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Abstract: Multi-spindle drilling simultaneously produces multiple holes to save time and increase
productivity. The assessment of hole quality is important in any drilling process and is influenced by
characteristics of the cutting tool, drilling parameters and machine capacity. This study investigates the
drilling performance of uncoated carbide, and coated carbide (TiN and TiCN) drills when machining
Al2024 aluminium alloy. Thrust force and characteristics of hole quality, such as the presence of
burrs and surface roughness, were evaluated. The results show that the uncoated carbide drills
performed better than the TiN and TiCN coated tools at low spindle speeds, while TiCN coated drills
produced better hole quality at higher spindle speeds. The TiN coated drills gave the highest thrust
force and poorest hole quality when compared with the uncoated carbide and TiCN coated carbide
drills. Additionally, a multi-layer perceptron neural network model was developed, which could be
useful for industries and manufacturing engineers for predicting the surface roughness in multi-hole
simultaneous drilling processes.
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1. Introduction

Aluminium and its alloys have gained significant importance through their vast applications in
various manufacturing industries [1]. However, with current trends in dry machining, aluminium
alloys tend to adhere to the cutting tool, which results in tool wear [2]. The wear mechanisms can affect
hole quality by producing rough surfaces, additional burrs around the edges, roundness deviation,
cylindricity, and high cutting forces [3–5]. According to Nouari et al. [6], carbide tools have been
proven to perform better for the dry machining of aluminium alloys than high-speed steel (HSS) tools.
However, carbide tools have limited performance at high cutting speeds, which would ultimately
affect productivity. Therefore, cutting tools are usually coated using materials with a high hardness
to resist wear mechanisms. In this regard, different coatings and machine tools have been widely
researched to make the drilling process more effective and to produce high-quality holes [4]. Some of
the previous studies on evaluating different types of tool coatings on the machinability of Al2024 alloy
are discussed in Table 1.
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Table 1. Previous studies on the machining of aluminium alloys using coated drill bits.

Machining
Process Tool Materials/Coatings Aluminium

Alloy Conclusions Ref

One shot-drilling
process

HSS uncoated drills Coatings:
TiAlN/TiN (multilayer)

TiAlN
356 alloy

The results showed that the coatings
did not show any significant impact
on the temperature of the workpiece
and the surface texture of the holes.

However, drills with coatings of
TiAlN/TiN and TiAlN showed better

dimensional accuracy of the hole.

[7]

One shot-drilling
process

Uncoated carbide
Coatings:

TiN
TiN + Ag

TiAlN
TiAlN + WC/C

Diamond

Al2024-T351

It was reported that in terms of hole
quality and tool life in dry drilling of

Al2024, the coated drills did not
perform well, expect a diamond and
Hardlube coated drills with results
closed to that obtained in uncoated

carbide drills.

[8]

One shot-drilling
process

Uncoated HSS
Coatings:

Cobalt
Al2024

The study recommended that in
comparison to uncoated HSS drills,

the longer tool life was obtained when
the HSS-Co drills were used.

[9]

Turning

Uncoated carbide
Coatings:

TiC
TiN

Al2O3
AlON
TiB2

Diamond

Pure
aluminium and

Al–12% Si

It was concluded that coatings were
not successful in dry machining of

pure aluminium and Al–12% Si alloys
because of the formation of built-up

edge on the tools and subsequent
increased in cutting forces and surface

roughness of the materials.

[10]

One shot-drilling
process

Uncoated HSS
Coatings:

TiAlN
%5 Co

TiN

Al2024

The use of TiAlN and TiN coated HSS
drills were not recommended at low
cutting parameters. The only coated
drill suggested in their study was the

HSS-Co 5% that delivered an
outstanding performance in all

cutting parameters.

