
applied  
sciences

Article

Profitable Double-Spending Attacks

Jehyuk Jang and Heung-No Lee *

School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST),
123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; jjh2014@gist.ac.kr
* Correspondence: heungno@gist.ac.kr

Received: 9 November 2020; Accepted: 25 November 2020; Published: 27 November 2020;
Corrected: 15 September 2022

����������
�������

Abstract: Our aim in this paper is to investigate the profitability of double-spending (DS) attacks that
manipulate an a priori mined transaction in a blockchain. It was well understood that a successful DS
attack is established when the proportion of computing power an attacker possesses is higher than that
of the honest network. What is not yet well understood is how threatening a DS attack with less than
50% computing power used can be. Namely, DS attacks at any proportion can be a threat as long as
the chance to make a good profit exists. Profit is obtained when the revenue from making a successful
DS attack is greater than the cost of carrying out one. We have developed a novel probability theory
for calculating a finite time attack probability. This can be used to size up attack resources needed to
obtain the profit. The results enable us to derive a sufficient and necessary condition on the value of
a transaction targeted by a DS attack. Our result is quite surprising: we theoretically show how a
DS attack at any proportion of computing power can be made profitable. Given one’s transaction
value, the results can also be used to assess the risk of a DS attack. An example of profitable DS attack
against BitcoinCash is provided.

Keywords: blockchain; double-spending attack; Fraud risk analysis; profitability; time-finite analysis;
probability distribution; combinatorics

1. Introduction

A blockchain is a distributed ledger which has originated from the desire to find a novel alternative
to centralized ledgers such as transactions through third parties [1]. Besides the role as a ledger,
blockchains have been applied to many areas, e.g., managing the access authority to shared data in
the cloud network [2] and averting collusion in e-Auction [3]. In a blockchain network based on the
proof-of-work (PoW) mechanism, each miner verifies transactions and tries to put them into a block
and mold the block to an existing chain by solving a cryptographic puzzle. This series of processes is
called mining. However, the success of mining a block is given to only a single miner who solves the
cryptographic puzzle for the first time. The reward of minting a certain amount of coins to the winner
motivates more miners to join and remain in the network. As a result, blockchains have been designed
so that the validity of transactions is confirmed by a lot of decentralized miners in the network.

A consensus mechanism is programmed for decentralized peers in a network to share a common
chain. If a full-node succeeds in generating a new block, it has the latest version of the chain. All of the
nodes in the network continuously communicate with each other to share the latest chain. A node
may run into a situation in which it encounters mutually different chains more than one. In such a
case, it utilizes a consensus rule with which it selects a single chain. Satoshi Nakamoto suggested the
longest chain consensus for Bitcoin protocol in which the node selects the longest chain among all
competing chains [1]. There are also other consensus rules [4,5], but a common goal of consensus rules
is to select the single chain by which the most computation resources have been consumed based on
the belief that it may have been verified by the largest number of miners.
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A double-spending (DS) attack aims to double-spend a cryptocurrency for the worth of which
a corresponding delivery of goods or services has already been completed. The records of payment
are written in transactions and shared in a network via the status-quo chain. Thus, to double spend,
attackers need to replace the status-quo chain in the network with their new one, after taking the goods
or services. For example, under the longest chain consensus, this attack will be possible if an attacker
builds a longer chain than the status-quo. Nakamoto [1] and Rosenfeld [6] have shown that the higher
computing power is employed, the higher probability to make a DS attack successful is. In addition,
if an attacker invests more computing power than that invested by a network, a success of DS attack is
guaranteed. Such attacks are called the 51% attack.

In the last few years, unfortunately, blockchain networks have been recentralized [7,8], which make
them vulnerable to DS attacks. To increase the chance of mining blocks, some nodes may form a pool
of computing chips. The problem arises when a limited number of pools occupy a major proportion of
the computing power in the network. For example, the pie chart (date accessed from BTC.com on
November 24, 2020) shown in Figure 1 illustrates the proportion of computing power in the Bitcoin
network as of January 2020. In the chart, five pools such as F2Pool, BTC.com, Poolin, and Huobi.pool
occupy more than 50% of the total computing power of Bitcoin. In a recentralized network, since most
computing resources are concentrated on a small number of pools, it could be not difficult for them to
conspire to alter the block content for their own benefits, if aiming to double-spend. Indeed, there
have been a number of reports in 2018 and 2019 in which cryptocurrencies such as Verge, BitcoinGold,
Ethereum Classic, Feathercoin, and Vertcoin suffered from DS attacks and millions of US dollars have
been lost [9].

Figure 1. Computation power distribution among the largest mining pools.

In addition to the recentralization, the advent of rental services which lend the computing resources
can be a concern as well [10]. Rental services such as nicehash.com which provide a brokerage service
between the suppliers and the consumers have indeed become available. The rental service can
be misused for making DS attacks easier. The presence of such computing resource rental services
significantly reduce the cost of making a profit from double spending. This is because renting a
required computing power for a few hours is much cheaper than building such a computing network.
Indeed, nicehash.com attracts DS attackers to use their service by posting one-hour fees for renting 51%
of the total computing power against dozens of blockchain networks on their website crypto51.app
(accessed on 26 November 2020).

Success by making DS attacks is possible but is believed to be difficult for a public blockchain
with a large pool of mining network support. By the results in [1,6], 51% attack has been considered as
the requirement for a successful DS attack [11]. This conclusion however shall be reconsidered given
our result in the sequel that there are significant chances of making a good profit from DS attacks
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regardless of the proportion of computing power. The problem to consider, therefore, is to analyze the
profitability of such attacks.

The analysis of attack profitability requires the ability to predict the time an attack will take,
since the profit would be a function of time. Studies in [12–20] provided DS attack profitability analyses,
but their time predictions were not accurate. Specifically, to make the time prediction easier, they either
added impractical assumptions to the DS attack model defined by Nakamoto [1] and Rosenfeld [6]
or oversimplified the time prediction formula (see Section 6 for details). Whereas, we follow the
definition of DS attack in [1,6], and therefore we need to develop a new set of mathematical tools for
precise analysis of attack profitability that we aim to report in this paper.

1.1. Contributions

We study the profitability of DS attacks. The concept of cut-time is introduced. Cut-time is defined
to be the duration of time, from the start time to the end time of an attack. For each DS attempt,
the attacker needs to pay for the cost to run his mining rig. A rational attacker would not, therefore,
continue an attack indefinitely especially when operating within the regime of less than 50% computing
power. To reduce the cost, the attacker needs to figure out how his attack success probability rolls
out to be as the time progresses. We define that a DS attack is profitable if and only if the expected
profit, the difference between revenue and cost (see Equation (33)), is positive. Our contributions are
summarized into two folds:

First, we theoretically show that DS attacks can be profitable not only in the regime of 51% attack
but also in the sub-50% regime where the computing power invested by the attacker is smaller than
that invested by the target network. Specifically, a sufficient and necessary condition is derived for
profitable DS attacks on the minimum value of target transaction. In the sub-50% regime, we also show
that profitable DS attacks necessitate setting a finite cut-time.

Second, we derive novel mathematical results that are useful for an analysis of the attack
success time. Specifically, the probability distribution function and the first moment expectation
of the attack success time have been derived. They enable us to estimate the expected profit of a
DS attack for a given cut-time. All mathematical results are numerically-calculable. All numerical
examples of the theoretical results given in this paper are reproducible in our web-site (https:
//codeocean.com/capsule/2308305/tree).

1.2. Organization of the Paper

In Section 2, we define DS attack scenario and sufficient and necessary conditions required for
successful DS attacks. Also, we define random variables that are useful in analyzing the attack profits.
Section 3 comprises the analytic results of stochastics of the time-finite attack success. In Section 4,
we define the profit function of DS attacks, followed by new theoretical results about the conditions for
making them profitable. In Section 5, an example analysis of DS attack profitability in sub-50% regime
against BitcoinCash network is given. Section 6 compares our results with related works. Finally,
Section 7 concludes the paper with a summary.

