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Abstract: With the development of Industry 4.0, additive manufacturing will be widely used to
produce customized components. However, it is rather time-consuming and expensive to produce
components with sound structure and good mechanical properties using additive manufacturing
by a trial-and-error approach. To obtain optimal process conditions, numerous experiments are
needed to optimize the process variables within given machines and processes. Digital twins (DT)
are defined as a digital representation of a production system or service or just an active unique
product characterized by certain properties or conditions. They are the potential solution to assist in
overcoming many issues in additive manufacturing, in order to improve part quality and shorten the
time to qualify products. The DT system could be very helpful to understand, analyze and improve
the product, service system or production. However, the development of genuine DT is still impeded
due to lots of factors, such as the lack of a thorough understanding of the DT concept, framework,
and development methods. Moreover, the linkage between existing brownfield systems and their
data are under development. This paper aims to summarize the current status and issues in DT for
additive manufacturing, in order to provide more references for subsequent research on DT systems.

Keywords: additive manufacturing; digital twins; industry 4.0

1. Introduction

Nowadays, an increasing number of customized products are needed, which is limited by the
capability of the traditional manufacturing methods. Additive manufacturing (AM) is a relatively new
way of providing them which is fundamentally different from formative or subtractive manufacturing.
The designed structure can be built layer-by-layer directly, instead of casting, forging, or machining [1].
Through this method, nearly all kinds of non-standard structure and irregular workpieces can be
made directly without wasting many materials. Thus, additive manufacturing is becoming one of
the vital elements of the industrial revolution [2]. However, to produce components with sound
structure and good mechanical properties, an optimized combination of appropriate parameters is
important. To obtain optimal parameter combination only by trial and error is rather expensive, wastes
material, and is time consuming, because numerous experiments are needed to optimize the process
variables within given machines and parameter combination [3–6]. In-depth research is underway on
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the technologies of digitization, simulation [7–9], big data, and machine learning [10–12]. And there is
a new approach, namely digital twins (DT), to overcome many additive manufacturing issues, such as
improving part quality and shortening the time to qualify products. Digital twins are defined as a
digital representation of a production system or service or just an active unique product characterized
by certain properties or conditions. Through this method, the real physical world could be described
by a cyber world. Thus, the physical properties of the components or equipment could be reflected in
real-time by the digital model, which is visual and more easily observed. The digital twin system could
be helpful to understand, analyze and improve the product, service system or production [13–15].

Thus, the digital twin approach can impact the additive manufacturing process by optimizing the
process parameters, detecting, and monitoring the process faults, reducing the computational burden
for multi-scale modeling, and dealing with the large volume of in situ sensor data [16].

Digital twins are being explored and gradually used in fields such as maintenance, repair, and
overhauls etc., for example, decisionLab Ltd. and Siemens have developed a digital twin, ATOM,
which can visualize fleet and maintenance facility operations, capture and predict key performance
indicators (KPIs) of the system, and even quickly run a virtual and detailed scenery to help make
decision of investment, driven by live data already available within the supply chain. However,
the utilization of this technology in AM is still being developed. A lot of work is needed in order to
push the digital twin technology forward to serve AM technology.

Here, we searched hundreds of papers in the database of Web of Science, Scopus, Standards,
Google Scholar etc. with the key words: Digital Twin (DT), Cyber Physical System (CPS), Additive
Manufacturing (AM), Internet of Things (IoT), Big Data, Industry 4.0, Machine Learning etc., and selected
the papers that focused on “digital twin for additive manufacturing”, or used relevant methods to
promote the use of or research into DT in AM, summarized or mentioned the current situation of
relevant technologies that could make contributions to the research of DT for AM. By studying and
analyzing these papers, we organized this article to provide a reference for the researchers interested
in this topic.

2. State of the Art of Digital Twin for Additive Manufacturing

The concept of digital twins was firstly proposed by National Aeronautics and Space
Administration (NASA) to monitor the behaviors of a satellite. Using this method, the possible
changes in the settings could also be simulated. NASA wanted to explore the space using a digital
twin replica of the physical system [17]. After that, various studies were undertaken to develop this
technology. Till now, it has been constructed and utilized for different manufacturing processes by
many industries and government agencies [15].

Recent studies and research indicate that construction of a first-generation digital twin of AM
is achievable. However, this technology is still in its infancy, and facing various research challenges.
The components required to construct a digital twin of AM hardware, software, and related technologies
are still under development and much work is still needed to fulfil its full functions [3].

