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Abstract: In the construction industry, it is difficult to predict occupational accidents because various
accident characteristics arise simultaneously and organically in different types of work. Furthermore,
even when analyzing occupational accident data, it is difficult to deduce meaningful results because
the data recorded by the incident investigator are qualitative and include a wide variety of data types
and categories. Recently, numerous studies have used machine learning to analyze the correlations
in such complex construction accident data; however, heretofore the focus has been on predicting
severity with various variables, and several limitations remain when deriving the correlations between
features from various variables. Thus, this paper proposes a data processing procedure that can
efficiently manipulate accident data using optimal machine learning techniques and derive and
systematize meaningful variables to rationally approach such complex problems. In particular,
among the various variables, the most influential variables are derived through methods such as
clustering, chi-square, Cramer’s V, and predictor importance; then, the analysis is simplified by
optimally grouping the variables. For accident data with optimal variables and elements, a predictive
model is constructed between variables, using a support vector machine and decision-tree-based
ensemble; then, the correlation between the dependent and independent variables is analyzed through
an alluvial flow diagram for several cases. Therefore, a new processing procedure has been introduced
in data preprocessing and accident prediction modelling to overcome difficulties from complex and
diverse construction occupational accident data, and effective accident prevention is possible by
deriving correlations of construction accidents using this process.

Keywords: occupational accident; correlation analysis; support vector machine; ensemble; data
preprocessing; latent class clustering analysis; alluvial flow diagram

1. Introduction

In recent decades, various industrial safety management systems have been introduced and
improved upon; however, occupational safety remains unstable and low. In particular, in the
construction industry, various fields and types of work are undertaken simultaneously and organically,
and a wide range of hazard factors are present. Thus, safety management in the construction
industry is difficult, owing to the complexity of numerous activities and the involvement of various
entities [1]. Moreover, most of the work is performed by humans; hence, techniques to predict
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occupational accidents through simple correlations—and thereby establish safety measures to prevent
them—are limited. Thus, extensive research has been conducted over the past decades to increase
the safety performance of construction sites. In 2002, Hinze conducted a study to improve the
safety performance of and incentives for minimizing injuries on construction sites [2]; then, in 2005,
Chi et al. analyzed the correlations of factors contributing to different types of falls [3]. In 2008,
Choudhry et al. analyzed fundamental safety factors through a questionnaire, based on the practical
abilities of construction safety experts to ensure site safety, and they proposed measures to improve
safety in the industry [4]. However, the existing literature on safety improvement methods is limited
in certain respects. For example, the concept of occupational safety at construction sites was not well
defined at an early stage; thus, the data collected were not sufficient to identify accidents. Furthermore,
the dynamic characteristics of construction projects have not been adequately reflected in most studies,
and because most of the developed models did not rely on empirical data, they could only be applied
to limited cases.

After that, to overcome the problem of insufficient data, numerous studies have been conducted
using the previous occupational accident data, including more detailed accident information.
For example, in 2009, Jacinto et al. argued that injury data-based industrial accident analysis
has focused on identifying common causes of occupational accidents to design appropriate preventive
measures [5]. In 2011, Vidal et al. applied a dataset complexity reduction method to simplify the
process of understanding the occupational accident data [6]. In 2014, Matsunaga et al. applied various
technologies such as machine learning (ML) and big data analysis (including data statistics and data
mining) to analyze occupational accident data [7]. In 2019, Sarkar et al. considered the importance
of standardizing accident data prior to analyzing construction accident data [8]. As described above,
the analysis of occupational accidents in the past was mainly performed through descriptive statistical
methods [9], but recently, it has been developed into accident prediction studies applying various
ML analysis methods to accident data. Even with traditional statistical methods, advanced analysis
can be performed using large datasets, to identify hidden patterns in the data [10]. However,
many studies have shown that when comparing traditional statistical models with ML methods,
the latter is superior in predicting future events [8]. Thus, disaster and occupational accident analyses
have been performed across various fields using ML methods. Typical ML-based classification
algorithms include decision trees (DTs), artificial neural networks (ANNSs), extreme learning machines,
Bayesian networks, and support vector machines (SVMs) [11]. More specifically, ANNs [12-14],
SVMs [15,16], and DTs [17-20] suitable for prediction rather than other ML methods have been used
as the main prediction methods of occupational accident. ANNs generally provide better results
than conventional, simple classification techniques. However, because this approach is a black-box
technology, it is difficult for humans to interpret, hence it is difficult to identify the correlations between
variables in the accident data [21]. SVMs have attracted considerable attention owing to their capacity
for self-learning and their high generalization ability [22]. Sanchez et al. used SVMs to classify workers
suffering from work-related accidents over the course of a year. Their data consisted of 11,054 responses
received from workers employed across a wide range of economic activities in Spain, and their results
show that SVMs outperform backpropagating neural networks without encountering overfitting
problems [23]. However, SVMs use a long trial-and-error process to determine an appropriate kernel
function [21], have a high level of algorithmic complexity, and require extensive memory [24]. DTs have
gained popularity as a powerful classification algorithm that is transparent and easily interpretable [25];
they are mainly used for their ability to analyze quantitative and qualitative patterns of data to search
for hidden information [8].

Among the various DT-based classification algorithms, boosting has come to be regarded as one of
the most important advances in ML over the past 20 years, because it can convert an ensemble of weak
classifiers into powerful ones [26]. Boosting is an ensemble approach that combines many weak learners
to generate predictions [27]. Previous studies have found the boosting method superior to other
competing methods (including DT, ANN, and SVM) in terms of predictive performance, even when
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the dataset is defective and small [28,29]; furthermore, it offers considerably greater applicability
than competing techniques, owing to its single parameter [30]. DT instabilities can be overcome by
a boosting approach; that is, by growing a forest of DTs and performing multiple verifications of a
given tree’s classification result [31,32]. With these advantages, DTs have been successfully applied in
a variety of research fields, including medicine [33], social sciences [25], business management [34],
construction engineering and management [35], and process industry [36]. Table 1 summarizes the
latest research trends in the prediction of construction accidents using occupational accident data;
here, as in other fields, ANN-, SVM-, and DT-based ensemble methods have been applied [1,8,37,38].
In accordance with the research findings in various fields and the latest trends in construction accident
research, this study applied SVM- and DT-based ensemble methods, because they are more suitable for

classifying and predicting construction accident data.

Table 1. Examples of studies utilizing occupational accident data in construction applications.

Year/Reference Methods

Input Data

Output Data

Details

Random Forest,
Stochastic Gradient
Tree Boosting

2016/[37]

69 variables,
such as
construction
materials, tools,
and equipment.