2. The Attack Model

We define DS attack that we consider throughout this paper. We also define DS attack achieving
(DSA) time, which is the least time spent for an occurrence of double-spending. The DSA time is a
random variable derived from a random walk of Poisson counting processes (PCP).

2.1. Attack Scenario

We extend a DS attack scenario which has been considered by Nakamoto [1] and Rosenfeld [6].
Specifically, we add a time-finite attack scenario. There are two groups of miners, the normal group of
honest miners and a single attacker. The normal group tends the honest chain.

https://codeocean.com/capsule/2308305/tree
https://codeocean.com/capsule/2308305/tree
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When the attacker decides to launch a DS attack, he/she makes a target transaction for the payment
of goods or services. In the target transaction, the transfer of cryptocurrency ownership from the
attacker to a victim is written. We denote t = 0 as the time at which the last block of the honest chain
has been generated. At time t = 0, the attacker announces the target transaction to normal group so
that normal group starts to put it into the honest chain. At the same time t = 0, the attacker makes a
fork of the honest chain which stems from the last block and builds it in secret. We refer to this secret
fork as fraudulent chain. In the fraudulent chain, a fraudulent transaction is contained which alters the
target transaction in a way that deceives the victim and benefits the attacker.

Before shipping goods or providing services to the attacker, the victim will obviously choose to
wait for a few more blocks on the honest chain in addition to the block on which the his/her transaction
has been entered, i.e., so-called block confirmation. Karame et al. [21] showed the importance of block
confirmation: attackers are able to double-spend against zero block-confirmation even without mining
a single block on the fraudulent chain at all. The number of blocks the victim chooses to wait for is
referred to as the block confirmation number NBC ∈ N, which includes the block on which the target
transaction is entered.

The attacker chooses to make the fraudulent chain public if his/her attack was successful.
An attack is successful if the fraudulent chain is longer than the honest chain after the moment the block
confirmation is satisfied. We define two necessary conditions G(1), G(2), for a success of DS attack:

Definition 1. A DS attack succeeds only if there exists a DS attack achieving (DSA) time TDSA ∈ (0,∞)

such that

1. G
(1): (block confirmation) the length of the honest chain for the duration of time TDSA has grown greater

than or equal to NBC, and
2. G

(2): (success in PoW competition) the length of the fraudulent chain for the duration of time TDSA has
grown longer than that of the honest chain.

Rational attackers will not wait for his success indefinitely since growing the attacker’s chain
incurs the expense per time spent for operating the computing power. The attack thus shall put a limit
to the end time to cut loss. We refer to this end time as the cut-time tcut ∈ R+. A sufficient condition for
the success of DS attack can be defined with applying the cut-time tcut:

Definition 2. For a given cut-time tcut ∈ R+, the success of DS attack is declared if, and only if, there exists a
DSA time TDSA ∈ (0, tcut) at which G(1) and G(2) in Definition 1 have been achieved.

2.2. Stochastic Model

We model the conditions in Definition 2 with a stochastic model. We fit the block generation
process using the PCP [22] with a given block generation rate λ (blocks per second). Including
Nakamoto [1] and Rosenfeld [6], it has been most conventional to analyze the block generation process
of a blockchain using PCP. A rationale why the block generation process is modeled as PCP is given
in Bowden et al. [23], where experiments show the fitness of PCP model to real data samples from a
live network.

We denote the lengths of the honest chain and the fraudulent chain over time t ∈ (0,∞] by two
independent PCPs, H(t) ∈ N0 with the block generation rate λH (blocks per second) and A(t) ∈ N0 with
the block generation rate λA, respectively. Both processes start at the time origin t = 0 (at which the DS
attack is launched) at which the both chains are at the zero states, i.e., H(0) = A(0) = 0. Each chain
independently increases at most by 1 at a time point. An increment of 1 in the counting process occurs
when the pertinent network adds a new block to its chain.
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We represent the difference between A(t) and H(t) in a discrete-time domain as a random walk
Si ∈ Z for i ∈ N. For this purpose, we first define two continuous stochastic processes M(t) and S(t),
which are respectively defined as

M(t) := H(t) + A(t), (1)

and
S(t) := H(t) −A(t). (2)

The first process M(t) is also a PCP [22] with the rate

λT := λA + λH. (3)

The second process S(t) is the continuous-time analog of the random walk Si ∈ Z for i ∈ N
such that

Si := S(Ti), (4)

where Ti is the state progression time defined by

Ti:= inf
{

t ∈ R+ : M(t) = i
}
, (5)

which increases as i increases. Random walk Si is a stationary Markov chain starting from S0 = 0.
The state transition probabilities [22] are given by

pA := Pr(Si = n− 1|Si−1 = n) =
λA
λT

, (6)

and
pH := Pr(Si = n + 1|Si−1 = n) =

λH

λT
, (7)

for all i ∈ N and n ∈ Z. The state transition probabilities pH and pA are the proportions of computing
power occupied by the normal miners and that by the attacker, respectively.

We define independent and identically distributed (i.i.d.) state transition random variables
∆i ∈ {±1} ∼ Bernoulli(pH) as

∆i := Si − Si−1, (8)

for i ∈ N. Note that Si =
∑i

k=0 ∆k.

Definition 3. A DS attack DS(pA, tcut; NBC) is a random experiment that picks a sample ω ∈ Ω. Each element
ω is an infinite-length sequence of pairs of Ti and ∆i in Equations (5) and (8) for all i ∈ N, i.e.,

ω := ((T1, ∆1), (T2, ∆2), · · · , (T∞, ∆∞)). (9)

The set Ω is the universal set of all possible ω, i.e.,

Ω :=
{
ω ∈

{
R+
× {±1}

}∞}
. (10)

For given a DS sample ω ∈ Ω and a state index i ∈ N, we denote projections

πTi(ω) := Ti (11)

and
π∆i(ω) := ∆i (12)

that retrieve the progression time Ti and the transition ∆i of the i-th state, respectively.
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2.3. DS Attack Achieving Time

Definition 4. For a DS sample ω of DS(pA, tcut; NBC), we define the DSA time TDSA which measures the least
one among the state progression times πTi(ω) of state indices i at which ω achieves the necessary conditions G(1)

and G(2) in Definition 1.

To express TDSA as a random variable, we construct event setsD(1)
j ⊂ Ω andD(2)

i, j ⊂ Ω. The sets

D
(1)
j for j ∈ {NBC, NBC + 1, · · · ,∞} consist of DS samples ω which achieves the block confirmation G(1)

at state j for the first time. The setsD(2)
i, j for i ∈

{
j, j + 1, · · · ,∞

}
and j ∈ {NBC, NBC + 1, · · · ,∞} consists

of ω which achieves the success in the PoW competition G(2) at state i for the first time, given that G(1)

has been already achieved at state j. Subsequently, we aim for the samples ω ∈ D(1)
j ∩D

(2)
i, j to achieve

the two conditions in Definition 1 at a state pair (i, j) for the first time.
Formally, we first construct a setD(1)

j focusing only on the first j transitions ∆k for k = 1, · · · , j
of DS samples ω ∈ Ω with two requirements; one is that they must have NBC number of +1’s and
j −NBC number of −1’s; and the other is that the j-th transition ∆ j must be +1 to guarantee that
they have never been achieved in any states prior to the state j. The former requirement implies
that all ω ∈ D(1)

j hold S j =
∑ j

k=1 π∆i(ω) = 2NBC − j. For example, when NBC = 2 and j = 5,
a sequence (+1,−1,−1,−1,+1, · · ·) of state transitions satisfies the first requirement, and also satisfies
S j = 2NBC − j.