DebRoy, Yang and their co-workers did lots of the pioneering work in this area [3,15,18].
They provided an overarching framework for the implementation, undertook lots of explorations
to demonstrate this concept within the AM research community, and provided a perspective of the
current status and research needed for the main building blocks of a first-generation digital twin of
AM. In their research, they refer to the approach as the digital twin for AM and suggested that a digital
twin of 3D printing [3,18] consists of a mechanistic model, a sensing and control model, a statistical
model, as well as big data and machine learning, as shown in Figure 1.
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Knapp et al. [18] presented a novel framework of a mechanistic model to predict the melt-pool 
level phenomena. The 3D curved surface deposit geometry for single-pass deposits, transient 
temperature and velocity distributions, cooling rates, solidification parameters, and secondary 
dendrite arm spacing and micro-hardness were accurately estimated by the proposed building 
blocks in a computationally efficient manner. The author called it blocks of a first-generation digital 
twin of AM. 

Yang [19] provided gray-box modeling for a powder bed fusion AM process and demonstrated that 
it can lower predictive errors, as shown in Figure 2, the basic idea of Yang’s team is to make predictions 
through calculation based on the data obtained, and gray-box modeling is the term used by them, not 
digital twin. 
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Gaikwad et al. [16] demonstrated an early foray of the digital twin paradigm for real-time 
process monitoring and defect prediction. In this research, the combination of physics-driven 
predictions with in-situ sensor data and machine learning led to higher statistical fidelity in 
detecting process flaws. The experiments of laser powder bed fusion (LPBF) and directed energy 
deposition (DED) metal AM processes were both conducted. The results substantiated this 
conclusion. 

Figure 1. Logical representation of the digital twin for additive manufacturing (AM) [9,15].

Knapp et al. [18] presented a novel framework of a mechanistic model to predict the melt-pool level
phenomena. The 3D curved surface deposit geometry for single-pass deposits, transient temperature
and velocity distributions, cooling rates, solidification parameters, and secondary dendrite arm spacing
and micro-hardness were accurately estimated by the proposed building blocks in a computationally
efficient manner. The author called it blocks of a first-generation digital twin of AM.

Yang [19] provided gray-box modeling for a powder bed fusion AM process and demonstrated
that it can lower predictive errors, as shown in Figure 2, the basic idea of Yang’s team is to make
predictions through calculation based on the data obtained, and gray-box modeling is the term used
by them, not digital twin.
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Gaikwad et al. [16] demonstrated an early foray of the digital twin paradigm for real-time process
monitoring and defect prediction. In this research, the combination of physics-driven predictions with
in-situ sensor data and machine learning led to higher statistical fidelity in detecting process flaws.
The experiments of laser powder bed fusion (LPBF) and directed energy deposition (DED) metal AM
processes were both conducted. The results substantiated this conclusion.
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Chhetri et al. [20] did the first work that demonstrated how dynamic data-driven application
systems enabled a feature re-ranking method that can help in keeping the digital twin up-to-date,
as shown in Figure 3. The key performance indicator is the surface texture of the product and dimension
of the object, which is simple and easy to observe. This could be taken as a prediction of the components’
“shape”, and the target is in a plastic form, which is quite different from the additive manufacturing of
metal components.
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cyber-physical system [20].

All in all, the digital twin in additive manufacturing is a new concept, and the recent research has
mainly focused on verifying the concept to predict the temperature distribution and thus to compute
the defects that may occur and the relative properties such as the hardness and thermal strain [18].
Basically, the methods are mainly based on the finite element method, finite difference, level set
method, volume of fluid method with finite difference method, lattice Boltzmann method and arbitrary
Lagrangian–Eulerian, etc. [3]. They are more likely to be called “simulation” instead of “digital twin”.

3. Major Issues and Research Needs

3.1. Real Time

A real-time digital representation of the physical domain in additive manufacturing is needed,
to accurately monitor, predict, and control the process. The state of the physical world keeps changing
as it continuously interacts with the environment and is influenced by humans. As this may affect the
quality of the products, how to predict these interactions and effects of environments is a key factor
that needs to be considered [20].

Another main challenge in realizing the real-time digital twin of AM is the computational burden
involved in obtaining the heat transfer and thermal distribution, melt-pool solidification, residual stress
and distortion, structures and properties of the printed products, and the operation conditions of the
machines [3,16]. The appropriate sensors could obtain some data such as the temperature distribution.

However, a lot of information needs to be computed and simulated, which is very time consuming
based on the currently available computing capabilities. Currently, for the prediction of temperature
distribution inside an AM part that is being printed with non-proprietary mesh-based finite element
(FE) models will take at least several hours, if not days [16,21–23]. Knapp et al. built a block for a
digital twin for laser-directed energy deposition additive manufacturing. Around 3.5 billion linear
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equations are solved for the deposition of one layer, which takes approximately 50 min in a personal
computer with 3.40 Gigahertz i7 processor and 8 Gigabyte RAM (random access memory) [18].