[11]

As it can be seen from Table 1, the research on tool coating in the machining of aluminium in
general and Al2024 alloy in particular is limited and most of the studies are focused only on either
one-shot drilling or other machining processes. The above studies also show that the use of coating
tools for drilling aluminium alloys is sometimes contradictory and still inadequate. Furthermore,
no study is available in the open literature for the use of coated drills using the multi-hole simultaneous
drilling approach. The multi-hole simultaneous drilling operation is performed using the multi-spindle
drilling head to reduce machining time and increase productivity without compromising hole quality,
which are the key factors for the machining process [12–15]. Therefore, further research is required to
find suitable cutting tools and coatings for optimum machining of aluminium alloys and evaluate their
performance when several coated tools are used simultaneously to create multiple holes in one go.

In a study by Aamir et al. [16], a single drilling process was compared with multi-spindle drilling
using HSS drills. It was concluded that with the same drilling parameters, the multi-spindle drilling
performed better than the single drilling process by providing a lower thrust force, lower surface,
small burrs, short chips, and low built-up edges. In another study [17], apart from the surface,
the deviation of hole from the nominal size was investigated. Additionally, the Taguchi method for
optimization and the fuzzy logic approach for prediction of surface roughness (Ra) and hole size
were used. The low spindle speed and feed rate were recommended for high-quality holes in the
multi-spindle drilling process. Furthermore, the machinability of Al2024 was found to be better when
compared with Al6061 and Al5083 during multi-spindle drilling [18]. Additionally, carbide tools with a
high point angle were recommended in multi-spindle drilling of Al2024 as compared to HSS drills [19].
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However, there is a need to research further to evaluate the performance of multi-spindle drilling for
better hole quality when several coated tools are used simultaneously to create multiple holes in one go.
Therefore, this study includes the investigation of coatings of TiN and TiCN on carbide tools in Al2024
using the multi-hole simultaneous drilling approach. In addition, an artificial neural network (ANN)
is employed for the prediction of Ra using the multi-layer perceptron (MLP) technique. An ANN is an
artificial intelligent technique used for modelling and predicting the response of complex production
systems [20]. Additionally, manufacturing industries such as aerospace, automobile etc. have increased
demands for products with high surface finishes where the Ra is considered as a high surface quality
indicator [21]. For these reasons, modelling of Ra is of significant interest for research [20].

2. Materials and Methods

In this study, drilling experiments were performed using the multi-spindle drill head type
MH30/13 to increase productivity and reduce time by producing multi-holes simultaneously. A manual
milling machine that has a maximum spindle speed of 3450 rpm with constant feeds was used for
drilling operations. Therefore, drilling parameters include the spindle speeds of 1007, 2015, and 3025
rpm whereas the selected feeds were 0.04, 0.08, and 0.14 mm/rev. These drilling parameters were
considered similar to the previous study by Aamir et al. [19]. All drilling tests were conducted in a dry
condition. The workpiece material used was Al2024, which is used in the aerospace industry due to
its good machinability, high fracture toughness, excellent damage tolerance and resistance to fatigue
crack [22]. The carbide twist drills with TiN and TiCN coatings were used for the drilling operation.
All drills were 6 mm with a helix angle and point angle of 30◦ and 140◦, respectively. The carbide drill
was selected due to its combination of high hardness and toughness [23], where the high point and
helix angles gave high-quality holes [8]. The 6 mm diameter is a common size for making holes in
aerospace structures for creating rivets [3]. The coatings were selected to enhance the wear resistance
and tool life, and improve the hole quality [24].

A Kistler 9257BA force dynamometer connected with a control unit and data acquisition was
used for measuring and analysing the thrust force. A support plate was used to avoid any damage to
the dynamometer. Surface roughness is generally measured as the average roughness (Ra), which is
commonly used in the mentioned industries [25]. Therefore, in this study, Ra was measured using
the surface roughness tester and the burrs were inspected using a digital microscope. The details of
the equipment are given in Figure 1. Moreover, the analysis of variance (ANOVA) technique was
performed to find the percentage contribution of spindle speed, feed and coatings on the thrust force
and Ra. ANOVA is a decision-making tool used for determining the impact of input parameters from
experimental results [26]. Finally, an artificial neural network (ANN) technique was used for modelling
and predicting the Ra using the MATLAB® 2017b environment.
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and workpiece at high feed, which might have increased the heat energy being absorbed by the tool, 
which caused the tool wear [40]. Figure 2 also shows a decrease in thrust force with an increase in the 

Figure 1. Details of the equipment.