We next construct a setD(2)
i, j ⊂ Ω which does not care about the first j transitions ∆k for k = 1, · · · , j,

but only focuses on the interim transitions ∆m for m = j + 1, · · · , i. By the definition, all sequences
ω ∈ D

(2)
i, j must achieve G(1) before the j-th state, which implies that they must hold S j = 2NBC − j.

The rest requirement for each ω ∈ D(2)
i, j is that the state changes from starting state S j = 2NBC − j to

state Si = −1, while any interim states Sk remain non-negative; i.e., Sk ≥ 0 for each k = j + 1, · · · , i− 1.
The setsD(1)

j for all j are mutually exclusive as each of them represents the first satisfaction of the

block confirmation condition exactly at the j-th state. For example, if ω ∈ D(1)
5 then ω < D(1)

6 since ω
already has achieved the block confirmation at the 5-th state for the first time before reaching the 6-th
state. The setsD(2)

i, j for all (i, j) are also mutually exclusive for the same reason. Thus, their intersections

D
(1)
j ∩D

(2)
i, j for all (i, j) are also mutually exclusive.

By Definition 4, the attack achieving time TDSA can be measured if there exist index pairs (i, j)
such that ω ∈ D(1)

j ∩D
(2)
i, j . By the mutual exclusivity of D(1)

j ∩D
(2)
i, j , if there exists such a pair (i, j),

it must be unique. In addition, if ω ∈ D(1)
j ∩D

(2)
i, j , TDSA equals πTi(ω), since the state progression time

Tk is non-decreasing as k increases. As the result, TDSA can be rewritten as follows,

TDSA =

πTi(ω), i f ∃(i, j) ∈ N2: ω ∈ D(1)
j ∩D

(2)
i, j ,

∞, otherwise.
(13)

3. The Attack Probabilities

We aim to calculate the probability distribution function (PDF) of the DSA time TDSA. Using this,
the success probability of DS attack with a given cut-time tcut can be figured out as the probability that
TDSA < tcut. Also, the expectation of attack success time can be calculated. The expected attack success
time will be used in Section 4 to estimate the attack profits.
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From Equation (13), the PDF of TDSA requires the probabilities of two random events: one is the
state progression time Ti in Equation (5); and the other is the event that a given state index i satisfies
ω ∈ D

(1)
j ∩D

(2)
i, j . It has been well known that Ti follows Erlang distribution [22] given as

fTi(t) =
λT(λTt)i−1e−λTt

(i− 1)!
. (14)

We provide the probability for the latter event, i.e., pDSA,i = Pr
(
ω ∈ D

(1)
j ∩D

(2)
i, j

)
in the following

Lemma 1:

Lemma 1. For a sample ω of random experiment DS(pA, tcut; NBC), the probability pDSA,i =

Pr
(
ω ∈ D

(1)
j ∩D

(2)
i, j

)
can be computed as

pDSA,i =

j=2NBC∑
j=NBC

(
j− 1

NBC − 1

)
C i−1

2 −NBC,2NBC− jpA
i+1

2 pH
i−1
2 +

(
i− 1

NBC − 1

)
pH

NBC pA
i−NBC (15)

for odd i > 2NBC , where Cn,m is the ballot number [24] given by

Cn,m :=


m+1

n+m+1

 2n + m

n

, n, m ∈ Z+
∪ {0},

0, otherwise,

(16)

and for i ≤ 2NBC and for all even-numbered i, pDSA,i = 0.

Proof. See Appendix A. �

By taking infinite summations of pDSA,i in Lemma 1 for all indices i ∈ N, we can compute the
probability PDSA that a DS attack will ever achieve the necessary conditions in Definition 1.

Corollary 1. For a sample ω of random experiment DS(pA, tcut; NBC) with tcut = ∞ , the probability PDSA
has an algebraic expression

PDSA =


1, pH ≤ pA,

1− pA
NBC+1pH

NBC
2NBC∑

j=NBC

 j− 1

NBC − 1

A j, pH > pA,
(17)

where
A j := pA

j−2NBC−1
− pH

j−2NBC−1. (18)

Proof. See Appendix B. �

From Equation (13), the PDF of TDSA follows the PDF of Ti at a given state index i, if at which
it holds that ω ∈ D(1)

j ∩D
(2)
i, j , with the probability of pDSA,i. If there does not exist such an index i,

with the probability of 1− PDSA, then TDSA = ∞. Thus, we can write the PDF fTDSA of TDSA as follows,

fTDSA(t) =
∞∑

i=2NBC+1
pDSA,i fTi(t)

+(1− PDSA)δ(t−∞),
(19)
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where δ(t) is the Dirac delta function.

Proposition 1. The PDF fTDSA has an analytic expression:

fTDSA(t) =
pAλTe−λTt(pApH(λTt)2)

NBC

(2NBC)!
·

j=2NBC∑
j=NBC

(
j− 1

NBC − 1

)
2F3

(
a; b; pApH(λTt)2

)
+ e−λTt

t
(pHλTt)NBC

(NBC−1)!

(
epAλTt

−

NBC∑
i=0

(pAλTt)i

i!

)
+ (1− PDSA)δ(t−∞),

(20)

where pFq(a; b; x) is the generalized hypergeometric function (See Appendix E for definition) with the
parameter vectors

a =

[
NBC + 1− j/2

NBC + 1/2− j/2

]
(21)

and

b =


2NBC + 2− j

NBC + 1
NBC + 1/2

. (22)

Proof. See Appendix C. �

By Definition 2, the probability PAS that a DS attack DS(pA, tcut; NBC) succeeds equals

PAS(tcut) = Pr(TDSA < tcut) (23)

Note that for a special case of tcut = ∞, PAS(tcut) = PDSA, which coincides with the result in
Rosenfeld [6].

It will be shown to be convenient to define the attack success time TAS of a DS attack as

TAS :=

TDSA, i f TDSA < tcut,

not defined, otherwise.
(24)

A random variable for TDSA > tcut does not need to be defined since it is not useful. The PDF fTAS

of TAS is just a scaled version of fTDSA(t) for 0 < t < tcut, which is given in Equation (20), with a scaling
factor of PAS

−1. Formally, the PDF fTAS(t) equals

fTAS(t) =


fTDSA (t)
PAS

, f or 0 ≤ t < tcut,

0, f or t ≥ tcut.
(25)

The expectation of attack success time is computed as

ETAS(tcut) =

∫ tcut

0 t fTDSA(t)dt

PAS(tcut)
. (26)

The following Proposition 2 gives an explicit formula of ETAS for the special case when tcut = ∞.

Proposition 2. Let pM := max(pA, pH), pm := min(pA, pH). If tcut = ∞ , the expectation ETAS(tcut) has a
closed-form expression:

lim
tcut→∞

ETAS(tcut) =

λT
−1

 2NBC∑
j=NBC

(
j− 1

NBC − 1

)
Z j +

NBC
pH


PDSA

, (27)



Appl. Sci. 2020, 10, 8477 9 of 22

where

Z j := pApm
NBCpM

−(NBC− j+1)
(

2NBC − 2 jpm + 1
pM − pm

)
− jpA

−(NBC− j)pH
NBC . (28)

Proof. See Appendix B. �

4. Profitable DS Attacks

The previous probabilistic analyses in [1,6] have shown that the success of DS attacks is not
guaranteed when pA < 0.5. However, DS attacks with pA < 0.5 can be vigorously pursued as long as
they bring profit.

We analyze the profitability of DS attacks and to this end, we define a profit function P of a DS
attack DS(C, pA, tcut; NBC), where C is the value of a fraudulent transaction, in terms of revenue and
operating expense (OPEX) of the computing power.