A graph-theoretic computational heat transfer approach was used to predict the temperature
distribution parts. It costs 10% of the time required by FE analysis and the error was 10% lower [16,24].
This method is operated based on the mathematical premise of a spatial matrix and derivatives
represented by the continuous Laplacian operator. This may be a new solution, but further verifications
are needed.

3.2. Database and Models

The digital twin of AM needs plenty of data to train the model to improve the accuracy of the
model. The data could come from experiments, literature, sensors, numerical simulation. However,
to collect and classify a sufficiently large volume of useful data is intractable, and usually the concepts
of the Internet of Thing (IoT) and cloud computation may be necessary. To date, in actual production,
the big data obtained from a product’s lifecycle is still isolated, fragmented, and stagnant because the
convergence between the product’s physical and virtual space is lacking [25], which made it difficult to
utilize the data.

There are several types of additive manufacturing processes and many kinds of materials in the
forms of wire and powder in different sizes. If the environment during the additive process is considered
in modeling, lots of models are needed due to the various combinations, and too much data need to be
collected to verify and train the models. Therefore, in order to reduce the computational burden, there is
a great need for a temperature-dependent thermophysical properties database for commonly used
engineering alloys [3]. Several different types of metal additive manufacturing processes are illustrated
in Figure 4, including the directed energy deposition (DED) and powder bed fusion (PBF). They differ
in the type of feedstock (powder or wire) and the heat sources (laser, plasma, electronic beam, or gas
metal arc) [26]. For each of the commonly used additive manufacturing processes, there should be a
standard model, in every different condition (different kinds of materials, protecting gas, machines
etc.). The model could be used for the variation of parameters and environments. The users just need
to input the data to get the real-time digital twin of the additive manufacturing process. There is still a
long way to go to achieve this goal.
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3.3. Prediction of the Additive Manufacturing (AM) Results

By now, additive manufacturing is still used in a trial-and-error fashion. Lots of experiments
should be done and lots of specimens will be destructively tested to check the microstructures and
mechanical properties. If a site-specific part is expected, prediction of the AM results is rather important.
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Through the concept of the digital twin, it will be possible to predict the results (geometry,
microstructures, and mechanical properties) according to accurate heat transfer models and mechanical
models as shown in Figure 5 [15], before actual additive manufacturing, which will provide great help
in finding the optimal combination quickly without wasting too much time and material. Currently,
the prediction for the AM parts is more likely focused on the distortion and temperature distribution,
based on the basic ideas of dividing the part into different unit of grids, and by computing the properties
of the grids to obtain the properties of the integral part.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 10 

3.3. Prediction of the Additive Manufacturing (AM) Results 

By now, additive manufacturing is still used in a trial-and-error fashion. Lots of experiments 
should be done and lots of specimens will be destructively tested to check the microstructures and 
mechanical properties. If a site-specific part is expected, prediction of the AM results is rather 
important. 

Through the concept of the digital twin, it will be possible to predict the results (geometry, 
microstructures, and mechanical properties) according to accurate heat transfer models and 
mechanical models as shown in Figure 5 [15], before actual additive manufacturing, which will 
provide great help in finding the optimal combination quickly without wasting too much time and 
material. Currently, the prediction for the AM parts is more likely focused on the distortion and 
temperature distribution, based on the basic ideas of dividing the part into different unit of grids, 
and by computing the properties of the grids to obtain the properties of the integral part. 

 

Figure 5. Mechanistic model of 3D printing to predict the results. 

Some simulations of the additive manufacturing process are similar to those of welding [4,27], 
which has been researched in more depth and more well-published knowledge could be leveraged, 
including prediction of weld metal solidification [28,29] solid-state transformation under single and 
multi-pass conditions [30,31], as well as static and dynamic mechanical properties [32–36]. Song et al. 
[9] developed a robust numerical model to simulate convective fluid flow and balancing of surface 
tension forces at the air–fluid interface. An arbitrary Lagrangian–Eulerian (ALE) moving mesh 
approach was used to calculate the free surface physical interface. Finally, they successfully 
predicted the thermal gradient directions and solidified clad dimension. The experimental 
validation of clad with height and melt-pool depth in various processing parameters were all lower 
than 10%. 

Predicting the thermal history, parts’ distortion, microstructure, and mechanical properties are 
vital. It is also one of the main significant elements of a digital twin for additive manufacturing. Only 
through prediction of the aforementioned information could it be possible to optimize the 
parameters and control the process, monitor the conditions, and get the expected results. However, 
actual tailoring of the final component’s properties based on the predictive model is still a long way 
off [18]. 

3.4. Internet of Things 

To adopt a digital twin in additive manufacturing, an effective Internet of Things system is one 
of the key tools for each part of the system to be linked. A smart connection for the sensors, 

Figure 5. Mechanistic model of 3D printing to predict the results.

