
applied  
sciences

Article

Clusters of Shaped Ultrasonic Transducers for Lamb
Waves’ DoA Estimation

Marco Dibiase 1 and Luca De Marchi 2,*
1 Department of Computer Science and Engineering, University of Bologna, 40136 Bologna, Italy;

marco.dibiase3@unibo.it
2 Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”,

University of Bologna, 40136 Bologna, Italy
* Correspondence: l.demarchi@unibo.it; Tel.: +39-051-2093777

Received: 27 October 2020 ; Accepted: 14 November 2020; Published: 17 November 2020 ����������
�������

Abstract: The direction of arrival (DoA) estimation of Lamb waves is a fundamental task to locate
acoustic events, such as those caused by impacts in plates or shells. To perform this task, a novel
cluster of piezoelectric sensors is presented in this work. The designed cluster is composed by
three irregularly shaped patch transducers (P1, P2 e P3). This is in contrast with the approaches
that are typically presented in literature which are based on isotropic piezo-disks. In our approach,
the transducers are shaped with a procedure based on the Radon Transform, so that the difference in
time of arrival (DToA) of the Lamb waves at patches P1 and P2 is linearly related to the DoA, while P3
is designed so that it is possible to perform the estimation of DoA without knowing the actual wave
velocity. The numerical validation shows that the performance in the DoA estimation achieved by
means of the proposed cluster compares favorably with respect to clusters of conventional sensors,
even in the case of noise-affected measurements.

Keywords: direction of arrival estimation; Acoustic source location; piezoelectric sensors;
shaped sensors; Lamb waves; Radon transform

1. Introduction

Structural Health Monitoring (SHM) systems [1], i.e., inspections systems based on permanently
installed sensors, have been intensively investigated in recent years, due to the high potential
that they have in reducing maintenance costs in a wide range of industrial application fields.
In particular, an increasing demand to develop SHM systems comes from the automotive and aerospace
industries [2]. In these fields, open challenges are: (i) the reduction of the monitoring system weight
(including the associated cabling and circuitry), the minimization of both (ii) the power consumption,
and (iii) the amount of data that are to be transferred and processed

Among the various sensor technologies proposed for SHM, those that are based on the usage
of ultrasonic guided waves (GWs), are considered to be particularly attractive because of the GW
property to travel across long distances with low attenuation. In particular, passive GW methods can
be used to detect and locate acoustic sources (AS) in plates or shells, such as those that are generated by
impacts, or acoustic emissions generated by cracks and corrosion, by using piezoelectric sensors [3,4].

The approaches presented in literature for AS localization with GW can be divided in three main
groups: (i) inverse methods [5,6], (ii) hyperbolic location methods [7], and (iii) methods that use
Direction of Arrival (DoA) estimations [8,9]. However, if the first two methods are well validated at
laboratory scale, these approaches are rarely adopted for field deployment, because of the stringent
hypotheses that they rely on. In particular, the first group implies onerous calculations because it
requires a very accurate modeling of the guided ultrasonic propagation, whereas the second group
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requires a large number of sensors in order to reduce the estimation uncertainty. Moreover, this latter
approach is unsuitable when the wave propagation characteristics vary in the monitored area. For these
reasons, the methods belonging to the third group, which estimate DoAs by using clusters of closely
located sensors that do not rely on the knowledge of the characteristics of propagation, are often the
only viable strategy to locate AS with embedded systems.

Kundu et al. in [9,10] proposed a simple cluster of 3 circular sensors. In this work, this solution
will be referred to as “conventional cluster”. The DoA is performed by estimating the Difference
in Time of Arrival (DToA) of wave-fronts between sensors. The DToAs, i.e., the time delays, can be
estimated with conventional cross-correlation procedures (i.e., the optimal method for measurements
that are affected by additive white Gaussian noise NWG with zero mean [11]). This cluster typology
allows for estimating the DoA with minimum amount of data to acquire (only three signals) and
reduced computational cost (only two time delays estimations). Such an approach was proven to be
suitable for real-field applications to perform real-time impact detection and localization [10]. It is
worth noting that Park, Packo, Kundu, and Sen in [12,13] showed that it is possible to estimate the
AS localization even in the case of heavily anisotropic structures (i.e., characterized by elliptical or
rhomboidal wave fronts).