The OPEX X (e.g., the rental fee for the computing power) and the block mining reward R tend to
increase with respect to λA and the time t consumed during the attack. Thus, X and R are expressed as
functions of λA and t, and they can be any increasing function; e.g., linear, exponential, or logarithm.
We define X and R, respectively, as follows:

X(λA, t) := γλAt
(
logx1

x2
)λA

(
logx3

x4
)t

(29)

for real constants γ > 0, x1, x2 > 1, and x3, x4 > 1, and

R(λA, t) := βλAt
(
logr1

r2
)λA

(
logr3

r4
)t

(30)

for real constants β > 0, r1, r2 > 1, and r3, r4 > 1. We denote the ratio of γ and β by

µ := βγ−1. (31)

With regards to P, if an attack succeeds, the revenue comes from C, as it is double-spent, added to
R for the number of blocks mined during the time duration TAS, i.e., R(λA, TAS). In this case, the cost is
the OPEX for the time duration TAS, i.e., X(λA, TAS). If the attack fails, the cost is the OPEX X(λA, tcut)

for the time duration tcut, and there is no revenue. Hence, for a DS attack DS(C, pA, tcut; NBC), we define
P as follows,

P :=

C + R(λA, TAS) −X(λA, TAS), i f TDSA < tcut,

−X(λA, tcut), otherwise.
(32)

Subsequently, the expected profit function is

EP = PAS(tcut) · (C +E[R(λA, TAS)] −E[X(λA, TAS)]) − (1− PAS(tcut))X(λA, tcut)

= PAS(tcut) · (C +E[R(λA, TAS)]) −EX,
(33)

where EX is the expected OPEX defined as

EX := PAS(tcut)E[X(λA, TAS)] + (1− PAS(tcut))X(λA, tcut). (34)

Definition 5. A DS attack DS(C, pA, tcut; NBC) is said to be profitable if and only if the expected profit EP > 0 ,
where EP is defined in Equation (33).

The key factor in determining the profitability of DS attacks is the value C of the fraudulent
transaction. Thus, attackers would be interested in the minimum value required for profitable DS
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attacks [25]. Definition 5 implies that a DS attack DS(C, pA, tcut; NBC) is profitable if and only if C > CReq.,
where the required value of target transaction CReq. is

CReq. =
EX

PAS
−E[R(λA, TAS)]. (35)

The following results in Theorem 1 and Theorem 2 focus on the case where both X(λA, t)
and R(λA, t) are linearly increasing functions of λA and t.

Theorem 1. Suppose x1 = x2 and x3 = x4 in Equation (29), and r1 = r2 and r3 = r4 in Equation (30).
Then, a DS attack DS(C, pA, tcut; NBC) for any pA ∈ (0, 1) and for any tcut ∈ (0,∞] is profitable if and only if
C > CReq., where

CReq. =
(1− PAS(tcut))

PAS(tcut)
γλAtcut − (µ− 1)γλAETAS(tcut). (36)

Proof. Substituting x1 = x2, x3 = x4, r1 = r2, and r3 = r4 into Equation (35) results in Equation (36). �

Theorem 1 shows that not only superior attackers with pA ∈ (0.5, 1) but also inferior attackers
with pA ∈ (0, 0.5) are able to expect profitable DS attacks once a high enough value C greater than
CReq. of the target transaction is designed. The condition CReq. in Equation (36) can be pre-computed
before carrying out an attack, as it stochastically estimates the future expected cost, for a given position
pA ∈ (0, 1) and a cut-time tcut of an attacker, and a given set of network environment parameters γ
and β.

Tables 1 and 2 list the resources including CReq., EX, and ETAS required for profitable DS attacks
respectively using pA = 0.35 and pA = 0.4, when tcut = cNBCλ

−1
H with c = 4. Note that the expectation

of the time spent for the block confirmation equals NBCλ
−1
H , and we let tcut linear to it. In other words,

as normal traders wait for NBCλ
−1
H seconds on the average, attackers shall be tolerable as well and wait

for the same scale of time duration. Note that the PAS for NBC = 1 is smaller than that for NBC = 3 due
to not long enough tcut. We scaled the results by parameters λH and γ, which we will explain how to
obtain from the internet in the next subsection.

Table 1. Numerical computations of required resources for profitable double-spending (DS) attacks
with pA = 0.35 when tcut = cNBCλ

−1
H with c = 4.

Block Confirmation Number (NBC) 1 3 5 7 9

Attack success probability (PAS) 0.315 0.279 0.218 0.170 0.132

Expected attack success time
(
ETAS

)(
Scaled by λH

−1
)

2.004 5.518 8.681 11.694 14.607

Expected OPEX (EX )(Scaled by γ) 1.815 5.487 9.440 13.588 17.859

Required value of target transaction (CSu f .) (Scaled by γ)

1.079
·(1− µ)
+ 4.680

2.971
·(1− µ)
+ 16.68

4.675
·(1− µ)
+ 38.62

6.297
·(1− µ)
+ 73.84

7.866
·(1− µ)
+ 127.00
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Table 2. Numerical computations of required resources for profitable DS attacks with pA = 0.4 when
tcut = cNBCλ

−1
H with c = 4.

Block Confirmation Number (NBC) 1 3 5 7 9

Attack success probability (PAS) 0.411 0.419 0.376 0.334 0.297

Expected attack success time
(
ETAS

)(
Scaled by λH

−1
)

1.953 5.338 8.434 11.418 14.325

Expected OPEX (EX )(Scaled by γ) 2.106 6.139 10.436 14.977 19.716

Required value of target transaction (CSu f .)(Scaled by γ)
1.302
·(1− µ)
+ 3.819

3.559
·(1− µ)
+ 11.10

5.622
·(1− µ)
+ 22.15

7.612
·(1− µ)
+ 37.25

9.550
·(1− µ)
+ 56.96

The following Theorem 2 is for the inferior attackers with pA ∈ (0, 0.5) and shows the importance
of setting a finite tcut.

Theorem 2. Suppose x1 = x2 and x3 = x4 in Equation (29), and r1 = r2 and r3 = r4 in Equation (30). Then,
a DS attack DS(C, pA, tcut; NBC) with pA ∈ (0, 0.5) is profitable only if tcut < ∞.

Proof. For any pA ∈ (0, 0.5), it always holds that PAS < 1. In this case, if tcut →∞ then CReq. →∞ from
Equation (36); i.e., infinite value C of fraudulent transaction is required for a DS attack DS(C, pA, tcut; NBC)

to be profitable. Thus, for a DS attack with pA ∈ (0, 0.5) to be profitable, a finite cut-time tcut < ∞must
be set. �

Theorem 2 shows that for pA ∈ (0, 0.5), setting tcut = ∞ is expected to incur infinite deficit. On the
contrary, for pA ∈ (0.5, 1), what we have numerically checked out but omitted due to space limitation
is the result that EP is an increasing function of tcut; i.e., setting tcut = ∞ is the optimal choice in the
superior attack regime. Applying pA ∈ (0.5, 1) and tcut = ∞ into Equation (36) leads to PAS = 1,
and thus CReq. turns into

CReq. = −(µ− 1)γλAETAS , (37)

where a closed-form expression of ETAS is given in Proposition 2. In this case, if β > γ; i.e., µ > 1,
DS attacks are always profitable regardless of C. According to nicehash.com, most networks maintain
β > γ by the economic equilibrium. As the result, in addition to the results in [1] and [6] that DS attacks
with pA ∈ (0.5, 1) guarantee probabilistic success, we show that such attacks guarantee economic gain
as well.

5. Practical Example of Profitable DS Attacks against BitcoinCash

We analyze resources required for profitable DS attacks against BitcoinCash network. The resources
include the computing power proportion pA, expected OPEX EX, expected attack success time ETAS ,
and the required value of fraudulent transaction CReq..