3. Results and Discussion

3.1. Analysis of Thrust Force

The thrust force used in drilling processes is one of the main components of force generation
affected by the drilling parameters, workpiece mechanical properties, number of drill holes, tool wear,
drilling operation and machine tool structure [27]. Previously, the thrust force generated during the
one-shot single drilling process has been widely studied [3,28–36]. Therefore, this study represents
the thrust force generated during multi-hole simultaneous drilling operations. Figure 2 shows the
thrust force obtained from the uncoated carbide and TiN and TiCN coated carbide drills. It shows that
thrust force was found to increase with the increases in the feed where reasons might be attributed to
the increase in uncut chip thickness [37–39] and the rapid rubbing action of the tool and workpiece at
high feed, which might have increased the heat energy being absorbed by the tool, which caused the
tool wear [40]. Figure 2 also shows a decrease in thrust force with an increase in the spindle speed.
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According to Karabulut [41], the increase in temperature at high spindle speed affects the strength
of the workpiece and causes the plastic deformation of the workpiece, which leads to a reduction
in thrust force. Further, at the highest spindle speed selected in this study, a slight increase in the
thrust force was observed at the high feed, which might be due to the increase in the number of holes,
which promotes tool wear due to high friction at the interface of the tool–workpiece and subsequent
high-force generation [42]. However, in general, the impact of spindle speed was not significant on the
thrust force.

It was also observed that the uncoated carbide drills produce a lower thrust force than the TiN and
TiCN coated drills, regardless of the drilling parameters. However, the reduction in the thrust force
using uncoated drills was minimal and did not exceed 5% compared to that generated from using the
coated tools. The lower thrust force from uncoated drills was mostly noted at the low spindle speeds.
At a spindle speed of 3025 rpm and increasing feed, there are negligible differences between the thrust
force generated by uncoated and TiN coated drills and somewhat lower thrust force values from TiCN
coated drills. This could imply that TiCN coated tools might show a better performance than the other
two tools when machining at higher spindle speeds [6]. The highest impact on the thrust force was
due to feed following the drill type while no significant impact was found from the spindle speed,
or the linear interactions between the studied parameters as shown in ANOVA results given in Table 2.
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Table 2. ANOVA for thrust force.

Source DF Seq SS Adj SS Adj MS F-Value p-Value Contribution

Model 18 11,25,285 1,125,285 62,516 671.61 0 99.93%
Linear 6 1,120,666 1,120,666 186,778 2006.57 0 99.52%

n 2 663 663 332 3.56 0.078 0.06%
f 2 1,117,200 1,117,200 558,600 6001.1 0 99.22%

Dt 2 2803 2803 1401 15.06 0.002 0.25%
2-Way Interactions 12 4619 4619 385 4.14 0.026 0.41%

n × f 4 2131 2131 533 5.72 0.018 0.19%
n × Dt 4 1363 1363 341 3.66 0.056 0.12%
f × Dt 4 1125 1125 281 3.02 0.086 0.10%
Error 8 745 745 93 - - 0.07%
Total 26 1,126,029 - - - - 100.00%

Spindle speed: n (rpm), feed: f (mm/rev), drill type: Dt.
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3.2. Evaluation of the Hole Quality

3.2.1. Analyses of Drilled-Hole Images

In this study, the quality of holes in terms of burrs was examined using a digital optical microscope
with a scale of 1 mm. These burrs on the entrance and exit side of holes under selected drilling
parameters using uncoated and coated drills, i.e., TiN and TiCN, are shown in Figures 3–5.
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The visual and microscopic inspections of hole quality showed that more burrs were generated at
the entrance of holes compared to the exit side, irrespective of the coatings of the drills. Furthermore,
the burrs at both sides of the holes increased with the increase in spindle speed and feed. However,
the feed was found to be the dominant factor in increasing the burrs while the increase in spindle
speed did not produce any considerable burrs. This is likely expected due to the effect of the thrust
force where the feed was found to be more influential compared to the spindle speed. Figures 3–5
also show that the uncoated drill produces holes with less burr formation compared with the TiN and
TiCN coated drills. However, in comparison to TiN, the burrs formed by the TiCN coated drill were
found to be less.