In this work, we further investigate the concept of DoA detection via DToAs estimations,
by analyzing how beneficial the adoption of clusters constituted by irregularly shaped piezoelectric
transducers can be. In particular, in the proposed approach, the sensors are shaped with a procedure
based on the Radon Transform (RT) and its Inverse (IRT). This procedure allows to define the DToA
between two sensors as an arbitrary DoA function, divided by the wave velocity v, as better detailed
in Section 3. The RT approach was firstly presented in [14] in order to estimate the DoA by using
two shaped sensors when the actual wave velocity is assumed to be known. In another previous
work [15], the concept has been extended to the case of unknown velocity of propagation, designing a
cluster with three shaped sensors. It is worth noting that the relationship between DToA and DoA
affects the uncertainty in DoA estimation. In this paper, we define a new cluster of three shaped
sensors in order to further reduce the uncertainty with respect to [15]. The conducted numerical tests
show that the DoA estimation performed by the new cluster is more accurate than the one achieved
with the conventional cluster or with the cluster proposed in [15], and it is robust, even when the
measurements are affected by noise or acquired at low sampling frequencies. It is also worth noting
that the computational cost that is associated to the processing of the shaped cluster signals for DToA
estimation is fully equivalent to the one of conventional clusters, while the DoA estimation is even
simpler because it purely linear w.r.t the DToAs ratio, while the conventional approach is based on
trigonometric functions.

The experimental validation of the shaping concept is beyond the scope of this paper. Nevertheless,
it is worth mentioning that the proposed cluster of shaped sensors can be realized by relying on
different piezoelectric materials and manufacturing techniques. e.g., metallized PVDF (polyvinylidene
fluoride) sheets can be used by shaping the electrodes on the upper surface with a laser cut as in [16].
Alternatively, the shaping strategy can be based on printing metallic electrodes on PVDF films in order
to obtain the desired shape sensors, as proposed in [17], or by using litographic procedures as in [18].
In the practical adoption of these devices, a fundamental step is the definition of a well controlled
bonding procedure, because it may heavily affect the sensor response [19].

The paper is organized, as follows. In Section 2, by exploiting the Propagation of Uncertainty
theory [20], the functions that bind the DoA to the Differences in Time of Arrival (DToAs) of the
wavefront at piezo-patches P1 and P2, and at P1 and P3, are defined to reduce the uncertainty in
DoA estimation, when the wave mode velocity is not known. Section 3 shows how to implement the
desired functions by properly shaping the sensors in the context of guided waves, in particular of
Lamb waves. To this aim, the Radon Transform and its inverse are introduced. Section 4 validates
the theoretically expected performances with numerical simulations. The estimation of the DoA is
simulated in challenging working conditions, i.e., with noisy measurements or very low sampling
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frequencies, to emulate real field acquisitions. Moreover, a numerical comparison between the shaped
sensors cluster and the conventional cluster is provided. Finally, Section 5 depicts the conclusions.

2. Minimization of Uncertainty in Doa Estimation

The simplest sensor configuration to perform the wave DoA estimation is based on a couple
of isotropic transducers, i.e., the piezopatches P1 and P2 illustrated in Figure 1. Assuming a planar
wavefront, the Difference in Time of Arrival (DToA, ∆t) is related to the wave DoA (θ) by this formula:

∆t(θ) =
d · cos θ

v
(1)

where d is the distance among the sensors and v is wave velocity. Consequently, the estimation of the
DoA can be performed from the measured DToA (∆test) by applying the inverse formula:

θest = arccos
v · ∆test

d
(2)

The Propagation of Uncertainty theory [20] that is applied to this case reveals that the error in
the estimation can be very large for low values of θ. This is due to the non-linear characteristics of
the arccos relation. To counteract this problem, in [14], a sensor reshaping procedure was proposed in
order to achieve a linear dependence between the DToA and the DoA, so that:

∆t12(θ) =
α · θ + ρ0

v
=

ρ2(θ)

v
(3)

where ρ0 and α can be chosen by the designer. Thanks to new linear relation, the worst-case error
is constant over the considered range of angles (θ ∈ [00, 900]), and it is considerably lower than the
maximum error that is achieved using the conventional sensors. It is worth noting that the worst case
error is inversely proportional to the selected value of α. For this reason, the larger α the lower is
the error in the DoA estimation; however, there is a trade off involved in the selection of α, because,
the larger is α, the larger are the physical dimensions of the piezoelectric patches and the maximum
value of the DToA, which defines the time-window length of the acquired signal (i.e., the information
to be stored and processed).