To this end, we first recall the parameters involved in block mining reward R and the OPEX X.
The parameters used in Equation (29) and Equation (30) are assumed to x1 = x2, x3 = x4, r1 = r2,
and r3 = r4 which lead to linear functions X(λA, t) and R(λA, t) with respect to λA and t. There are
three more parameters: γ, β, and λH

−1. From Equation (29) and Equation (30), the parameter γ is
the expected cost spent per generating a block; and the parameter β is the reward per generating a
block. Parameter λH

−1 is the average block generation time of the honest chain. All the parameters are
different for each blockchain network.

In BitcoinCash, the reward β per block mining was 12.5 BCH (without transaction fees), which is
around β = 0.44 BTC per block mining (as of 26 February 2020). The average block generation time
was fixed at λH

−1 = 600 seconds.
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The parameter γ is obtainable from nicehash.com. BitcoinCash uses the SHA-256 cryptographic
puzzle for which the unit of computation is hash. As of 26th Feb. 2020, the rental fee for 1-peta (P) hashes
per second for a day was around 0.017 BTC, which was around 1.97× 10−7 BTC per second. In other
words, the rental fee was approximately 1.97× 10−22 BTC per the computing of a hash. Referring to
BTC.com, the network’s computing speed is 3.57-exa (E) hashes per second; i.e., 3.57E · 600 = 2142E
hashes are needed to generate one block on the average. As the result, the parameter γ is obtained as

γ = 1.97× 10−22 [BTC/hash] × 2142E[hashes/block mining]
≈ 0.422 [BTC/block mining].

(38)

Note that it holds β > γ. From Equation (37), this relationship makes DS attack DS(C, pA, tcut; NBC)

with pA > 0.5 and tcut = ∞ always profitable regardless of the value C of target transaction.
In case of DS attacks with pA < 0.5, the cut-time tcut must be determined as a finite value for

profitable DS attacks by Theorem 2. We set tcut = cNBCλ
−1
H = 12000 seconds with c = 4 and pA = 0.35.

We compute the resources required for profitable DS attacks against BitcoinCash when NBC = 5.
Results are obtainable from the values in Tables 1 and 2 by multiplying the scaling parameters γ = 0.422
and λH

−1 = 600 and by substituting µ = βγ−1 = 1.04 and c = 4.
As the results, we obtain PAS ≈ 0.218, ETAS ≈ 5200 seconds, EX ≈ 3.98 BTC, and CReq. ≈ 16.22

BTC. One can compute expected running time; i.e., the expected time spent for a single DS attack
attempt as PASETAS + (1− PAS)tcut, which is around 2 h and 55 min. That is to say, attackers can
repeatedly perform n number of attacks every 2 h and 55 min on the average. With the value C of
target transaction, by the strong law of large numbers, the multiple attack attempts will return net
profit nPAS(tcut) ·

(
C−CReq.

)
as n→∞ with probability 1.

6. Related Works

By Nakamoto [1] and Rosenfeld [6], the probabilities have been studied that a DS attack will ever
succeed when there is no time limit, i.e., the cut-time is set to tcut = ∞. Both of them applied PCPs to
model the growth of chains H(t) and A(t). On one hand, the main difference between them was in
probability calculations of the block confirmation process in Definition 1. Rosenfeld applied the PCPs
to both H(t) and A(t), whereas Nakamoto assumed the time spent for H(t) ≥ NBC deterministic to
simplify the calculation. On the other hand, they both used the gambler’s ruin approach to obtain
the asymptotical behavior of Si as i→∞ by manipulating the recurrence relationship between two
adjacent states. Namely, their results are based on an assumption that an indefinite number of attack
chances are given [12].

On the contrary, we introduce the cut-time tcut which generalizes analytical framework to the
more interesting finite attack time and inferior attacker regime. By setting tcut infinite, the same result
PDSA was obtained in [6] as well. By setting a finite tcut, our results shall be useful when attack chances
are limited due to limited amount of resources such as time and cost. In addition, we show in Theorem
2 that DS attacks with pA < 0.5 must set a finite tcut in order to expect a non-negative profit. It shall be
noted that there has been no intermediate result like pDSA,i in Lemma 1. We use Lemma 1 to derive the
novel results.

Rosenfeld [6] and Bissias et al. [13] have analyzed the profitability of DS attacks. However,
they put additional assumptions on the attack scenario to simplify the calculation of the attack time.
Specifically, Rosenfeld assumed the attack time to be a constant. Bissias et al. assumed that the attack
stops if either the normal peers or the attacker achieves the block confirmation first. On the contrary, in
our model, an attack can be continued for a random attack time as long as it brings profit, even if the
normal peers achieve the block confirmation before the attacker does.

In Zaghloul et al. [14], the profit of DS attack has been analyzed. Interestingly, they have discussed
the need of cut-time for DS attacks with pA < 0.5, which is theoretically proven in this paper in
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Theorem 2. They also calculated the profit of DS attacks with a finite time-limit (see Section IV-C
in [14]), but their calculation was not as precise as ours in three points:

First, the probability of attack success within a finite time-limit, i.e., PAS(tcut) in Equation (23)
was never considered, which requires the distribution of the DS achieving time, i.e., TDSA given
in Proposition 1. Instead, their calculation used PDSA referring to the result in Rosenfeld [6].
This contradicts their time-limited attack scenario, since PDSA in [6] was resulted from the assumption
of infinite time-limit.

Second, they approximated costs and revenues of DS attack spent within a time-limit. Estimation
of the costs and revenues requires estimations of the numbers of blocks respectively mined by honest
nodes and attackers within a time-limit, but those were assumed to be constant. This was due to the
absence of the time analysis we provide in Proposition 1.

Third, they assumed the average block generation rates λH, λA respectively by honest miners
and by attackers are always the same. Since, the proportions pH, pA of computing power occupied by
the two groups can be quite different in general, such a result is not very useful. We agree to their
assumption that most blockchains control the difficulty of block mining puzzle to keep the average
speed of block generation constant, and thus λH can be considered as a constant. However, λA should
be left as a varying quantity by pA. The fact is that the computing power invested by the attacker cannot
be monitored by the honest network and thus it cannot be reflected in the difficulty control routine.

Budish [15] conducted simulations on the profitability of DS attacks only in the cases of pA > 0.5.
Under the cases, a condition on the value of the target transaction that makes DS attacks not profitable
has been given based on the simulations. We give theoretical and numerically-calculable results for
any pA ∈ (0, 1), which do not require massive simulations.

Gervais et al. [16] and Sompolinsky et al. [12] have used a Markov decision process (MDP)
to analyze profits from DS attacks. These works differ from our contributions in the following regards:

First, they did not follow the DS attacks scenario considered by Nakamoto [1] and Rosenfeld [6].
Instead, the scenario in [12] was a special case of the pre-mining strategy which was introduced
in [17,18]. We show that the success of DS attack under this scenario is even more difficult to occur
than the success of the DS attack under the scenario of Nakamoto and Rosenfeld (see Appendix D
for details). Also, the attack scenario in [16] went even further by modifying the condition for block
confirmation in Definition 1. Specifically, under our definition, it is required for the honest chain
to have added NBC blocks, while under their condition it was fraudulent for the chain to do so (see
Section 3 of [16]). Thus, it was not ensured that the potential victim has shipped the goods or service,
and an attack success did not guarantee for the attacker to obtain the benefit of attacking.

Second, one important new advance in this paper is the derivation of the time analysis fTAS given
in Proposition 1. When one uses the MDP framework, one can obtain similar information such as the
estimations for the attack success time ETAS , the future profit P that an attacker will earn in the end, and
the minimum value of target transaction CReq.. However, using MDP to make such estimations would
have required extensive Monte Carlo simulations. Using our mathematical results, such estimations
can be obtained without Monte Carlo simulations.