3.2.2. Surface Roughness

The surface roughness has a key role in the evaluation of machining performance of a workpiece [36].
Figure 6 indicates that Ra was affected by the drilling parameters, irrespective of the coatings of the
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drills. Increase in both spindle speed and feed resulted in increased Ra; however, the spindle speed
was found to be more effective in increasing the Ra compared to feed. This might be due to the increase
in the ductility of the workpiece due to the rise in temperature at high spindle speed [43]. Additionally,
the possibility of high vibration at high speeds would have caused the rough surface roughness [11].
Regarding the high feed, the increase in chip thickness could be the source of an increase in Ra [37].
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Figure 6 also shows that the uncoated carbide tool gave lower values of Ra than the TiN and
TiCN coated drills. This is likely attributed due to the built-up edge (BUE) because of the higher
chemical affinity of aluminium for coatings due to the constant release of particles on the tool’s surface,
which results in high thrust force and increased Ra [10]. However, the TiCN coated drill performed
better at a high spindle speed of 3025 rpm. According to Nouari et al. [6], the reason for the lower
Ra of holes drilled using coated tools at high spindle speed is because the coating provides a thermal
barrier from high temperature therefore reducing the diffusion wear process at high cutting speed
for dry drilling of Al2024. Additionally, the Ra obtained during multi-spindle drilling performance
of TiN of Al2024 was higher than those measured from TiCN, regardless of the drilling parameters.
The reason behind this is expected to be due to the low hardness values and low friction coefficient
of TiN compared to TiCN [24]. The hardness of TiN is 23 GPa while that of TiCN is 27 GPa [24].
Previous studies have shown that TiCN coated tools provide better tool life than TiN coated tools
due to their higher hardness [44]. Moreover, the addition of carbon adds more hardness and makes
the TiCN coating more resistant to adhesions, making TiCN coated tools somewhat more effective in
reducing Ra at higher speeds and feeds [45]. Additionally, the coefficient of friction of TiN and TiCN is
0.4 and 0.2, respectively [24], and coatings with a low friction coefficient resulted in low cutting loads
and less tool wear; hence, small values of Ra can be expected. This is because the low friction coatings
can reduce the tendency to stick and pick up material from the surface used in cutting and forming
tools [46]. Table 3 shows the percentage contribution from ANOVA, which indicates that the spindle
speed was the most influential drilling parameter on the Ra, following by the feed and the drill type,
which includes the uncoated and coated drills. The linear interaction of the input parameters had a
negligible contribution on Ra of less than 1.5%.



Appl. Sci. 2020, 10, 8633 10 of 20

Table 3. ANOVA for surface roughness.

Source DF Seq SS Adj SS Adj MS F-Value p-Value Contribution

Model 18 7.70713 7.70713 0.42817 191.81 0 99.77%
Linear 6 7.52638 7.52638 1.2544 561.93 0 97.43%

n 2 5.04159 5.04159 2.52079 1129.24 0 65.26%
f 2 2.23015 2.23015 1.11508 499.52 0 28.87%

Dt 2 0.25465 0.25465 0.12732 57.04 0 3.30%
2-Way Interactions 12 0.18075 0.18075 0.01506 6.75 0.006 2.34%

n × f 4 0.102 0.102 0.0255 11.42 0.002 1.32%
n × Dt 4 0.06481 0.06481 0.0162 7.26 0.009 0.84%
f × Dt 4 0.01394 0.01394 0.00349 1.56 0.274 0.18%
Error 8 0.01786 0.01786 0.00223 - - 0.23%
Total 26 7.72499 - - - - 100.00%

Spindle speed: n (rpm), feed: f (mm/rev), drill type: Dt.