Figure 1. A basic cluster of two circular piezo-sensors spaced apart by a distance d.

It is also worth noting that a cluster that is composed by two sensors can be used to estimate θ

just if the actual wave velocity v is assumed to be known. Therefore, if the velocity is not known a
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priori, a third sensor P3 is needed in order to estimate the DoA. In the proposed approach, the sensor
P3 is shaped, so that it establishes a constant reference to estimate the wave velocity, i.e.,

∆t13(θ) =
ρ3(θ)

v
=

ρ3c

v
(4)

(where ρ3c is a constant), the relation between the DToAs ratio and DoA is:

∆t12

∆t13
=

(ρ0 + αθ)

ρ3c
=

ρ2(θ)

ρ3c
(5)

In the last equation, it can be observed that the DoA θ is linked to the ratio of DToA by a simple
linear relation. Moreover, in order to estimate the DoA, the knowledge of the wave propagation
velocity is not necessary, because such quantity does not appear in (5). However, the third sensor P3
introduces an additional uncertainty in the DoA estimation due to ∆t13−est.

In particular, the worst case error can be very large when the DoA is around 90 [deg], if ρ0 is set
to 0. The Figure 2a shows the upper and lower bounds of worst case error for the shaped sensors cluster
proposed in [15]. It was designed for a work-range of [0, 90] [deg] and it was defined by the following
parameter values: d = 20 [mm], α = d/90 [deg] ' 0.22 [mm/deg], ρ0 = 0 [mm], ρ3c = −7 [mm].
The value of d defines the maximum absolute value of DToA, equal to d/v (in this case, obtained
when θ = 90 [deg], for piezo P2). Therefore, the value of d is redefined as the Maximum Difference in
Distance of Propagation (MDDP). It is worth noting that the MDDP, d ,in general, does not correspond
to the physical distance between the shaped sensors. The error bounds were computed and illustrated
for all of the clusters here considered by setting the value of the wave velocity v = 2000 [m/s] and
DToAs Standard Deviation equal to 2 [µs].

Figure 2. Upper and lower error bounds of two clusters of three shaped sensors to estimate the direction
of arrival (DoA), when the wave mode velocity is unknown: (a) the case of the cluster presented in [15].
(b) The new cluster of three shaped sensors.

The worst case error can be reduced by selecting an appropriate value for ρ0 (i.e., ρ0 so that
ρ2(45◦) = 0), or by working on a shifted range of angles, centered on the zero angle, i.e., θ ∈ [−45◦, 45◦].
In this case, the parameters α, ρ0 and ρ3 can be used in order to minimize the uncertainty in DoA
estimation. In particular, ρ0 should be equal to 0, while α and ρ3c are defined by selecting the maximum
absolute values of ∆t12(θ), ∆t13(θ), i.e., d/v, equal to the maximum absolute values of DToAs for
the conventional cluster. Limiting ∆t12, ∆t13 implies the limitation of the maximal dimensions of
the transducers, and also the relaxation of memory requirements for the storage and subsequent
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cross-correlation of the acquired time-waveforms. To summarize, the values of the parameters α, ρ0, ρ3c
and the functions ρ2(θ), ρ3(θ) are:

α = d/45[deg], ρ0 = 0, ρ3c = d
ρ2(θ) = α · θ, ρ3(θ) = ρ3c

(6)

In particular, the new shaped sensors cluster was designed, so that the MDDP is again
d = 20 [mm]. Figure 2b illustrates the worst-case error for this configuration, in terms of upper
and lower bounds.

Figure 3b shows the upper and lower bounds of the conventional cluster with three circular
sensors [9,10] with the MDDP equal to d = 20[mm] (this distance corresponds, for the circular sensors,
to the physical distances between sensors in Figure 3a). The cluster of shaped sensors that implements
the relations (3) and (4) with the parameters being detailed in Equation (6) allows for a theoretical
average reduction of the worst case error of 11%. It is important to stress the fact that the comparison
is provided with the same maximum absolute value for the DToAs (i.e., d/v). This means that the two
clusters have the same memory requirements and same computational cost to estimate the time delays.
It is also worth highlighting that the two clusters differ considerably in terms of DoA estimation
function: the conventional cluster requires the evaluation of the atan function of the DToAs ratio,
while the estimation function of the new cluster is simply linear w.r.t. the DToAs ratio. It is given by
inverting (5) with respect to θ. Therefore it is compatible with embedded systems that are equipped
with micro-controller units.