In addition, we believe that our mathematical results can be utilized in the MDP frameworks to
improve the reliability of analyses. Conventionally, a rational user of an MDP will make a decision at
every state whether to stop or to continue the process by comparing the rewards that will be incurred in
the future by his/her decision. The rewards for stop actions are clear because such actions are either an
attack success or a give-up. The reward for the continue action is complex because it needs to consider
all the actions in all future possible states as well. In [12,16], the rewards for the continue action were
over-simplified as they were evaluated only for the very next state and did not include the estimation of
the profits in further future actions. To improve the reliability, the PDF fTAS in Proposition 1 can be used
at any intermediate Markov state to estimate the future profits. Specifically, the conditional expectation
of the time left for an attack success TAS given TAS > τ can be calculated using fTAS , where τ is the
observable time elapsed for reaching the current state. Once the time left is estimated, the estimation
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of future profits can be updated by substituting it into Equation (33). That is to say, at each state,
the estimation of profits can be updated and used as the rewards resulting from the continue action.

Goffard [19] and Karame et al. [20] have derived the PDFs of attack success time, but none of their
DS attack scenarios matched with ours in Definition 1. In [19], Goffard derived the PDF of catch-up
time spent for the fraudulent chain to catch up with the honest chain given that the length of honest
chain is initially ahead by several blocks. The author used counting processes such as order statistic
point process and renewal process which are more general than PCP, but there was no analytic result
similar to what is given in Proposition 1. In [20], Karame et al. derived the PDF of the first attack
success time under a fast-payment model which fixed NBC = 0. To sum up, the attack success time
in neither analysis included the time spent for achieving the first condition: the block confirmation
should be realized.

7. Discussion and Conclusions

We showed that DS attacks using 50% or a lower proportion of computing power can be profitable
and thus quite threatening. We provided how much quantitative resources are required to make
a profitable DS attack. We derive the PDF of attack success time which enables us to figure out
the operating time and the expense of mining rigs. We provided MATLAB codes on the website
(https://codeocean.com/capsule/2308305/tree) for numerical evaluation of the expected profit function in
Equation (33). We also listed an example of the minimum resources required for a profitable DS attack,
which is applicable to any blockchain networks by substituting the network parameters γ, β, and λH.
We also showed a more specific example of the required resources against BitcoinCash network.

Our results quantitatively guide how to set a block confirmation number for a safe transaction.
The lower the block confirmation number is, the lower the minimum resource is required for a profitable
attack. A solution can be utilized by the network developers to discourage such an attack. On the one
hand, given a block confirmation number, we can have the value of any transaction to be set below the
required value of making a profitable attack in a given network. On the other hand, given the value of
transaction, the network can provide a service to inform the payee with the lowest block confirmation
number that leads to negative DS attack profit.
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Appendix A

Proof of Lemma 1. For a given sample ω and a given index i, the event ω ∈ D(1)
j ∩D

(2)
i, j is equivalent

to the event that there exists an intermediate state index j such that ω ∈ D(1)
j ∩D

(2)
i, j . By the mutual

exclusiveness ofD(1)
j ∩D

(2)
i, j for integers j, such a state j is unique if it exists. Thus, we can write the

probability pDSA,i as follows,

pDSA,i = Pr
(
∃ j ∈ N: ω ∈ D(1)

j ∩D
(2)
i, j

)
=

∞∑
j=NBC

Pr
(
ω ∈ D

(1)
j ∩D

(2)
i, j

)
.

(A1)

https://codeocean.com/capsule/2308305/tree
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Note that D(1)
j ∩

(
D

(2)
i, j

)
= φ for i ≤ 2NBC, since the minimum number of states for an attack

success is 2NBC + 1: NBC number of +1 ’s state transitions for the block confirmation; and NBC + 1
number of −1 ’s state transitions for the success of PoW competition. Thus, pDSA,i = 0 for i ≤ 2NBC.

We further exploreD(1)
j andD(2)

i, j . We divide the domain of state index j in Equation (A1) into two

exclusive domains; one is j ≤ 2NBC; and the other is j > 2NBC. First, for j ≤ 2NBC, two setsD(1)
j andD(2)

i, j
are independent, since their requirements on the state transitions are focusing on disjoint indices of state

by their definitions. Formally, Pr
(
ω ∈ D

(1)
j ∩D

(2)
i, j

)
= Pr

(
ω ∈ D

(1)
j

)
Pr

(
ω ∈ D

(2)
i, j

)
. Second, we explore

the domain j > 2NBC. By the definition of D(1)
j , all ω ∈ D(1)

j satisfy S j =
∑ j

k=1 π∆k(ω) = 2NBC − j.

Thus, for every j > 2NBC, S j is already negative, which implies all ω ∈ D(1)
j satisfy both and at state

j. The setD(2)
i, j = φ for j > 2NBC and j < i, since the state S j = 2NBC − j contradicts one requirement

ofD(2)
i, j : the interim transitions between the states j and i should be non-negative. For j > 2NBC and

j = i, let us set D(2)
i, j = Ω, since there is no interim state to apply the requirement to. To sum up,

D
(1)
j ∩D

(2)
i, j = D

(1)
i for j > 2NBC and i = j, andD(1)

j ∩

(
D

(2)
i, j

)
= φ for j > 2NBC and i > j. Subsequently,

Equation (A1) is computed as

pDSA,i =

2NBC∑
j=NBC

Pr
(
ω ∈ D

(1)
j

)
Pr

(
ω ∈ D

(2)
i, j

)
+ Pr

(
ω ∈ D

(1)
i

)
. (A2)

We now compute the ingredient probabilities Pr
(
ω ∈ D

(1)
j

)
and Pr

(
ω ∈ D

(2)
i, j

)
in Equation (A2).

First, by the definition, all samples inD(1)
j must have NBC − 1 number of +1 ’s state transitions among

the first j − 1 transitions. And the rest of the j − 1 transitions must be valued by −1. In addition,
the j-th transition must be valued by +1 so that the block confirmation is achieved exactly at the j-th

state index. As the result, the probability Pr
(
ω ∈ D

(1)
j

)
equals the point mass function of a negative

binomial distribution:

Pr
(
ω ∈ D

(1)
j

)
=

(
j− 1

NBC − 1

)
pH

NBCpA
j−NBC . (A3)

Second, computing the probability Pr
(
ω ∈ D

(2)
i, j

)
starts from counting the number of combinations

of state transitions satisfying the requirements of setD(2)
i, j . Recall the requirements on every element

of D(2)
i, j , for j = NBC, · · · , 2NBC, are that the state starts from the state S j = 2NBC − j and ends at the

state Si = −1 while all the i− j− 1 number of interim states remain nonnegative. The i-th transition
should be ∆i = −1 so that the success of PoW competition is achieved exactly at the state index i.
The number of combinations of such state transitions can be counted using the ballot number Cn,m [24],
which is the number of random walks that consist of 2n + m steps and never become negative, starting
from the origin and ending at the point m. In our problem, the number of random walk steps is
2n + m = i− j− 1 with m = 2NBC − j. As a result, by multiplying the probabilities pA and pH for state

transitions, the probability Pr
(
ω ∈ D

(2)
i, j

)
is computed as

Pr
(
ω ∈ D

(2)
i, j

)
= Cn,mpA

(n+m+1)pH
n, (A4)

where 2n + m = i− j− 1 and m = 2NBC − j.
Finally, substituting Equations (A3) and (A4) into Equation (A2) results in Equation (15). �
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Appendix B

Proof of Corollary 1. Taking infinite summations of pDSA,i for all indices i results in PDSA:

PDSA =
∞∑

i=2NBC+1

pDSA,i (A5)

By substituting pDSA,i in Lemma 1 into Equation (A5), the probability PDSA becomes

PDSA =
2NBC∑

j=NBC

(
j− 1

NBC − 1

)
pA

∞∑
i=2NBC+1

C i−1
2 −NBC,2NBC− j(pApH)

i−1
2 +

( pH
pA

)NBC ∞∑
i=2NBC+1

(
i− 1

NBC − 1

)
pA

i. (A6)