9 variables, such as
work procedure
and carelessness

Injured area,
energy source,
severity

Prediction and
accuracy
comparison for
Machine learning
method using 78
construction site
parameters

Latent Dirichlet
Allocation,
Support vector
machine,
Artificial neural
network(ANN),
Decision Tree

2019/[8]

16 variables such as
accident day,
month, department,
outcome,
impact type,
injury type,
and topic

Injury, near miss,
property damage

Emphasized the
importance of
preprocessing of
accident data,
reduced variables
with chi-square,
and predicted
accident types

Latent Class
Cluster Analysis
(LCCA), ANN

2020/[1]

Categorical (project
type, age (interval),
occupation,
experience (interval),
incident case etc.),
binary (incident,
human factor,
hazardous behavior)

Prediction for 6
accident types
(recognition of risk,
improper use of
equipment,
insufficient
preventive
measures, etc.)

By reducing 142
variables down to
60, the severity of

construction
accidents was
predicted.

Limitation: only

binary variables

were reduced

K-means
Clustering,
Principal component
analysis (PCA)

2020/[38]

Survey based score
of 35 questions,
considering age,

employment type,
career, and risk in
each country

Construction risk
prediction by
country

PCA was
performed on the
survey scores,
major components
were extracted and
grouped by
k-means clustering.
Limitation: the
principal
component values
of PCA were
grouped simply

Many researchers have conducted analysis studies across numerous fields using various past
accident data; however, several limitations have been found in the analysis of occupational accident
data. First, the individual and subjective opinions of the person who prepares the occupational accident
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report are reflected in the data; therefore, it is difficult to process and reflect the characteristics of the
occupational accident data in the construction industry, which are created without a composition
procedure and include many types of variables and values [1]. Second, the structure of occupational
accident data includes mixed variables (e.g., numerical and categorical text representations) and
absent information. These numerous variable types, along with the composition of many categories,
create difficulties and ambiguities in interpreting the results with data elements; as a result, only limited
correlations can be derived between variables [8]. The following conclusions can be drawn from the
existing research results. Numerous types of variables and values are present in the occupational
accident data, which makes it difficult to process data, reflect characteristics, and interpret correlations.
However, if the variables are excessively reduced, their characteristics are lost, and meaningful
conclusions cannot be drawn. Therefore, the types and ranges of values for suitable variables must be
standardized to properly utilize data containing more construction accident information. Moreover,
a process that can easily capture construction accident trends must be established, and a prediction
method capable of learning from past accidents to minimize the risk of future ones is required.

The previous accident analysis has the disadvantage of evaluating a single dependent variable
by a single independent variable, and it is only predicting one dependent variable (severity, etc.)
with data written qualitatively and subjectively. The purpose of this study is to overcome this
and derive a correlation between objective variables without alternatively manipulating the data,
and to establish an accident prediction model through this, and to establish accident prevention
measures. Therefore, we propose an optimized data preprocessing method to minimize the major
variables and elements in diverse and complex occupational accident data, and we construct an ML
prediction model to achieve this. Furthermore, correlation analysis is conducted via an alluvial flow
diagram. Finally, accident concept analysis—employing clustering and visualization through principal
component analysis (PCA) of the relationships between major variables—is used to provide more
extensive conclusions.

2. Materials and Methods

The procedure applied in this study consisted of four steps, as shown in Figure 1; here, each step
included further details on the segmentalized procedure. In the first step, the elements of the
occupational accident data (subjectively and qualitatively prepared beforehand) were standardized
into similar elements, and an initial dataset containing 16 variables and 21 elements was constructed.
In the second step, the first data preprocessing step reduces the variables via four methods: latent
class cluster analysis (LCCA), chi-square, Cramer’s V, and predictor importance; from the results of
these four methods, seven variables were selected. In the third step, a second data preprocessing step
was performed, to reduce the elements in the variables. Three variables contained more than ten
elements; thus, their severity was predicted by the ML method while decreasing the number of elements.
The optimal number of elements was determined by comparing the maintenance of the prediction
performance, and a final dataset was constructed. In the fourth step, correlation analysis between
variables, using the final dataset; detailed analysis of the grouping of clusters; and visualization
analysis through PCA were performed. The correlations of input variables were analyzed by varying
the output variable using the final dataset; the correlations of all variables were analyzed using the
alluvial flow diagram for the major output. Next, detailed analyses for each group were conducted
by grouping the final dataset using LCCA. Finally, the severity levels were visualized using the three
major variables extracted by PCA.
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Initial Dataset Containing 16 variables and up to 21 elements

!

Applying the LCCA method to reduce variables

Carrying out LCCA analysis for initial dataset in Excel with XLSTAT
2020

1t Data
Preprocessing

Carrying out contribution and correlation analysis with Chi-square,
Cramer's V and Predictor importance

Extracting the main variables and determining the middle dataset

Carrying out secondary pre-processing to reduce the elements of
categorical data for middle dataset

27d Data
Preprocessing Predicting severity by using two ML collapsing the elements of the
& selected three variables

Predicting Severity

Determining the final dataset with collapsed variables and elements

Predicting with the remaining variables by changing the prediction target
in final dataset

Correlation Analysis

. & . Analyzing the correlation between variables and visualizing the alluvial
Visualization .
flow diagram
&
Groupage

Classifying the severity level with PCA and grouping the variables and
the elements with LCCA for final dataset

Figure 1. Research procedure and methods.

2.1. Initial Data and Data Description

The occupational accident data used in this study were collected from the database of the safety
management system of a large construction company in Korea, for the period from 2015-2020; in total,
963 occupational accident data entries for the construction site were used. Since there are some studies
using similar or small data in previous studies for accident analysis and prediction, the number of
samples in this study is judged to be sufficient for machine learning [1,39,40]. However, the initial
occupational accident dataset included too many factors, as well as over 130 occupational categories,
and over 400 assailing materials. When an occupational accident occurs, the person in charge of
writing the accident information differs between construction sites, and because the information is
qualitative and subjective, the same content can be expressed differently owing to the non-systematic
manner of information entry. Therefore, after checking terms used as standard or general from the
Occupational Safety and Health Administration (OSHA) in the USA, Health and Safety Executive (HSE)
in the UK, and Korea Occupational Safety and Health Agency (KOSHA) in Korea, we standardized
the elements and preprocessed them with similar ones, to reconstruct the occupational accident data.
The reconstructed initial dataset consisted of 16 variables (14 categorical and two binary), and they are
the same as or similar to variables in other studies [1,8]. Here, the terms that are not generally defined
are written for easy understanding. Brief descriptions of each variable are presented in Table 2.
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Table 2. Description of variables from 963 occupational accident data entries.