Therefore, from the ANOVA results, it can be concluded that the use of coated drills does not
provide any significant contribution to reducing thrust force or Ra when drilling Al2024 alloy. However,
this might be only true for the range of studied feeds and speeds. A broader study that looks into the
performance of the studied coatings at higher speeds and feeds is recommended.

4. Artificial Neural Network

ANNs originally developed by McCulloch and Pitts [47] are based on the behaviour and structure
of the human brain. The basic computational units of ANN are known as neurons (nodes), which are
connected through weights, and are responsible for computing the results within the defined range.
To achieve the desired results, the data need to be divided into two groups, i.e., training and testing
datasets. Training data usually consist of 70% or 80% of the dataset, which act as patterns and the
ANN establishes a non-linear connection between them. A second dataset, known as the testing
data, adopts the recognized patterns to evaluate the generalization potential of the system. It is
worth noting that the developed network is unfamiliar with the testing data [48]. Therefore, ANNs
attempt to learn the hidden pattern from the training dataset and then applies it to the testing dataset,
to examine the generalisation ability of the system. A multilayer perceptron (MLP) neural network
was employed to establish the relationship between the input and output parameters using a single
hidden layer. MLP is the most commonly used network, among the diverse types of ANNs used by
various researchers [49,50]. The MLP consists of three layers, namely input, hidden and output layers.
Hornik [51] comprehensively proved that, for a regression problem, a single hidden layer is adequate
to map a relationship between input and response variables. Additionally, a single hidden layer is
adequate to map a relationship between input and response variables as it provides satisfactory results
in the approximation of nonlinear problems [52]. Further, the increase in the number of nodes causes
the model to become complicated with many different parameters [53]. The proposed scheme for the
prediction of Ra using ANN is given in Figure 7.
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It is noteworthy that data normalisation is important before feeding it to any machine learning
model so that each variable receives the same attention [49]. Therefore, for this study, all parameters
were normalised between −1 to 1 using the following relationship.

Xn = 2
X −Xmin

Xmax −Xmin
− 1 (1)

where Xmax and Xmin represent the maximum and minimum values of the parameters, respectively.
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The tangent-sigmoid activation function is applied between the input and hidden layers given
mathematically as [48]:

tanh(x) =
2

1 + e−2x − 1 (2)

The hit and trial method was utilised to find the optimal number of neurons in the hidden layer.
The model with the four hidden neurons is selected as the optimum model with the architecture of
3-4-1 as shown in Figure 8.
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The overall output from the MLP can be stated as follows [54]:

y = FHO

θO +
h∑

j=1

V jFIH

θhj +
m∑

i=1

wi jxi


 (3)

where FHO is the activation function between the hidden and output layer, θO is the bias of the output
layer neuron, V j is the connecting weight of neuron j of the hidden layer and a single output node,
FIH is the activation function between the input and the hidden layer, θhj is the bias value for neuron j
of the hidden layer (j = 1, h), wi j is the connecting weight of input i and neuron j of the hidden layer,
and xi is the ith input parameter. The input parameters are spindle speed, feed, and drill type, and the
output parameter is the Ra The drill type was coded as 0, 1, and 2 depending on the type of coatings.
The uncoated carbide drill is coded as 0, TiN-coated drill as 1, and TiCN as 2. The statistical properties
of the complete experimental data are tabulated in Table 4.

Table 4. Statistical properties of experimental database.

Statistical Properties Spindle Speed (rpm) Feed (mm/rev) Surface Roughness (µm)

Mean 2015.67 0.09 2.34
Standard Error 92.11 0.00 0.06

Median 2015.00 0.08 2.32
Standard Deviation 828.98 0.04 0.55

Range 2018.00 0.10 2.40
Minimum 1007.00 0.04 1.20
Maximum 3025.00 0.14 3.60
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4.1. ANN-Based Formula

To facilitate the researchers/practitioners, the developed model was also translated into a trackable
mathematical formulation. Based on the developed ANN, the procedure for calculating the Ra is given
as follows:

Step 1: Normalise the input parameters according to Equation (1). The minimum and maximum
ranges of all the parameters are given in Table 4.

