x) = π
m

{
10 sin(πy1) +

∑m
i=1(yi − 1)2

[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

∑m
i=1 u(xi, 10, 100, 4) [−50, 50]m

u(xi, a, i, n) =


k(xi − a)n xi > −a
0 −a < xi < a
k(−xi − a)n xi < −a

F13(x) = 0.1
{

sin2(3πx1) +
∑m

i=1(xi − 1)2
[
1 + sin2(3πxi + 1)

]
+ (xn − 1)2

[
1 + sin2(2πxm)

]}
+

∑m
i=1 u(xi, 5, 100, 4)

[−50, 50]m
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Table A3. Multimodal objective functions with fixed dimension.

F14(x) =
(

1
500 +

∑25
j=1

1
j+

∑2
i=1(xi−ai j)

6

)−1
[−65.53, 65.53]2

F15(x) =
∑11

i=1

[
ai −

x1(b2
i +bix2)

b2
i +bix3+x4

]2
[−5, 5]4

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5]2

F17(x) =
(
x2 −

5.1
4π2 x2

1 +
5
πx1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10 [−5, 10] × [0, 15]

F18(x) =
[
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

)]
×

[
30 + (2x1 − 3x2)

2
×

(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)] [−5, 5]2

F19(x) = −
∑4

i=1 ci exp
(
−

∑3
j=1 ai j

(
x j − Pi j

)2
)

[0, 1]3

F20(x) = −
∑4

i=1 ci exp
(
−

∑6
j=1 ai j

(
x j − Pi j

)2
)

[0, 1]6

F21(x) = −
∑5

i=1

[
(X − ai)(X − ai)

T + 6ci
]−1

[0, 10]4

F22(x) = −
∑7

i=1

[
(X − ai)(X − ai)

T + 6ci
]−1

[0, 10]4

F23(x) = −
∑10

i=1

[
(X − ai)(X − ai)

T + 6ci
]−1

[0, 10]4
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