Variable Type Number of Elements Element Names
Accident . .
classification Categorical 3 Injury, death, property damage, etc.
. Housing construction, civil,
Headquarter Categorical 3 .
plant construction
Process rate Categorical 10 1-10, 11-20, ... ,91-100
Year Categorical 6 2015, 2016, 2017, 2018, 2019, 2020
Month Categorical 12 1-12
. Monday, Tuesday, Wednesday, Thursday,
Day of the week Categorical 7 Friday, Saturday, Sunday
. Occupational accident occurrence time
Hour Categorical 19 from 0 to 23:00 in hourly increments
Age Categorical 6 20-30, 3140, 41-50, 51-60, 61-70, 71-80
Gender Binary 2 Male, Female

Carpenter, painter, scaffolder, stonemason,
safety officer, welder, equipment operator,
electric piping equipment worker,
Type of work Categorical 15 landscaper, window worker,
structural steel/steel frame worker,
concrete worker, tunnel worker,
earth worker, woodworker

Jamming, fall down, fall off, hit, collapse,
struck, imbalance and uncontrolled
Type of accident Categorical 10 motion, occupational diseases,
mutilation/cut/puncture,
fire/explosion/blast

Pelvis, ear, eye, leg, multiple head
Injured part Categorical 12 location, foot, hand, brain, mouth, nose,
arm, chest/abdomen

Workplace Binary 2 Internal work, external work

Formwork/shores, construction and
mining machinery, stair and ladder,
metal fine particles/trace
elements/dust/fumes,
other buildings/structures/etc.,
end portion and opening, fauna and flora,
floor and ground/etc., scaffolding and
work plate, equipment/machinery parts
and appendages, hand tool nonpowered,

Assailing materials Categorical 21 container and pack, transporting,
lifting equipment, machinery,
land transportation,
manpower machinery,
processing equipment/machinery,
natural phenomena (e.g.,
working environment and atmospheric
conditions), material,
electrical equipment/parts,
debris/garbage, hand tool powered
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Table 2. Cont.

Variable Type Number of Elements Element Names

Unsafe work(worker), lack of personal
protective equipment(worker),
facility defect/collapse(management),
Cause of accident Categorical 7 lack of safety measures(management),
work equipment defect(worker),
carelessness(worker), third-party
liability(worker)

Severity Categorical 3 slight injury, serious injury, fatal injury

(i) Type of work (TW): This variable represents the victim’s job role at the construction project.
It consists of 15 elements: “carpenter,” “painter,
“equipment operator,” “electric piping equipment worker,” “landscaper,” “window worker,
steel/steel frame worker,” “concrete worker, earth worker,” and “woodworker.”

(ii) Type of accident (TA): This indicates the type of accident that the victim suffered. It consists
of ten elements: “jamming,” “fall down,” “fall off,” “hit,” “collapse,
uncontrolled motion,” “occupational diseases,” “mutilation/cut/puncture,” and “fire/explosion/blast.”

(iii) Injured part (IP): This refers to the part of the body that received the injury. It consists of
12 elements in total: pelvis, ear, eye, leg, multiple head location, foot, hand, brain, mouth, nose, arm,
and chest/abdomen.

(iv) Assailing material (AM): This variable is a standard used by the Korea Occupational
Safety and Health Agency (KOSHA); it refers to the substance directly responsible for
causing harm to the victim. In this study, a total of 21 elements were considered:
“formwork/shores,” stair and ladder,” “metal fine particles/trace
elements/dust/fumes,” “other buildings/structures/etc.,” “end portion and opening,” “fauna and
flora,” “floor and ground/etc.,” “scaffolding and work plate,” “equipment,
appendages,” “hand tool nonpowered,” “container and pack,” “transporting,” “lifting equipment,”
“machinery,” “land transportation,” processing equipment/machinery,”
and “natural phenomena” (e.g., working environment and atmospheric conditions), “material,”
“electrical equipment/parts,” “debris/garbage,” and “hand tool powered.”

(v) Cause of accident (CA): This indicates the cause of the accident and contains seven factors:

I e s i

scaffolder,” “stonemason,” “safety officer,” “welder,”

” o 7o a

structural

” o e

tunnel worker,

a7

struck,” “imbalance and

7o

” i ”a

construction and mining machinery,
awrs
a

machinery parts and

o

manpower machinery,

“unsafe work,” “lack of personal protective equipment,” “facility defect/collapse,” “lack of safety
measures,” “work equipment defect,
(vi) Severity: This represents the accident’s severity categorization, based on the risk assessment

criteria used by OO Construction in Korea. It is divided into three stages: Level 1 (“slight injury”)

7o

carelessness,” and “third-party liability.”

describes a minor injury, including ligaments and fractures; Level 2 (“serious injury”) includes fractures
of critical areas (face, chest, and abdomen); and Level 3 (“fatal injury”) includes critical-area fractures
requiring surgery and permanent disabilities caused by problems such as damage to the five senses
(vision, hearing, etc.). These severity criteria were a classified list of personal damage in Korea
(steps 1-14). Steps 1-7 are classified as fatal injury, steps 8-14 are serious injury, and other injuries are
slight injuries.

2.2. Data Preprocessing

Data preprocessing is an essential task in data mining and has been reported to consume
(onaverage) more than 60% of the total effort of the entire process [41]. In particular, because construction
accident data include numerous variables and types of values, the dataset must be preprocessed or
standardized before analysis; otherwise, the presence of outliers, omissions, and term inconsistencies in
the data makes interpreting the analysis results difficult; this renders the trends incomprehensible and
can thereby produce misleading analysis results. Furthermore, when reducing variables and elements
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to facilitate meaningful interpretations, data preprocessing must be performed by cross-comparing
several methods instead of one.

2.2.1. Latent Class Cluster Analysis (LCCA)

LCCA is an unsupervised learning algorithm based on a probability model [42]; it sorts data
with similar properties into potential clusters, by classifying them into maximally heterogeneous data
groups. It analyzes the complex interrelationships between the observed variables and applies these to
a comprehensive dataset irrespectively of the data type (categorical, binary, or continuous), to derive
maximum heterogeneity [43]. To determine the number of clusters in LCCA, the optimal number of
layers is first determined by analyzing various statistical criteria (i.e., the Akaike information criteria
(AIC), Bayesian information criteria (BIC), and consistent AIC (CAIC)) and the entropy R-squared
value. The more constant the statistical criteria values are, the larger the entropy R-squared value,
and the more appropriate the potential grouping [44]. In this study, LCCA was first used as a form
of contribution analysis between variables; then, it was used to conduct a detailed analysis of the
construction accident data.