Step 2: Calculate the normalised Ra as follows:

nnet = wi jx′n + θhj (4)

nout =
2

1 + e−2nnet
− 1 (5)

Ra(n) = V jnout + θo (6)

where nnet is the net input to the hidden layer neurons, nout is the output of each hidden layer neuron,
and x′n is the normalized values of the input parameters.

The values of wi j, θhj, V j and θo are given as follows:

wi j =


2.2306 0.3088 −0.3095
0.3609 0.4736 0.6529
3.0656 −2.2762 −10.5984
0.5709 0.6985 0.3968

 (7)

θhj =


−2.5736
−1.0580
5.5033
1.4934

 (8)

V j =
{

0.5424 0.5781 0.2267 0.7662
}

(9)

θo = {0.0734} (10)

Step 3: Calculate the Ra as follows:

Ra = 0.5
(
Ra(n) + 1

)(
Ra(max) −Ra(min)

)
+ Ra(min) (11)

For more comprehension, a design example is presented in the Appendix A section.

4.2. Model Performance Evaluation

In this study, the widely used and well-established ratio of 80:20 was used to divide the data into
training and testing subsets, respectively. As discussed earlier, the training data are used to construct
the model network and the testing data are used for validating the performance of the network [49].
The network uses the training data to learn and map the hidden relationships. Thereafter, it was
applied to the testing dataset and the predicted outputs were compared with the measured results
(targets) to estimate the predictive strength of the model. For this study, three statistical indices were
utilised to assess the accuracy of the developed model: (1) root mean square error (RMSE); (2) mean
absolute per cent deviation (MAPD); and (3) coefficient of determination (R2). All these indices are
predominantly used for evaluating the accuracy of any data-driven modelling technique [49].

RMSE =

√
1
n

∑n

i=1

[(
Rai(m) −Rai(p)

)]2
(12)
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MAPD(%) =
1
n

n∑
i=1

∣∣∣∣∣∣Rai(m) −Rai(p)

Rai(m)

∣∣∣∣∣∣× 100 (13)

R2 = 1−

∑n
i=1

(
Rai(p) −Rai(m)

)2

∑n
i=1

(
Rai(m) −Ra(m)

)2 (14)

where n denotes the number of data samples; Rai(m) is the ith measured surface roughness; Rai(p)

is the ith predicted surface roughness; and Ra(m) is the mean value of measured surface roughness.
The values of the statistical indices for the training and testing datasets are summarised in Table 5.

Table 5. Statistical indices for training and testing datasets.

Dataset
Statistical Indices Magnitudes

RMSE MAPD (%) R2

Training 0.127 4.69 0.95
Testing 0.204 8.12 0.88

For the training dataset, the values of RMSE, MAPD and R2 were 0.127, 4.69 and 0.95, whereas for
the testing dataset the values were 0.204, 8.12, and 0.88, respectively, which depicted the satisfactory
performance of the developed model.

The scatter and error plots for the training and testing datasets are shown in Figures 9 and 10.
The perfect prediction between the data plotted on the abscissa (measured response) and the ordinate
(predicted response) is depicted by the perfect prediction line (x = y) in the scatter plot. Additionally,
the error plots for the training and testing datasets were created by computing the difference between
the measured and simulated response for each data point. From Figures 9 and 10, it can be seen that the
developed ANN model produced the outputs close to the observed measurement with approximate
±10− 15% error.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 20 

𝑀𝐴𝑃𝐷(%) = 1𝑛 ෍ ቤ𝑅௔௜(௠) − 𝑅௔௜(௣)𝑅௔௜(௠) ቤ௡
௜ୀଵ ൈ 100 (13) 

𝑅ଶ = 1 − ∑ ൫𝑅௔௜(௣) − 𝑅௔௜(௠)൯ଶ௡௜ୀଵ∑ ൫𝑅௔௜(௠) − 𝑅ത௔(௠)൯ଶ௡௜ୀଵ  (14) 

where n denotes the number of data samples; 𝑅௔௜(௠) is the ith measured surface roughness; 𝑅௔௜(௣) is 
the ith predicted surface roughness; and 𝑅ത௔(௠) is the mean value of measured surface roughness. 
The values of the statistical indices for the training and testing datasets are summarised in Table 5. 

