Bifunctional Aptamer Drug Carrier Enabling Selective and Efficient Incorporation of an Approved **Anticancer Drug Irinotecan to Fibrin Gels**

Hiroto Fujita, Yuka Kataoka and Masayasu Kuwahara*

Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

*Correspondence: mkuwa@chs.nihon-u.ac.jp

ODN	5'-Modification	Sequence ^a
CMA- 70_Temp	Phosphate	ACACGGCTAGCACGGCGAAGAAGTTACTCTGATACTATGACCACCCT
		AC
		GTGTCTGGCGTGCCTCTGGTG
CMA-70_P1	Non	CACCAGAGGCACGCCAGACA
T1	6-FAM	CACGGCGAAGAAGTTACTCTGATACTATGACCACCCTACGTGTCTGG
		CG
		TGTCACCCCAACCTGCCCTACCACGGA
TBA_P1	Non	TCCGTGGTAGGGCAGGTTGGGGTGA

Table S1. Synthetic oligonucleotides used in this study.

^aSequences are aligned in the 5' to 3' direction.

Irinotecan

Figure S1. Metabolism of irinotecan to SN-38.

Figure S2. Enzymatic synthesis of bApt through a primer extension reaction. Oligo nucleic acids and products were analyzed via PAGE using a 10% denaturing gel and TBE buffer (pH 8.0) at 200 V for 35 min. Details are shown in references 27 and 30.