2.2.2. Chi-Square Test

The chi-square test analyzes categorical data by using the chi-square distribution to verify the
significance of the observed and expected frequencies. It is primarily used to verify the goodness of
fit, homogeneity, and independence of the data [8]. The chi-square test is used when comparing the
distributions of individual groups; and the independence test determines whether a dependency exists
between the two characteristics of the data. In this study, the chi-square test was compared in 16 cases
with one dependent variable and 15 independent variables, and a variable with a p-value of 0.05 or
less was used to select the main variable.

2.2.3. Cramer’s V test

The chi-square test increases in proportion to the number of rows and columns in the contingency
table; however, it is limited in that relative comparisons are difficult. Cramer’s V test is a new test
method derived from the chi-square test. A value closer to 1 in the positive range (0,1) signifies the
greatest relevance [45]. Cramer’s V test was performed in the same way as the chi-square test, and was
used as one of the common major variable extraction methods.

2.3. Machine Learning (ML)

2.3.1. Support Vector Machine (SVM)

An SVM, proposed by Cortes and Vapnik (1995), is a statistical supervised learning algorithm;
it was initially developed for regression work but was later applied to linear and nonlinear classification.
In an SVM, the hyperplane that marks the boundary in the dataspace is trained to maximize the
distance to the nearest data [22]. SVMs can achieve a higher performance in classification and
regression problems than other statistical and ML techniques; this is because, unlike existing ML
techniques (which are prediction methods based on probability estimation), they do not directly
estimate probability but only predict classification results. The most important element of constructing
an SVM model is setting the appropriate parameters [23]. When inappropriate parameters are set,
the prediction accuracy can drop sharply, or problems of inability can arise due to overfitting [21].
Furthermore, when it becomes difficult to classify data within a limited dimension, the SVM can map
data to a higher-dimensional space and classify them using a kernel function. This kernel function
performs a dot product operation to prevent the computation requirements (which are proportional
to the dimensions of the data) from increasing; examples include linear, radial basis, and order
polynomial functions.
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2.3.2. Ensemble

The ensemble method guides a final learner to derive the optimal result by combining existing
weak learners; bagging (bootstrap aggregating) and boosting are representative examples of such
methods. The bagging method creates several partial datasets by sampling the test dataset, and it
derives the final, optimal result by combining the results of weak learners trained for each partial
dataset. The boosting method goes beyond the bagging method and sequentially assigns weights to
the misclassified data using the results of weak learners in the partial dataset to learn the next weak
learner and derive the result [27]. In this study, a DT was used as a weak learner, and the LSBoost
(Least-Square Boost) method was used to reflect the weights of misclassified data. Misclassification
can be compensated for by implementing a weight equal to the current misclassification in the partial
dataset of each step in the sequential training process in the next dataset [31,32]. In addition, in this
study, it was used to predict the dependent variable and to analyze the contribution of independent
variables that contribute to the dependent variable during prediction.

2.4. Principal Component Analysis (PCA)

PCA expresses independent variables as principal components through a linear combination.
It selects the axis containing the eigenvector featuring the largest variance (which is the principal
component in three dimensions or higher) and plots it in a lower dimension while preserving
the characteristics of the data as much as possible. PCA was first proposed by Pearson (1901)
and subsequently developed by Hotelling (1936) and Jolliffe to establish a modern theory [46,47].
PCA derives the covariance matrix of the existing dataset and calculates the eigenvector V and
eigenvalue A. Through this, the eigenvector with the largest variance is used and analyzed as the
main axis. However, in some cases, an eigenvector with a large variance does not necessarily indicate
a high degree of division in the data. In this study, PCA was used to visualize categorical data and
predict severity.

3. Results and Analysis

3.1. First Data Preprocessing for Selection of Major Variables

Since it is difficult to perform meaningful analysis by simply predicting construction accident data
including various variables and elements with ML methods, the standardization and preprocessing
of data are essential. Therefore, the first data preprocessing was carried out to derive the main
variables that have a major influence on the construction accident. First, LCCA was conducted using
XLSTAT (2020) software, to select key variables in the construction accident data. Datasets containing
both binary and categorical variables were used for the analysis because the type of data does not
affect LCCA implementation. Furthermore, LCCA was first applied as a data preprocessing method,
because it can group without specifying a separate target. First, grouping was conducted by increasing
the number of clusters from 1 to 10, to determine the optimal number for classifying accident data.
Then, the statistical values of BIC, AIC, and CAIC and the entropy R-squared (indicator) values were
checked, to determine the optimum number of clusters; the most suitable way to determine this number
is to observe the decrease in BIC, AIC, and CAIC and select the point at which the value remains
stable after a certain point. The AIC value decreased as the number of clusters was increased; however,
the BIC and CAIC values began to stabilize after the number of clusters reached 5. The entropy
R-squared value was used as another control criterion. R values close to 1.0 indicate the importance of
the model. However, large multivariate datasets generally tend to become more important when the
number of clusters increases, owing to the high level of heterogeneity; thus, they play an ancillary
role in determining the optimal model. After dividing the data into 1 to 10 clusters, we found that
when the number of clusters was 5, the BIC value was 18,500, the CAIC value was 17,800, and the
entropy R-squared value began to stabilize at 0.93. Therefore, the appropriate number of clusters was
determined to be 5.
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Figure 2 shows the results of dividing the initial dataset into five clusters. Eight variables
(e.g., accident classification, process rate, and month) included in the five clusters at the same rate
did not affect grouping; therefore, they were excluded from the major variables, and nine variables
showing differentiation from other cluster groups were selected. When using the variables selected
by LCCA in the first data preprocessing step (i.e., headquarter, year, type of work, type of accident,
injured part, workplace, assailing materials, cause of accident, and severity), it was found that the
construction accident data could be grouped more accurately using five clusters.

Accident ‘
p ) Process rate Year Month Day of the week Hour Age
classification
1.200 Headquarter

i . i : x x x

1.000

0.800 H H H H H i i
0.600 it P i P i i
oao0 1| i\ 11 SR H H s |
0.200 PN A & Al A _ i Q\
0.000 I \&1 \_-.&;742?/ N é’s&“"‘w\/&_ BV ) 7/ i

AClL HQI  PR1~PRI0O YRI~YR6  MOI~MOI2  DWI~DW7 HR1 ~HR19 AG1 ~AG6

~AC3-HQ3

—Cluster] —Cluster2 —Cluster3 —Cluster4 — Cluster5S
(@)

Gender Type of work Type of accident Injured part Work place Assailing materials Cause of accident
1.200 PS Severity
1.000 i
0.800 i il
os00 i1 | 3 | A ¥
0.400 ' y iR\ i
0.200 | § | A A il N \ % i
0.000 | P i T / LN

GDI TWI ~TWIS ~TA10 IP1 ~1P12 AM1 ~ AM21

~GD2 ~SE3

~ WP2
—Cluster] —Cluster2 —Cluster3 —Cluster4 — ClusterS
(b)

Figure 2. Latent Class Cluster Analysis (LCCA) selection of major variables for construction accident
data. (a) Variables 1-8; (b) Variables 9-16.