Table 5. Statistical indices for training and testing datasets. 

Dataset 
Statistical Indices Magnitudes 
RMSE MAPD (%) R2 

Training  0.127 4.69 0.95 
Testing 0.204 8.12 0.88 

For the training dataset, the values of RMSE, MAPD and R2 were 0.127, 4.69 and 0.95, whereas 
for the testing dataset the values were 0.204, 8.12, and 0.88, respectively, which depicted the 
satisfactory performance of the developed model. 

The scatter and error plots for the training and testing datasets are shown in Figures 9 and 10. 
The perfect prediction between the data plotted on the abscissa (measured response) and the 
ordinate (predicted response) is depicted by the perfect prediction line (x = y) in the scatter plot. 
Additionally, the error plots for the training and testing datasets were created by computing the 
difference between the measured and simulated response for each data point. From Figures 9 and 
10, it can be seen that the developed ANN model produced the outputs close to the observed 
measurement with approximate േ10 − 15% error. 

 
Figure 9. Scatter and error plots between the measured and simulated values of surface roughness 
for training. 

 

Figure 9. Scatter and error plots between the measured and simulated values of surface roughness
for training.



Appl. Sci. 2020, 10, 8633 15 of 20

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 20 

𝑀𝐴𝑃𝐷(%) = 1𝑛 ෍ ቤ𝑅௔௜(௠) − 𝑅௔௜(௣)𝑅௔௜(௠) ቤ௡
௜ୀଵ ൈ 100 (13) 

𝑅ଶ = 1 − ∑ ൫𝑅௔௜(௣) − 𝑅௔௜(௠)൯ଶ௡௜ୀଵ∑ ൫𝑅௔௜(௠) − 𝑅ത௔(௠)൯ଶ௡௜ୀଵ  (14) 

where n denotes the number of data samples; 𝑅௔௜(௠) is the ith measured surface roughness; 𝑅௔௜(௣) is 
the ith predicted surface roughness; and 𝑅ത௔(௠) is the mean value of measured surface roughness. 
The values of the statistical indices for the training and testing datasets are summarised in Table 5. 

Table 5. Statistical indices for training and testing datasets. 

Dataset 
Statistical Indices Magnitudes 
RMSE MAPD (%) R2 

Training  0.127 4.69 0.95 
Testing 0.204 8.12 0.88 

For the training dataset, the values of RMSE, MAPD and R2 were 0.127, 4.69 and 0.95, whereas 
for the testing dataset the values were 0.204, 8.12, and 0.88, respectively, which depicted the 
satisfactory performance of the developed model. 

The scatter and error plots for the training and testing datasets are shown in Figures 9 and 10. 
The perfect prediction between the data plotted on the abscissa (measured response) and the 
ordinate (predicted response) is depicted by the perfect prediction line (x = y) in the scatter plot. 
Additionally, the error plots for the training and testing datasets were created by computing the 
difference between the measured and simulated response for each data point. From Figures 9 and 
10, it can be seen that the developed ANN model produced the outputs close to the observed 
measurement with approximate േ10 − 15% error. 

 
Figure 9. Scatter and error plots between the measured and simulated values of surface roughness 
for training. 

 
Figure 10. Scatter and error plots between the measured and simulated values of surface roughness
for testing.