Figure 3. (a) The conventional cluster of 3 circular piezo-sensors spaced apart by a distance dCC =

20 [mm]. (b) Upper and lower error bounds of the conventional cluster.

Unfortunately, implementing a cluster of piezo-patches that are characterized by the DToA-DoA
relationships in (5) and (6) is not possible with simple piezo-disks. Shaped sensors have to be used,
but this introduces an additional complication: in fact, shaped sensors are generally characterized
by an angle-dependent wavenumber tuning effect [19], i.e., the frequency response of the transducer
depends on the direction of propagation of the incident wave. In turn, this effect may hamper the
possibility to extract the time difference of arrival with conventional cross-correlation procedures,
in which the response among different transducers is assumed to be the same. In the next section,
the method that was proposed in [14] to tackle this problem is reviewed and applied to the considered
three-sensor cluster case.
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3. The Radon Transform as Sensor Shape Design Tool

The goal of having transducers with the desired relations (3) and (4), is achieved if the sensors
are shaped so that the angle-dependent frequency responses VP2(ω, θ) and VP3(ω, θ) (of P2 and P3,
respectively) are linked to VP1(ω) (i.e., the isotropic one of the reference circular sensor P1), so that:

VP2(ω, θ) = VP1(ω) exp(−jk0(ω)ρ2(θ))

VP3(ω, θ) = VP1(ω) exp(−jk0(ω)ρ3(θ))
(7)

i.e., the frequency response of the three piezo patches should be equal but for a phase shift which is
proportional to the ρ2 and ρ3 quantities which we have introduced in the previous section. The term
k0(ω) is the wave vector-frequency relationship of a guide wave mode, i.e., the so called dispersion
curve of the Lamb wave that is captured by the sensor. Replacing k0(ω) with ω/v(ω) where v(ω)

is the phase wave velocity, under the hypothesis of narrow-band waves, the variations of v(ω)

can be neglected and, given ω0 the center frequency, a constant velocity v(ω0) can be considered.
The relationships (7) then create the relationships (3) and (4) over time.

To impose the relationships (7) three key elements can be exploited:

(a) The model of the frequency response of a sensor in the presence of a Lamb wave mode.
(b) The Radon Transform (RT) and its inverse (IRT).
(c) The Projection Slice Theorem.

For the element (a), the model that was proposed by Senesi and Ruzzene [21] can be adopted:

VP(ω) = jU(ω)k0(ω)HP(θ)DP(ω, θ) (8)

where U(ω) denotes the amplitude and the polarization of the wave component relevant to the piezo
properties of the patch at the considered frequency, k0(ω) is the wave vector that characterizes the
propagation, HP(θ) is a quantity that is related to the material properties of the piezo-structure system,
and finally DP(ω, θ) is the sensor Directivity function, which is the only function that is dependent on
the shape of the sensor. It can be computed by the following integral:

DP(ω, θ) =
∫

ΩP

e−jk0(ω)(x cos θ+y sin θ)φP(x, y)dxdy (9)

where φP(x, y) is referred to as shape function and it describes the shape of sensor as a step function
of form:

φP(x, y) =

{
1 (x, y) ∈ ΩP
0 (x, y) /∈ ΩP

(10)

with ΩP the area of the piezoelectric path. Without lack of generality, here we consider the
case of a single piezoelectric patch, with a single polarization and costant piezoelectric properties.
From Equation (9), the Directivity function can be computed as the bidimensional Fourier Transform
(FT) at the angle θ of the shape function φP(x, y). Furthermore, the output variable is evaluated in
k0(ω), the wave vector of the Lamb wave mode considered (e.g., A0, S0, etc. modes).

The element (b), which is the Radon Transform [22], is defined, as follows:

Rθ(ρ)[ϕ(x, y)] =
∫ ∫

ΩP

φ(x, y)δ(ρ− x cos θ − y sin θ)dxdy (11)

and it consists of multiple line-integrals. It admits inverse.
Finally (Point (c)), the Projection Slice Theorem [23] states that the bidimensional FT at the

angle θ of a given function, is equal to the mono-dimensional FT of the Radon Transform of that
function. This implies that the Directivity function, and therefore the frequency response, can simply
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be calculated as the monodimensional FT of the RT of the shape function and by evaluating into k0(ω).
As a consequence, the relations (3) and (4), i.e., (9) in frequency, with ρ2(θ) and ρ3(θ) specified in (6)
are obtained by imposing two suitable relations between the RT of sensor P1 and the RT of sensors
P2 and P3:

Rθ(ρ)[ϕ2] = Rθ(ρ− ρ2(θ))[ϕ1]

Rθ(ρ)[ϕ3] = Rθ(ρ− ρ3(θ))[ϕ1]
(12)

In conclusion, the synthesis procedure of the shape functions for sensors P2 and P3, which realizes
the cluster of the desired re-shaped sensors, can be summarized, as follows: consider an isotropic
circular reference sensor 1, then calculate its RT (constant over θ) and impose the RT of sensors P2 and
P3 by using (12) with ρ2(θ) and ρ3(θ) given by (6) (see Figure 4a,b). In particular, the shaped sensors
cluster was designed with d = 20[mm] (the Maximum Difference in Distance of Propagation).

By inverting these two RTs, we obtain two shape functions that are continuously modulated
(Figure 4c,d). In order to obtain two step functions, as in (10), a quantization procedure is imposed
by setting all values greater than a certain threshold to 1 and the others to 0. In this way, the desired
shape (step) functions can be obtained (as illustrated in Figure 4e,f).

Figure 4g,h shows the actual RTs (i.e., the RTs computed by the post quantization shape functions).
It is worth noting that they differ from the imposed RTs (Figure 4c,d), due to the binary quantization
procedure. To achieve a better matching between the imposed RT and the actual (post-quantization),
it can be beneficial to set ρ3(θ) constant, even beyond the considered work-range of angles, as shown
in Figure 4b. Figure 5 illustrates the designed cluster.

Figure 4. Cont.
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Figure 4. (a,b) Imposed RTs. (c,d) IRTs. (e,f) binary quantization of IRTs (Threshold values to binary
quantization equal to 30% and 25% of maximum values of IRTs for sensors P2 and P3 respectively).
(g,h) actual RTs. P2 and P3 are related to first and second column, respectively.

Figure 5. Designed cluster of three sensors: a reference circular sensor P1 and two reshaped sensors,
P2 and P3.

4. Numerical Results and Discussion

In order to validate the design procedure and the proposed shaped sensors cluster, as represented
in Figure 5, multiple impacts occurring on an aluminium plate (3 mm thick, Young’s modulus 70 GPa,
Poisson’s coefficient 0.3 and material density 2700 Kg/m3) were simulated. The response of the shaped
piezo-patches to impacts generating the fundamental antisymmetric mode (A0) was computed using
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the Greens function formalism adopted in [14]. An impulse response of a band pass Batterworh filter
(10th order) with narrow bandwidth (i.e., 7.5 [KHz]) was used in order to emulate the actuated pulse.
Subsequently, the estimated DToAs between P1 and P2, and the one between the P1 and P3 were
computed by the locating the peak of the cross-correlation of acquired signals (i.e., the Maximum
Likelihood (ML) estimator of DToA for measurements affected by additive white Gaussian noise
(AWGN) with zero mean [11]), and their ratio ∆t12est/∆t13est was used to estimate the DoA (θ).

The ideal estimation function, linearly dependent with respect to the ratio ∆t12est/∆t13est, could be
obtained by inverting (5) with respect to θ. However, due to binary quantization procedure, the actual
values of parameters α, ρ0 and ρ3c might be slightly different with respect to the imposed ones (6).
In Figure 6, it can be seen that, when a narrow-band Lamb wave mode (e.g., A0) is simulated,
the relationship between the DToA ratio and the DoA (θ) is still linear. The parameters of the best-fit line,
i.e., y-intercept m and slope q, can be computed by applying conventional linear regression procedures.

The estimated DoA (θest) as a function of its actual value (i.e., θ) for different working conditions
is shown in Figures 7 and 8, when the A0 mode propagation is simulated with r = 0.4 [m] as impacts
distance. In particular, the two figures report the results at different values of sampling frequency
(Fs) and at different values of Peak Signal to Noise Ratio (PSNR) when the measurements are affected
by additive white Gaussian noise (AWGN) with zero mean, respectively. As can be seen, the DoA
estimation is very accurate, with a standard deviation (SD) of DoA below three degrees, even when the
measurements are affected by Gaussian noise (up to the PSNR = 18 dB) and the simulated "physical"
sampling frequency is low (down to Fs = 100 KHz).