Although LCCA was able to select nine major variables [1], the reliability of extracted major
variables can be increased if a common one is selected using various methods rather than selecting
them using only the results of one method. Therefore, the predictor importance and the independence
of variables were calculated using the chi-square, Cramer’s V, and ML methods, which are generally
used to calculate the independence of variables and identify highly correlated variables in text and
categorical data analysis. The relationships between variables in the accident data were analyzed.
From the 16 variables, one was used as the output, and the remaining 15 were used as inputs, to find
the most important variables. Variables that contributed to the predicted output for 16 cases were
found to be generally similar, and Table 3 shows the severity results for the predictions. Among the
15 input variables predicting severity, six that were used by all four methods were included among
the eight most significant variables. The selected variables were year, type of work, type of accident,
injured part, assailing materials, and cause of accident; in total, seven variables (including severity)
were determined to exhibit a strong correlation.
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Table 3. Comparison of four methods applied to severity for extraction of major variables.

Variables Predictor Rank Chi-Square Rank Cramer’s V Rank Cluster Sele‘:cted
Importance p-Value Group Variable
Accident 0 12 7.09 % 1076 6 0.12 10 X ;
classification
Headquarter 0 12 5.74 x 1071 14 0.04 14 0 -
Processrate  1.36 x 1074 6 446 x 1071 12 0.10 12 X -
Year 446 x 1074 5 1.20 x 1078 5 0.17 5 0] v
Month 1.06 x 107* 10 1.84 x 1072 10 0.14 8 X -
Da&’le"eflfhe 0 12 9.03 x 10! 15 0.06 13 X ;
Hour 1.29 x 1074 7 3.42 x 1072 11 0.17 6 X -
Age 421 %1070 11 1.17 x 1072 9 0.1 11 X -
Gender 1.11 x 107* 9 1.73 x 1074 7 0.13 9 X -
Type of work  6.65 x 107 4 8.55 x 1073 8 0.16 7 0 v
Type of 2.07 x 1072 2 1.59 x 10-20 2 0.27 2 o) v
accident
Injured part  7.94 x 1073 1 236 x 10778 1 0.48 1 (@) v
Work place 0 12 5.30 x 1071 13 0.04 15 ©) -
Assailing 1.15 x 1073 3 1.26 x 1079 4 0.25 3 o)
materials
Cause of 114 x 10~ 8 9.76 x 1011 3 0.19 4 o) v
accident

3.2. Second Data Preprocessing for Reduction of Elements

Through the first data preprocessing stage, 16 variables from the initial dataset were reduced
to seven important ones. However, because there were up to 13 elements under each variable,
numerous elements remained, which made it difficult to interpret the construction accident data and
identify trends. Therefore, the second data preprocessing step was performed, to reduce the number
of elements while preserving the data characteristics as much as possible; in this step, the elements
showing similar trends in the type of work, injured part, and assailing materials variables (which each
contained more than ten elements) were standardized and reduced down to 5-6 elements. Among the
ML methods, the severity was predicted for eight cases using the SVM and the DT-based ensemble
method which were reported to be more suitable for the analysis of construction accident data [8],
and this was performed to find the minimum number of elements that maintains the prediction accuracy.

In previous studies, the injury types (bruise, ligament injury, fracture, etc.) were included to
predict severity [1,8,37]. However, since most severity levels are determined based on the injury type,
there is a very large correlation between the two. In this study, it was confirmed that the prediction
including variable of the injury type has high accuracy and low bias as in previous studies. However,
since this study aims to extract and optimize the main variables through a simple method and to
confirm the correlation between the variables through the alluvial flow diagram, variables of the
injury type that significantly weaken the contribution of other variables were excluded. Therefore,
because the variable having the greatest relationship with the severity is excluded, the predictive
performance may be lower compared to previous studies.

Table 4 shows the severity prediction results for eight cases, obtained using ensemble- and
SVM-based methods. The nested cross validation (CV) was applied for the purpose of minimizing
the bias of the prediction result due to overfitting in training and verification of ML. The SVM
predicted severity with high accuracy prior to the nested CV, though it showed low accuracy afterward.
These results are thought to be a more generalized result by the nested CV.
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Table 4. Machine Learning (ML) prediction result after the reduction of elements under variables.

Accuracy
No. Case ML Method Accuracy (Nested CV Applied)
Ensemble 72.17% 70.19%
1 A-B(15)-C-D(12)-E(21)-F
SVM 94.60% 58.32%
Ensemble 71.34% 69.26%
2 A-B(15)-C-D(12)-E(6)-F
SVM 93.98% 55.87%
Ensemble 68.02% 69.57%
3 A-B(15)-C-D(5)-E(21)-F
SVM 93.67% 55.66%
Ensemble 68.33% 69.26%
4 A-B(15)-C-D(5)-E(6)-F
SVM 92.63% 54.36%
Ensemble 69.57% 66.87%
5 A-B(5)-C-D(12)-E(21)-F
SVM 91.28% 57.54%
Ensemble 68.54% 66.87%
6 A-B(5)-C-D(12)-E(6)-F
SVM 89.30% 56.41%
Ensemble 67.29% 66.87%
7 A-B(5)-C-D(5)-E(21)-F
SVM 89.62% 55.02%
Ensemble 67.08% 67.29%
8 A-B(5)-C-D(5)-E(6)-F
SVM 87.54% 55.45%

A: year; B: type of work; C: type of accident; D: injured part; E: assailing material; F: cause of accident.

In the ensemble method, the errors before and after nested CV were small, and relatively minimal
overfitting was predicted to occur compared to the SVM model. In the nested CV prediction results
for eight cases, the ensemble method was predicted to achieve a ~10% higher accuracy than the
SVM method, and it was found to be more suitable for datasets containing a variety of variables and
elements. When predicting severity by reducing the elements of a variable, we found that if all three
variables were reduced, the ensemble method showed an accuracy of 67.29%, only ~3% lower than the
case without reduction. This indicates that the characteristics of the data did not change significantly.
Therefore, reducing the elements in the data made it easier to analyze the accident data and identify
trends, and it simplified the analysis of complex data in which correlations are difficult to find.

A final dataset—featuring seven variables and a maximum of ten elements—was formed by
selecting the major variable through the first data preprocessing stage and standardizing the elements
through the second one. Similar results were obtained when selecting each of the seven variables as
outputs and predicting using ML; thus, we concluded that this final dataset was valid.