4.3. Model Robustness

An ANN model may achieve good prediction, which could be evaluated according to the fit
obtained between the original outputs of the model and the simulated responses. However, the model
may only be considered robust if it predicts the response in a realistic manner, that is, according to the
underlying physical behaviour of the investigated system. Hence, the model also needs validation to
confirm its robustness to assess the relationship [55]. In this regard, a sensitivity analysis was carried out
to evaluate the response of the developed ANN model. The incremental sensitivity method was used
to assess the significance of each input parameter in the prediction equation [56]. Sensitivity analysis is
a simple and innovative technique that examines the connection weights of the trained network by
interpreting the relative significance of the input variables [57]. In the incremental sensitivity analysis,
all input variables except one are fixed to the mean values and the other variables are varied between
the input range (minimum to maximum); finally, the predicted response is measured in each step [58].
For this study, this process was repeated for all drill types and the robustness was examined to see
how well the predicted data are in agreement with the physical behaviour over a range of input data.
Figure 11 shows that, in general, for all the drill types, Ra increases by increasing spindle speed and
feed. However, the effect of spindle speed was found to be more than that of feed. This is in line
with the previous experimental studies conducted by [16–18]. In addition, the graph of uncoated drill
presented low values of Ra at low spindle speed while a significant increase was observed with the
rise in spindle speed. The TiCN coated drills performed better at the high spindle speed whereas the
TiN drill gave the highest values of Ra compared to those measured from uncoated and TiCN carbide
coated drills. This concluded that the developed model agrees with the expected effect of spindle
speed, feed, and coatings on the Ra. Therefore, the developed model can be useful for industries and
manufacturing engineers for predicting the surface roughness of Al2024 in multi-hole simultaneous
drilling processes.
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5. Conclusions

This study includes the use of a multi-spindle drill head to perform a multi-hole simultaneous
drilling process to increase productivity and save time. To assess the quality of holes, uncoated carbide
and (TiN and TiCN) coated drills were used. It was concluded that low thrust force, low surface
roughness and small burrs were observed with the use of the uncoated drills during multi-spindle
drilling of Al2024, while the TiN-coated drill gave the highest thrust force and poor hole quality.
However, at a high spindle speed, the TiCN performed better than the uncoated drills because of its
high hardness value and low coefficient of friction. Therefore, the performance of the TiCN coating tool
was good at high spindle speeds and feed rates since it provides similar or less thrust force and better
surface finish than the other tools. This means combining TiCN coating with poly drilling can give both
better hole quality and also reduce drilling time. Regarding the drilling parameters, the thrust force
was highly influenced by the feed, while the effect of spindle speed on thrust force was insignificant.
The surface roughness was affected more by the spindle speed than the feed. However, most of the burrs
were observed at a high feed as compared to the increase in spindle speed. Furthermore, more burrs
were observed at the holes’ exits. In addition, an ANN model, which can be part of a portfolio for the
manufacturing engineering work on the drilling of Al2024, was developed for the prediction of surface
roughness when using the multi-hole simultaneous drilling process. The ANN model is reliable for
the prediction of surface roughness with the values of RMSE, MAPD and R2 of 0.127, 4.69 and 0.95 for
the training dataset, and 0.204, 8.12, and 0.88 for the testing dataset, which showed the satisfactory
performance of the developed model. This work can be further extended to examine the deviation of
the hole from the nominal size and circularity error in the multi-spindle drilling process.
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Nomenclature

ANN artificial neural network
BUE built-up edge
HSS high-speed steel
MAPD mean absolute per cent deviation
MLP multilayer perceptron
RMSE root mean square error
Dt drill type
f (mm/rev) feed
n (rpm) spindle speed
R2 coefficient of determination
Ra (µm) surface roughness

Appendix A Numerical Example for Calculating the Surface Roughness

Calculate the surface roughness of the drill hole for the uncoated type of drill type used with a spindle speed
of 1007 (rpm) and a feed of 0.08 (mm/rev).

Solution:

From Equation (1), normalise the input variables:

xn = {−1,−0.2, −1} (A1)

From Equation (4):

nnet =


−4.5585
−2.1665
13.4910
0.3860

 (A2)

Thereafter, from Equation (5):

nout =


−0.9997
−0.9741

1
0.3679

 (A3)

Additionally, from Equation (6):
Ra(n) = −0.5234

Finally, the surface roughness estimated using Equation (11) is:

Ra = 1.771
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