By rearranging the indices i in the summations, we can obtain

PDSA =
2NBC∑

j=NBC

(
j− 1

NBC − 1

)
pA
∞∑

i=0
Ci,2NBC− j(pApH)

i+NBC

+
( pH

pA

)NBC

 ∞∑
i=NBC

(
i− 1

NBC − 1

)
pA

i
−

2NBC∑
i=NBC

(
i− 1

NBC − 1

)
pA

i

.
(A7)

We define two generating functions as

Mk(x) :=
∞∑

i=0

Ci,kxi, (A8)

and

Gk(x) :=
∞∑

i=k

(
i
k

)
xi. (A9)

By substituting Mk and Gk into Equation (A7), we can write

PDSA =
2NBC∑

j=NBC

(
j− 1

NBC − 1

)
pA(pApH)

NBCM2NBC− j(pApH)

+
( pH

pA

)NBC

pAGNBC−1(pA) −
2NBC∑

i=NBC

(
i− 1

NBC − 1

)
pA

i

 (A10)

The function Mk(x) is a generating function of the ballot numbers Ci,k, for which the algebraic
expression given in [26] is

Mk(x) =
(

2

1 +
√

1− 4x

)k+1

. (A11)

Putting x = pApH into Mk(x) results in

Mk(pApH) =

(
2

1+
√

1−4pApH

)k+1

=


(

2
1+
√

1−4pA(1−pA)

)k+1

, i f pA < pH,(
2

1+
√

1−4(1−pH)pH

)k+1

, i f pA ≥ pH

=
(

1
pM

)k+1
,

(A12)
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where pM := max(pH, pA). The function Gk(x) is a generating function of binomial coefficients, and the
algebraic expression for it is given in [27]:

Gk(x) =
xk

(1− x)k+1
. (A13)

Putting x = pA into Gk(x) results in

Gk(pA) = pH
−1

(
pA

pH

)k

. (A14)

Substituting Equation (A12) and Equation (A14) into Equation (A10) provides

PDSA =

2NBC∑
j=NBC

(
j− 1

NBC − 1

)
pA(pApH)

NBC pM
−(2NBC− j+1) + 1−

(
pH

pA

)NBC 2NBC∑
i=NBC

(
i− 1

NBC − 1

)
pA

i. (A15)

We define pm := min(pA, pH), then the relationship pApH = pmpM holds. By rearranging the order
of operands, we can obtain

PDSA = 1−
2NBC∑

j=NBC

(
j− 1

NBC − 1

)(pH

pA

)NBC

pA
j
−

pA

pM

(
pm

pM

)NBC

pM
j

, (A16)

which is equal to Equation (17). �

Proof of Proposition 2. From Equations (19) and (26), when tcut = ∞, we obtain

ETAS =
lim

tcut→∞−

∫ tcut
0 t fTDSA (t)dt

PAS(tcut)
=

∞∑
i=2NBC+1

E[Ti]pDSA,i

PDSA

=

∞∑
i=2NBC+1

i
λT

pDSA,i

PDSA
,

(A17)

where E[Ti] = iλT
−1 [22]. By substituting PDsA,i in Equation (15) into Equation (A17) and rearranging

the order of operands, we obtain

λTPDSAETAS =
2NBC∑

j=NBC

(
j− 1

NBC − 1

)
∞∑

i=2NBC

(i + 1)C i
2−NBC,2NBC− jpA

i+2
2 pH

i
2

+
∞∑

i=NBC−1
(i + 1)

(
i

NBC − 1

)
pA

i+1−NBC pH
NBC −

2NBC−1∑
i=NBC−1

(i + 1)
(

i
NBC − 1

)
pA

i+1−NBCpH
NBC .

(A18)

By rearranging the indices of summations, we arrive at

λTPDSAETAS =
2NBC∑

j=NBC

(
j− 1

NBC − 1

)
pA

NBC+1pH
NBC ·

∞∑
i=0

(2i + 2NBC + 1)Ci,2NBC− j(pApH)
i

+pA
( pH

pA

)NBC ∞∑
i=NBC−1

(i + 1)
(

i
NBC − 1

)
pA

i
−

2NBC∑
i=NBC

i
(

i− 1
NBC − 1

)
pA

i−NBCpH
NBC .

(A19)
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By substituting the generating functions Mk(x) and Gk(x) defined respectively in Equation (A8)
and Equation (A9), Equation (A19) becomes

λTPDSAETAS =
2NBC∑

j=NBC

(
j− 1

NBC − 1

)
pA

NBC+1pH
NBC ·

(
2
∞∑

i=0
iCi,2NBC− j(pApH)

i +(2NBC + 1)M2NBC− j(pApH)
)

+pA
( pH

pA

)NBC

 ∞∑
i=NBC−1

i
(

i
NBC − 1

)
pA

i + GNBC−1(pA)

− 2NBC∑
i=NBC

i
(

i− 1
NBC − 1

)
pA

i−NBCpH
NBC .

(A20)

We use the following relationships,

∞∑
i=0

iCi,kxi = xM′k(x) (A21)

and
∞∑

i=k

i
(

i
k

)
xi = xG′k(x), (A22)

and their derivatives are given by

M′k(x) := d
dx Mk(x) =

∞∑
i=0

iCi,kxi−1

=
(k+1)
√

1−4x

(
2

1+
√

1−4x

)k+2 (A23)

and
G′k(x) : = d

dx Gk(x)

=
∞∑

i=k
i
(

i
k

)
xi−1

=
(kxk−1+xk)
(1−x)k+2 .

(A24)

By substituting Equation (A21) and Equation (A22) into Equation (A20), we obtain

λTPDSAETAS =
2NBC∑

j=NBC

(
j− 1

NBC − 1

)
pA

NBC+1pH
NBC ·

(
2pApHM′2NBC− j(pApH) + (2NBC + 1)M2NBC− j(pApH)

)
+pA

( pH
pA

)NBC
(
pAG′NBC−1(pA) + GNBC−1(pA)

)
−

2NBC∑
i=NBC

i
(

i− 1
NBC − 1

)
pA

i−NBC pH
NBC

(A25)

Putting x = pApH into M′k(x) in Equation (A23) results in

M′k(pApH) = M′k(pmpM) =
(k + 1)
1− 2pm

(
1

pM

)k+2

. (A26)

Putting x = pA into G′k(x) in Equation (A24) gives

G′k(pA) =

(
kpA

k−1 + pA
k
)

pHk+2
. (A27)

By substituting Equation (A12), Equation (A14), Equation (A26), and Equation (A27) into
Equation (A25), we finally obtain Equation (27). �

Appendix C

Proof of Proposition 1. We use a generating function and generalized hypergeometric functions to
compute the infinite summations in Equation (19).
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By substituting PDsA,i in Equation (15) and fTi(t) in Equation (14) into Equation (19), we arrive at

fTDSA(t) − (1− PDSA)δ(t−∞) =
j=2NBC∑
j=NBC

(
j− 1

NBC − 1

)
∞∑

i=2NBC+1
C i−1

2 −NBC,2NBC− jpA
i+1

2 pH
i−1
2
λT

iti−1e−λTt

(i−1)!

+
∞∑

i=2NBC+1

(
i− 1

NBC − 1

)
pH

NBC pA
i−NBC λT

iti−1e−λTt

(i−1)! .
(A28)

By rearranging the indices of summations and the order of operands, we obtain

fTDSA(t) − (1− PDSA)δ(t−∞) =
j=2NBC∑
j=NBC

(
j− 1

NBC − 1

)
∞∑

i=0

(
Ci,2NBC− jpA

NBC+i+1pH
NBC+i

·
λT

2NBC+2i+1t2NBC+2ie−λTt

(2NBC+2i)!