3.3. Prediction of Various Dependent Variables

In the second data preprocessing stage, the injured part was expected to strongly correlate with
the severity prediction; in some cases, the prediction accuracy was significantly lowered when elements
of other variables were simultaneously changed. Therefore, the correlations between variables were
analyzed because some variables may be highly influential among the seven variables. In addition,
an analysis was conducted to confirm the predictability of other variables, instead of simply predicting
the severity of the seven variables. Correlation analysis was performed through ensemble-based
prediction and predictor importance calculation because the ensemble method is more suitable than
the SVM for the data in this study. Similar to the first data preprocessing step, seven predictions were
made with one variable as an output and the other as an input, and the accuracy, precision, recall,
and F1 score were calculated as reliability indicators; the results are presented in Table 5.
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Table 5. Output performance in terms of accuracy, precision, recall, and F1 score.

Ou.tput Method Accuracy Precision Recall F1 Score

Variable

Ensemble 34.50% 41.93% 26.63% 32.57%
Year
SVM 26.69% 16.89% 21.08% 18.75%
Ensemble 66.04% 30.28% 21.79% 25.34%
Type of work
SVM 64.46% 23.06% 16.54% 19.26%
Type of Ensemble 50.34% 32.05% 37.12% 34.40%
accident SVM 37.24% 28.72% 19.44% 23.19%
Ensemble 48.86% 29.31% 27.10% 28.16%
Injured part

SVM 45.03% 36.26% 22.71% 27.93%
Assailing Ensemble 53.27% 28.63% 33.86% 31.03%
materials SVM 48.34% 27.25% 15.15% 19.47%
Cause of Ensemble 69.89% 31.47% 24.95% 27.84%
accident SVM 66.24% 33.51% 21.08% 25.88%
Ensemble 67.29% 68.60% 65.14% 66.82%

Severity
SVM 55.45% 52.59% 54.40% 53.48%

In general, the proportions of element data in the output are similar; furthermore, when analyzing
two elements, the accuracy was used to evaluate the model performance. However, because this
study’s occupational accident data contained variables with more than five elements, it was difficult to
accurately evaluate the model reliability using accuracy alone. Therefore, the F1 score was calculated
and analyzed, and the developed model’s reliability evaluation results are presented in Table 5. Here,
for each element, a true positive (TP) denotes a value that correctly predicts the correct (actual) result,
a false positive (FP) denotes a value that incorrectly predicts the correct (actual) result, and a false
negative (FN) is a value that incorrectly predicts the wrong (non-actual) result. The precision was
calculated using Equation (1) for the TP and FP in each class, and the recall was calculated using
Equation (2) for the TP and EN in each class. After that, the average precision and recall were calculated
using Equations (3) and (4), and the F1 score was calculated using Equation (5).

Precision = TP /(TP + FP) 1)

Recall = TP/ (TP + FN) 2)

Average Precision = {P(A) + P(AD) + P(C) + P(CD)}/4 3)
Average Recall = {R(A) + R(AD) + R(C) + R(CD)}/4 4)

Average Precision X Average Recall
F1 Score = 2 x

©)

Average Precision + Average Recall

In the SVM and ensemble predictions with the nested CV, the accuracy of most results exceeded
50%; however, in the predictions for year, the accuracy was relatively low. This was not expected
to correlate strongly with the variables used as the other inputs. The F1 score—which represents
the harmonic average of precision and recall—measured most output scores considerably lower
than their accuracy scores. This is because the data were concentrated on certain elements when
predicting elements lower than the output variable; furthermore, because of the nature of the algorithm,
the prediction method may have been more concentrated on variables with considerable data. However,
in the case of severity, the accuracy and F1 score values were very similar; the injured part was predicted
with six elements but showed a tendency to decrease slightly compared to other variables. Although it
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did not achieve high accuracy in predicting various outputs, predictions were possible to some extent,
and because separate correlations may exist between variables and elements, a detailed analysis of
each output was conducted.

4. Discussion

4.1. Correlation Analysis between Variables

In most previous studies, simply predicting one dependent variable with ML or analyzing the
relationship between one dependent variable and the remaining independent variables through
chi-square test [8,37,48]. Moreover, current studies of causal inference have been performed by
a complex algorithm [49,50], so reasonable inference results have not effectively been applied to
qualitative and subjective accident data in construction field. Preferably, it may be more appropriate to
analyze it in stages rather than an algorithm that solves everything at once. Separate preprocessing
requires less computational cost and effort because it can pre-filter more data to select and use major
variables. The major variables can be managed in advance, enabling efficient data management. Thus,
the proposed model can extract major variables in an easy and simple way for many types of data
written on qualitative and subjective judgments and predict accident outcomes.

Figure 3 compares the contributions of input variables to the output predicted by the ensemble
method. By predicting the output, variables that strongly contribute to the prediction can be identified.
Variables with large contributions vary according to the predicted output, and variables with larger
predicted contributions indicate greater correlations. When the severity was predicted, the injured part
and type of accident were found to correlate strongly; when the injured part was predicted, the severity
and type of accident were found to correlate strongly. Thus, it can be seen that strong correlations exist
between some variables, though not all.

Severity N | |
g Cause of accident W —
'S Assailing materials m— —
§ Injured part F s |
B Type of accident Eessssssss—— 0O
S Type of work I I |
Year N .
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
Impotance values
® Year u Type of work Type of accident Injured part

B Assailing materials ® Cause of accident M Severity

Figure 3. Contributions of input variables according to output.

Although Figure 3 clearly shows the contributions of input variables to individual outputs, it does
not clearly show the overall relevance. Therefore, network analysis results are schematically illustrated
in Figure 4 to clarify the relationships between variables. The arrows indicate the direction of the
contribution, and the line thickness indicates its magnitude. Large correlations are observed between
the type of accident and assailing materials, cause of accident and injury site, and injured part and
severity. As such, it has been confirmed that there is a separate correlation between the major variables
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having a large relationship in the occurrence of construction accidents, and it needs to be utilized to
prevent construction accidents through correlation analysis.

Injured part

Type ‘ work
Severity

Year

Figure 4. Visualization of contribution network between occupational accident variables.
4.2. Correlation Analysis between Elements

In order to apply the accident analysis results to the safety measures at the construction site, it is
necessary to pay attention to the correlation between variables contributing to the accident, rather than
simply increasing the prediction accuracy [37,48].

Correlations between variables can be analyzed through contribution and network analyses;
however, these analyses struggle to capture the correlations between the elements included in the
variables. Therefore, in Figure 5, a detailed correlation analysis is shown for the top three variables
in terms of F1 score (severity, injured area, and type of accident, respectively) using an alluvial flow
diagram; these three variables strongly contributed to predicting the type of accident. The trends
of correlation contribution to the type of accident show that injuries on the outside of the upper
body occurred mostly as a result of “fall down” due to “heavy non-fixture” or “light non-fixture
(equipment),” or due to the “carelessness” of the victim. Here, it is thought that such accidents can be
prevented if workers who work “heavy non-fixture” or “light non-fixture (equipment)” are aware of
accident cases through pre-work education.