Some simulations of the additive manufacturing process are similar to those of welding [4,27],
which has been researched in more depth and more well-published knowledge could be leveraged,
including prediction of weld metal solidification [28,29] solid-state transformation under single and
multi-pass conditions [30,31], as well as static and dynamic mechanical properties [32–36]. Song et al. [9]
developed a robust numerical model to simulate convective fluid flow and balancing of surface tension
forces at the air–fluid interface. An arbitrary Lagrangian–Eulerian (ALE) moving mesh approach was
used to calculate the free surface physical interface. Finally, they successfully predicted the thermal
gradient directions and solidified clad dimension. The experimental validation of clad with height and
melt-pool depth in various processing parameters were all lower than 10%.

Predicting the thermal history, parts’ distortion, microstructure, and mechanical properties are
vital. It is also one of the main significant elements of a digital twin for additive manufacturing.
Only through prediction of the aforementioned information could it be possible to optimize the
parameters and control the process, monitor the conditions, and get the expected results. However,
actual tailoring of the final component’s properties based on the predictive model is still a long way
off [18].

3.4. Internet of Things

To adopt a digital twin in additive manufacturing, an effective Internet of Things system is one of
the key tools for each part of the system to be linked. A smart connection for the sensors, equipment
and system should be effectively achieved. Massive amounts of data in the additive process will be
generated and collected to create a digital twin that interacts with the cyber domain by means of the
Internet of Things. However, the linkage between existing brownfield systems and their data is under
development [7]. There is lots of heterogeneous equipment in an additive manufacturing system.
For example, laser-detected energy deposition (DED-L) needs a laser generator to provide power,
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optics to guide and shape the laser beam, a powder feeder or wire feeder to deliver feedstock, a robot
or a CNC unit [37] to control and execute the additive manufacturing process, etc. A lot of sensors are
needed to monitor the conditions of the process and machines. In order to collect and analyze large
amounts of useful data from the equipment and the manufacturing process, how to realize the linkage
and smart connection of the hardware and software remains a problem.

As indicated by Tao et al. [38], current solutions have not tended to realize smart interconnections
in dealing with heterogeneous equipment, quick configuration and implementation, and online
service generation, and the flexibility in connectivity and interactive messaging [39,40] are also
very challenging.

In order to realize smart connections for various manufacturing resources,
an Industry-Internet-of-Thing Hub (IIhub) based on a Cyber Physical System (CPS) framework was
proposed. However, the acquisition of full compatibility for various communication protocols and
interfaces is still challenging, and introducing digital twin technology on the shop-floor [38,41] to
control the mechanism from cyber space to physical space is also in the workflow of the future.

3.5. Machine Learning

To achieve a digital twin for an additive manufacturing system and process, the concept of
data driving is rather important, which is based on the technology of machine learning [42–47].
Through learning from data gathered from various resources such as simulation, experiments,
literature, machine learning could make reliable predictions [48,49] on microstructure, properties and
defects. This technology could extract helpful information and relationships from data instead of
from phenomenological guidance or explicit programming; and the solution of complex equations
from physical and math problems based on phenomenological understanding could be avoided.
Thus, the calculations are rapid [50]. The quality and volume of data will decide the accuracy of the
predictions [26]. Ren [10] et al. used a verified thermal field prediction numerical model for Laser
Aided Additive Manufacturing (LAAM) to create training data for a physical-based machine-learning
algorithm, a combined recurrent neural networks and deep neural networks (RNN–DNN) model
was used to make a prediction of the thermal field. The numerical simulation and the RNN-DNN
predictions showed agreement of more than 95%.

To obtain a real-time and accurate prediction of the microstructures and mechanical properties,
or the occurrence of defects, machine learning is a useful and effective tool, and it is not difficult to
build machine-learning programs due to well-tested, user-friendly, and reliable algorithms.

4. Conclusions and Outlook

The AM plays an important role in advanced manufacturing in the age of Industry 4.0. Currently,
it is still carried out in a trial-and-error fashion, where many builds are done before the optimal printing
conditions are found, with a corresponding waste of material, machine operator time, and printer
depreciation. The digital twin is a new way to overcome many additive manufacturing issues, such as
process simulation, process monitoring and control. It can help to understand in depth the roles of
various manufacturing parameters, and the sensitivity of these parameters to the product quality.
Furthermore, it can provide feedback information for active control of the manufacturing process.

It is not difficult to imagine that, the digital twin technology could make the whole additive
manufacturing visualized, and the KPIs of the components could be quickly and precisely predicted
with the input parameters, and that it will tell you what are the bottlenecks and risks for the system to
manufacture the part. With the IoT, live data driving could optimize the process as long as you tell the
system what you want.

The first generation of digital twins for additive manufacturing is still developing. This technology
is able to push additive manufacturing forward. However, lots of work needs to be carried out on
developing models, databases, machine learning, integration of the equipment, and algorithms to deal
with data, and predict the results.
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