)
+

( pH
pA

)NBC e−λTt

 ∞∑
i=NBC

(
i− 1

NBC − 1

)
pA

i λT
iti−1

(i−1)! −
2NBC∑

i=NBC

(
i− 1

NBC − 1

)
pA

i λT
iti−1

(i−1)!

.
(A29)

We can define two generating functions as

B(x) :=
∞∑

i=0

Ci,2NBC− j
xi

(2NBC + 2i)!
= (2NBC − j + 1)

∞∑
i=0

(2i + 2NBC − j)!
i!(i + 2NBC − j + 1)!

xi

(2NBC + 2i)!
, (A30)

and

H(x) :=
∞∑

i=NBC

(
i− 1

NBC − 1

)
xi−1

(i− 1)!
=

∞∑
i=NBC−1

(
i

NBC − 1

)
xi

i!
. (A31)

By substituting B(x) and H(x) into Equation (A29), we obtain

fTDSA(t) − (1− PDSA)δ(t−∞) =
j=2NBC∑
j=NBC

(
j− 1

NBC − 1

)
pAλTe−λTt

(
pApH(λTt)2

)NBC B
(
pApH(λTt)2

)
+

( pH
pA

)NBC e−λTt

pAλTH(pAλTt) −
2NBC∑

i=NBC

(
i− 1

NBC − 1

)
pA

i λT
iti−1

(i−1)!

.
(A32)

We replace function B(x) in Equation (A30) with the generalized hypergeometric functions
(See Appendix E for definition). For this purpose, we first denote the sequences in B(x) by

βi :=
(2i + 2NBC − j)!

i!(i + 2NBC − j + 1)!
1

(2NBC + 2i)!
, (A33)

and
β0 :=

1
(2NBC − j + 1)(2NBC)!

. (A34)

Next, the function B(x) can be rewritten as

B(x) = (2NBC − j + 1)
∞∑

i=0

βixi = (2NBC − j + 1)β0

(
x0 +

β1

β0
x1 +

β2

β1

β1

β0
x2 + · · ·

)
. (A35)

The reformulated sequence in Equation (A35) is computed by

βi+1

βi
=

(i + 1 + NBC − j/2)(i + 1/2 + NBC − j/2)
(i + 2 + 2NBC − j)(i + 1 + NBC)(i + 1/2 + NBC)(i + 1)

, (A36)

which has 2 polynomials in i on the numerator and 3 polynomials in i except for (i + 1) on the
denominator. B(x) can be expressed in terms of a generalized hypergeometric function 2F3 [28]
as follows,

B(x) = (2NBC − j + 1)β0 2F3
(
a j; b j; x

)
= 1

(2NBC)! 2F3
(
a j; b j; x

)
,

(A37)
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where vectors a j and b j respectively defined in Equations (21) and (22) are the constants in the
polynomials in i of the numerator and denominator in Equation (A31), respectively.

We use a closed-form expression of generating function H(x) in Equation (A31) given by

H(x) =
∞∑

i=NBC−1

(
i

NBC − 1

)
xi

i! = 1
(NBC−1)!

∞∑
i=NBC−1

xi

(i−NBC+1)!

= xNBC−1

(NBC−1)! e
x,

(A38)

where the following relationship is used [29]:

∞∑
i=0

xi

i!
= ex. (A39)

By substituting Equation (A37) and Equation (A38) into Equation (A32), we arrive at

fTDSA(t) − (1− PDSA)δ(t−∞)

=
pAλTe−λTt

(
pApH(λTt)2

)NBC

(2NBC)!
·

j=2NBC∑
j=NBC

(
j− 1

NBC − 1

)
2
F3

(
a j; b j; pApH(λTt)2

)

+

(
pH

pA

)NBC

e−λTt

pAλT
(pAλTt)NBC−1

(NBC − 1)!
epAλTt

−

2NBC∑
i=NBC

(
i− 1

NBC − 1

)
pA

i λT
iti−1

(i− 1)!


=

pAλTe−λTt
(
pApH(λTt)2

)NBC

(2NBC)!
·

j=2NBC∑
j=NBC

(
j− 1

NBC − 1

)
2
F3

(
a j; b j; pApH(λTt)2

)

+

(
pH

pA

)NBC

e−λTt

pAλT
(pAλTt)NBC−1

(NBC − 1)!
epAλTt

−
1

(NBC − 1)!

2NBC∑
i=NBC

pA
i λT

iti−1

(i−NBC)!

.

(A40)

We obtain Equation (20) by rearranging the indices of the summations and the order of operands. �

Appendix D

Comparison of Attack Success Probabilities of DS Attack and Pre-Mining Attack

In [12], a special case of pre-mining strategy has been considered, where the condition for a
DS attack success was different from Definition 1. Specifically, the only condition was to have the
fraudulent chain to grow longer than the honest chain by NBC, i.e., A(t) > H(t) + NBC (see Section 7
of [12]). We refer to Ppre−mine as the probability of satisfying this condition. The literature has shown
that satisfying this condition suffices a success of DS attack [12]. What they have not shown, however,
is that this condition is not a necessary one. Thus, we here aim to show that their condition is indeed
not a necessary condition, by showing that PDSA > Ppre−mine for all pA ∈ (0, 0.5). First, it has been

given that Ppre−mine = (pA/pH)
NBC+1. Under the condition of [12], it is required that the fraudulent

chain catches up with the honest chain with additional NBC blocks. The catch-up probability has been
derived by Nakamoto in [1] using the gambler’s ruin approach as (pA/pH)

k, where k is the number of
blocks that the honest chain leads by at the initial status. Next, we refer to an intermediate step in the
derivation of PDSA by Rosenfeld [6]:

PDSA =

NBC+1∑
k=0

(
NBC + k− 1

k

)
pH

NBC pA
k
(

pA

pH

)NBC−k+1

+
∞∑

k=NBC+2

(
NBC + k− 1

k

)
pH

NBC pA
k. (A41)
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Finally, clear inequalities can be used to show PDSA > Ppre−mine:

PDSA >
NBC+1∑

k=0

(
NBC + k− 1

k

)
pH

NBCpA
k
( pA

pH

)NBC−k+1
+

∞∑
k=NBC+2

(
NBC + k− 1

k

)
pH

NBC pA
k
( pA

pH

)NBC+1

>
( pA

pH

)NBC+1 ∞∑
k=0

(
NBC + k− 1

k

)
pH

NBCpA
k

=
( pA

pH

)NBC+1
= Ppre−mine.

(A42)

For numerical example, when pA = 0.35 and NBC = 5 the probabilities can be computed as
PDSA = 0.2287 and Ppre−mine = 0.0244. As the gap is significant, it is shown that the DS attack success
condition defined in [12] was indeed only a sufficient condition, set to be too strict.

Appendix E

Generalized Hypergeometric Function

We define generalized hypergeometric series and generalized hypergeometric functions [28].
For a variable z and a given set of coefficients β0, · · · , β∞, if the ratio of coefficients bn can be

expressed in terms of two polynomials A(n) and B(n) in n as follows,

βn+1

βn
=

A(n)
B(n)(n + 1)

(A43)

for all integer n ≥ 0, a power series
∑

n≥0 βnzn is a generalized hypergeometric series, where the
polynomials are in the forms of

A(n) = c(a1 + n) · · ·
(
ap + n

)
(A44)

and
B(n) = d(b1 + n) · · ·

(
bq + n

)
, (A45)

for real numbers c and d and complex numbers a1, · · · , ap and b1, · · · , bq. The generalized hypergeometric
series is denoted by

pFq(a; b; z) :=
∑
n≥0

βnzn, (A46)

where a and b are the vectors of a1, · · · , ap and b1, · · · , bq, respectively.
A generalized hypergeomteric series can be a generalized hypergeometric function, if it converges.

If p < q + 1, the ratio Equation (A43) goes to zero as n→∞ . This implies the series Equation (A46)
converges for any finite value z and thus can be defined as a function.
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