Figure 6 shows an alluvial flow diagram for the type of accident and severity, which both contribute
strongly to the prediction of the injured part. Overall, serious injuries were found to occur most often
due to “fall off” and “fall down” accidents; it can also be seen that injuries occurred to the outside
of the upper or lower body. The most fatal injuries are seen to occur as a result of falling accidents,
and injuries to the face or upper body were most common. By analyzing these overall trends, we expect
to be able to reduce the occurrence of accidents by providing customized safety training and safety
protection equipment to workers in high-risk roles.
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Figure 5. Alluvial flow diagram using variables with high correlation when predicting type of
accident. D: Injured part (D1: Inside the upper body; D2: Outside of the upper body; D3: Face;
D4: Inside the lower body; D5: Outside of the lower body); E: Assailing materials (E1: Light non-fixture;
E2: Light non-fixture (equipment); E3: Permanent fixture; E4: Temporary fixture; E5: Heavy non-fixture;
E6: Heavy non-fixture (equipment)); F: Cause of accident (F1: Unsafe work; F2: Lack of personal
protective equipment; F3: Facility defect/collapse; F4: Lack of safety measures; F5: Work equipment
defect; F6: Carelessness; F7: Third-party liability), C: Type of accident (C1: Jamming; C2: Fall down;
C3: Fall off; C4: Hit; C5: Collapse; C6: struck; C7: Imbalance/Uncontrolled motion; C8: Occupational
diseases; C9: Mutilation/Cut/Puncture; C10: Fire/Explosion/Blast).

Type of accident Severity Injured part
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Figure 6. Alluvial flow diagram using variables with large correlations for predicting injured part.
C: Type of accident (C1: Jamming; C2: Fall down; C3: Fall off; C4: Hit; C5: Collapse; C6: struck;
C7: Imbalance/Uncontrolled motion; C8: Occupational diseases; C9: Mutilation/Cut/Puncture;
C10: Fire/Explosion/Blast); S: Severity (S1: Slight injury; S2: Serious injury; S3: Fatal injury); D: Injured
part (D1: Inside the upper body; D2: Outside of the upper body; D3: Face; D4: Inside of the lower
body; D5: Outside of the lower body).

The variables that primarily contribute to severity prediction are year, type of accident, and injured
part; the alluvial flow diagram for these factors is shown in Figure 7. In the relationship between year
and type of accident, “fall down” can be seen to be the most prevalent accident across most years,
followed by “fall off.” The most frequently injured areas were the outside of the upper and lower
body, and most of these were found to suffer from serious or slight injuries; fatal injuries were most
frequently caused by lower-body injuries due to falling accidents. Moreover, a strong correlation was
confirmed between fatal injuries and accidents in which the victim’s head was hit by an object.

The correlations were analyzed for variables with large correlations when the output was found
to differ in the alluvial flow diagram. Through the two data preprocessing steps, the complexity of the
initial construction accident data was resolved, and the correlations of construction accidents could be
readily understood through the alluvial flow diagram using variables with a large correlation to the
output. Through this, we expect to be able to help prevent construction accidents, provided appropriate
safety measures are established for the specific accident types. However, in alluvial flow diagram
analysis, identifying detailed trends can be difficult because the flow of the previous variable is
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integrated with the next. Therefore, detailed analysis was carried out, by grouping the final dataset via
the LCCA used in the first data preprocessing step.

Year Type of accident Injured part Severity
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Figure 7. Alluvial flow diagram using variables with large correlation in prediction of severity. A:
Year (Al: 2015; A2: 2016; A3: 2017; A4: 2018; A5: 2019; A6: 2020); C: Type of accident (C1: Jamming,
C2: Fall down; C3: Fall off; C4: Hit; C5: Collapse; C6: struck; C7: Imbalance/Uncontrolled motion;
C8: Occupational diseases; C9: Mutilation/Cut/Puncture; C10: Fire/explosion/blast); D: Injured part
(D1: Inside the upper body; D2: Outside of the upper body; D3: Face; D4: Inside of the lower body;
D5: Outside of the lower body); S: Severity (S1: Slight injury; S2: Serious injury; S3: Fatal injury).

4.3. Analysis of Other Major Variables Influencing Severity

4.3.1. Grouping with LCCA

LCCA can be used to identify data trends via detailed analysis of the major elements included
in the group; it can also select major variables by identifying variables that heavily contribute to
grouping, similar to the first data preprocessing stage. Advantageously, this method can capture
the flow when two or more variables that are difficult to represent in the alluvial flow diagram are
connected. The five attributes that are most influential in the differentiability of clusters are presented
in Table 6, which summarizes the ratio between the total number of observations in the dataset and
the specified cluster. Each cluster can be grouped by clustering objects with high similarity according
to the similarity of seven variables out of 963 objects. In the previous study, there is a limitation in
selecting the variable by applying LCCA only to binary variables with two elements. However, in this
study, LCCA was applied to categorical variables with many elements [1].

Table 6. Five most influential variables and elements in the formation of each cluster.

. Being
Attributes Probabilities Being Observed
Cluster ID of Current Observed T Gnthe Percentage
Variable Element Cluster (Total) (in the
Cluster)
Assailing  Permanent 0.594 244 220 90.16%
material fixture
Type of Fall down 0.566 250 217 86.80%
accident
Type of o
Cluster 1 e Fall off 0.358 174 132 75.86%
Outside of
Injured part the lower 0.439 271 160 59.04%
body
Severity Serious 0.343 462 240 51.95%

injury
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Table 6. Cont.
. Being
Attributes Probabilities Being Observed
Cluster ID of Current Observed - Percentage
. (in the
Variable Element Cluster (Total)
Cluster)
Type of Hit 0.457 157 122 77.71%
accident
Type of Struck 0313 128 92 71.88%
accident
Cause of Third-party o
Cluster 2 accident liability 0.657 8 61 71.76%
Assailing Heavy 0.565 337 148 43.92%
material non-fixture
Outside of
Injured part the upper 0.403 395 105 26.58%
body
Tvpe of Mutilation,
My Cut, 0.376 71 64 90.14%
accident
Puncture
e Light
Assailing 1 £ ture 0.531 109 91 83.49%
material (equipment)
Cluster 3 qwp
Type of Jamming 0.357 108 66 61.11%
accident
Outside of
Injured part the upper 0.871 395 143 36.20%
body
Type of work Civil 0.241 138 43 31.16%
Severity Fatal injury 0.961 127 114 89.76%
Injured part ~_Leide the 0.400 76 47 61.84%
upper body
Injured part Face 0.395 110 46 41.82%
Cluster 4 Year 2019 0.383 254 88 34.65%
Type of Fall off 0.356 174 42 24.14%
accident
Cause of 1, fe work 0.825 54 45 83.33%
accident
Typeof  Occupational 0.169 11 9 81.82%
accident diseases
Cluster 5 Imbalance
uster
Type of and 0.778 58 42 72.41%
accident uncontrolled
motion
. Inside the o
Injured part lower body 0.470 111 25 22.52%
Assailing Heavy 0.678 337 37 10.98%
material non-fixture