It is worth noting that:

1. In order to generate the Figure 7, the acquired signals were resampled (upsampling factor equal
to 10) to improve the estimation accuracy of DToAs and so of DoA. The sampling rate conversion
is the optimal method to reduce the uncertainty on DToAs (i.e., using sinc functions to interpolate),
but the computational cost can be significant. In embedded systems, such onerous processing may
be unfeasible. Possible alternatives consist in: (i) transmitting the acquired signals to a central
processing unit (CPU) or (ii) using different interpolation techniques with reduced computational
complexity, such as those proposed in [24,25].

2. The upper- and lower- bound errors that are displayed in Figure 7 are calculated by applying the
propagation of uncertainty theory [26].

3. In the Figure 8, to numerically assess the SD of DoA, 1000 simulations were performed with
measurements being affected by AWGN with zero mean, for each value of PSNR.

Figure 6. Estimated ratio of differences in time of arrival (DToAs) (∆t12est/∆t13est) with respect to the
actual DoA (θ) for the case of A0 mode propagating.

A numerical comparison of the performance in terms of SD between the conventional cluster
of three circular sensors and the designed cluster is given in Table 1, assuming that measurements
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are affected by AWGN with zero mean. The simulation of the A0 mode propagation was run when
considering r = 0.4 [m] as impacts distance and Fs = 1 [MHz]. In order to assess the SD of DoA
numerically, 1000 simulations were performed. The comparison is provided with the same maximum
absolute value for the DToAs (i.e., d/v), so with the same memory requirement and same computational
cost to estimate the time delays. As can be seen from Table 1, the SD value that is obtained with the
cluster of shaped sensors is considerably reduced for all PSNR values.

Table 1. Comparison of Standard Deviation (SD) for the conventional cluster and proposed cluster of
shaped sensors for noise-affected measurements at different Peak Signal to Noise Ratio (PSNR) values
(SD Values are in [Deg]).

PSNR Circular Sensors Shaped Sensors

26 dB 1.61 0.95
22 dB 1.98 1.34
20 dB 2.35 1.76
19 dB 2.63 2.01
18 dB 3.08 2.78
17 dB 3.98 3.79

Figure 7. Estimated DoA (θest) with respect to the actual DoA (θ) at different sampling frequency values
(indicated in the title of subplots, with the computed value of standard deviation of DoA) for the case
of A0 mode propagating (the upper and lower bound limits computed according to the Propagation of
Uncertainty theory on the basis of the ideal sensors geometries).
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Figure 8. Estimated DoA (θest) with respect to the actual DoA (θ) for noise-affected measurements
(additive white Gaussian noise) at different PSNR values (indicated in the title of subplots, with the
computed value of standard deviation of DoA). The plotted results were computed by simulating the
A0 mode propagation, with Fs = 1 MHz.
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5. Conclusions

In this work, a new shaped piezo-sensors cluster for direction of arrival (DoA) estimation of
Lamb waves is proposed. The DoA estimation is performed by measuring the differences in time of
arrival (DToAs) of the wave fronts between the sensors that belong to the cluster that is composed by
three piezo patches. The shaping of the piezo-patches is designed, so that, given a reference sensor
P1 (a piezo-disk), there is a linear dependence between the difference in time of arrival (DToA) of the
wavefront between P1 and P2 and the DoA, whereas the DToA between P1 and P3 is constant across the
considered range of DoA. In this way, the DoA estimation can be performed with reduced uncertainty
and without knowing the actual wave mode velocity.The shaping of P2 and P3, which produces
the mentioned relations between DToA and DoA, is achieved by exploiting the properties of the
direct and inverse Radon Transform, in order to impose equal frequency amplitude responses for the
sensors in the cluster. Therefore, the cross-correlation procedure can be used in order to estimate the
DToAs between sensors. The numerical validation shows that the DoA estimation performance of
the new designed cluster is very robust even when the sampling frequency and the signal to noise
ratio decrease, and compares favorably with respect to conventional clusters of three circular sensors.
Future developments include the validation of the numerical results with laboratory experiments.
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The following abbreviations are used in this manuscript:

DoA Direction of Arrival
DToA Difference in Time of Arrival
FT Fourier Transform
RT Radon Transform
IRT Inverse Radon Transform
MDDP Maximum Difference in Distance of Propagation
SD Standard Deviation
PSNR Peak Signal to Noise Ratio
ML Maximum Likelihood
Fs Sampling Frequency
AWGN Additive White Gaussian Noise
ADC Analog to Digital Converter
CPU Central Processing Unit
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