Cluster 1 includes data elements such as “permanent fixture” (under assailing material), “fall down”

7

and “fall oft” (under type of accident), outside of the lower body (under injured parts), and “serious
injury.” Cluster 2 includes data on “hit” and “struck” accidents (under type of accident), “third-party
liability” (under cause of accident), “heavy non-fixture” (under assailing material), and outside of the
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upper body. Occupational accident data in the construction industry can be distinguished through the
selection of differentiated elements between clusters. However, influential elements in each cluster can
be partially duplicated in other clusters. For example, Clusters 1 and 4 contain falls as a major attribute
among the types of accident; however, they are otherwise differentiated in terms of injured part and
severity. By their nature, construction accidents can be affected by numerous variables, and identifying
trends may be difficult; however, accident data can be grouped by the relationships between other
influential attributes. The construction accident concept of each cluster, using the influential attributes
in Table 6, are defined and presented in Table 7.

Table 7. Concept definitions of construction accidents by cluster.

Number of Data Entries

Cluster ID. Conceptual Definition (Percentage (%))

Serious injury to the outside of the lower
Cluster 1 body from a permanent fixture (floor, etc.) 369(38)
by fall down and fall off accidents

Injury to the outside of the upper body from
Cluster 2 being hit or struck by a heavy non-fixture 259(27)
(construction material)

Injury due to mutilation, cut, or puncture
Cluster 3 on the outside of the upper body whilst 165(17)
using light non-fixture (equipment)

Fatal injury on the inside of the upper body

Cluster 4 and face from fall off 118(12)
Injury to the inside of the lower body
Cluster 5 (pelvis) from unbalanced and uncontrolled 53(6)
movements during heavy non-fixture work
Total 963(100)

In Table 7, Cluster 1 includes the “fall down” and “fall off” accidents that result in serious injury
to the outside of the lower body from a “permanent fixture.” Cluster 2 includes cases of injury to the
outside of the upper body due to “hit” accidents caused by a “heavy non-fixture.” Cluster 3 includes
cases of injury to the outside of the upper body whilst using a “light non-fixture (equipment)” or
“portable tool.” Hence, each cluster contains the types of accidents that occur most frequently in the
construction industry, and their proportions are also similar. By grouping construction accident data,
we can quantitatively verify the existing empirical knowledge of construction managers, and we
anticipate that construction site safety can be improved by establishing appropriate safety measures
for the different types of construction accidents.

4.3.2. Visualization with PCA

In general, the PCA method selects a major variable that can be easily used to classify data,
by finding a variable with a large influence across many variables and utilizing it to reduce the
dimensions of the variable. PCA primarily uses numerical data [51]; categorical data are difficult to
use because they do not have separate numerical values according to the variables and items. In a
study that applied PCA based on the construction industry survey data, scores were set for each
item and used to conduct PCA and reduce dimensions using numerical values [38]. In this study,
four methods were used to identify major variables; then, PCA was applied as a visualization method
rather than a dimension-reduction one. To visualize the severity level, which was the variable with
the highest predictive accuracy as determined through ML analysis, the major variables (e.g., year,
type of accident, and injured part) were used as PCA data. The character-type categorical data were
converted into numeric-type categorical data and utilized. Figure 8 shows the results of PCA using
three variables, and each data point is displayed in red, blue, and light green, depending on the severity
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level. By plotting the major variables through PCA, the severity levels can be distinguished relatively
clearly. Moreover, it can be seen that the severity level is classified by the injured part (PC3) rather
than the year (PC1) or type of accident (PC2); this shows that the variable most strongly correlated
with severity in the correlation analysis is the injured part. In other words, it is possible to predict the
severity through PCA classification using three major variables.

® Slight injury
@ Serious injury
Fatal injury

PC3(injured part)

-6 - 5
5 ef&'(\

0
0
_ ] \J
PC2( type ot‘accidcnst) S

Figure 8. Classification of severity with principal component analysis (PCA) using three major variables.

In this study, in order to overcome the limitations of the current accident data processing,
the correlation between major variables derived from occupational accident data was constructed
by various ML algorithms and new data process procedure. In previous studies, only one method
was used to select major variables, whereas, in this study, four methods were used to select the main
variables. Next, there is a difference in selecting an optimized element at a point where prediction
accuracy is maintained using the ML method. In addition, for accident analysis currently used in the
field, risk assessment is the most representative method, mainly to derive hazard factors based on
experience, to calculate severity by intensity and frequency, and to prepare countermeasures. However,
this method of this study is a case analysis using the result of accident prediction analysis for each
variable of accident data, which is more suitable for actual accidents. Through the correlation between
the major variables identified in this study, various construction accident data can be used to establish
more practical accident prevention measures by constructing an accident prediction model.

5. Conclusions

In this study, an efficient data preprocessing technique and ML application were developed to
analyze occupational accident data in the construction industry, where it is difficult to derive features
owing to a large number of variables and elements in the accident data. The following conclusions
were drawn:

e  For construction accident data involving many variables and wide categories, it is possible to
identify the most influential variable among many variables by using clustering, chi-square test,
and other procedures.

e  Because the types or categories of the major variables are numerous, it is difficult to identify
meaningful relationships. Therefore, standardization and element grouping can be performed,
and the accuracy can be analyzed according to the categories of the variables; through this,
an optimal grouping using the fewest elements can be found.
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The correlations between factors can be analyzed by examining the correlations between and
contributions of variables, using ML analysis on the optimal variable type and category.
Through PCA and clustering, the distribution and combinations of variables that contribute to the
prediction of each variable can be understood, and we anticipate that effective accident prevention
measures can be established by utilizing these results.

The severity level in the classified list of personal damage was predicted and analyzed, so this
study can have some limitations. The more quantitative data such as the days of convalescence
for each accident can yield more reliable results.

There are differences in variables and elements to be filled out because construction accident data
are all different in forms managed by countries and companies. Therefore, to apply the analysis
method proposed in this study, the data standardization is necessary.
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