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Abstract: Ecological restoration and climate change in the Loess Plateau region have become research
hotspots. Climate change and anthropogenic activities have led to spatial–temporal pattern variations
in vegetation and extreme climatic indices and meteorological factors. Therefore, obtaining a better
understanding is necessary of the internal relations between vegetation and meteorological factors.
In this paper, the interplay between vegetation index and various factors, including extreme climatic
indices and meteorological factors, during a long-term time series is investigated using Mann–Kendall
trend analysis, and Pearson correlation coefficient analysis. The mechanisms of interaction between
vegetation growth and various factors in the Loess Plateau are then analyzed. Results reveal that (i)
the rapid growth of vegetation during 2000–2015 has made a major contribution to the growth trend of
the Loess Plateau in the past 33 years (1982–2015). During 2000–2015, the increase of vegetation may
inhibit the increase of extreme warm index and the decrease of extreme cold index; (ii) a warm and dry
climate developed with decreasing relative humidity and increasing temperature; (iii) the normalized
vegetation index (NDVI) is strongly correlated with extreme climatic indices and meteorological
factors, especially precipitable water vapor (PWV), with a correlation coefficient of 0.94; and (iv) the
daily temperature range, diurnal temperature range and sunshine duration (SSD) exerted different
time-delay effects on vegetation growth in the Loess Plateau. The above findings provide an essential
theoretical basis for ecological policy formulation in the Loess Plateau.

Keywords: Loess Plateau; extreme climatic indices; meteorological factors; normalized vegetation
index; time delay effect

1. Introduction

The fifth assessment of the Intergovernmental Panel on Climate Change (IPCC) reported that
the global average surface temperature increased by 0.78 ◦C over the past 10 years (2003–2012).
Anthropogenic activities are the main cause of global warming [1]. Climate change has also been closely
linked to extreme weather events, such as extremely high or low temperatures, heavy precipitation,
hurricanes, and persistent droughts [2]. In recent years, these extreme events have occurred with
increasing frequencies, ranges, and intensities and thus exert a profound impact on the ecological
environment and social production of various countries.

The continued increase in the frequency and intensity of extreme temperatures and precipitation
events have become a research focus. For example, the summer heat wave in 2003 caused severe
drought in the European continent [3]. Omondi et al. [4] found that the number of cold nights decreased
in the African triangle region from 1961 to 2010. Pepler et al. [5] revealed severe flooding after heavy
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rains in the eastern coast of Australia during the summer of 2012. Yilmaz et al. [6] predicted that the
intensity of precipitation would increase by 23% relative to the current condition from 2080 to 2099.
Extreme disastrous events, such as extreme precipitation, high temperature and floods, are mainly
caused by changes in the global climate [7–9]. Such conditions have caused severe damages to the
global ecosystem and are a threat to human survival.

The Normalized Difference Vegetation Index (NDVI) can accurately reflect surface vegetation
coverage. It can be monitored using satellite-derived NDVI to track the impact of global climate change
on the ecological environment [10,11]. Zhou and Zhang [12] found that different climate conditions
correspond to different distributions of vegetation types. Some studies have also investigated the
relationship between extreme weather and vegetation using NDVI. For example, Rao et al. [9] and
Gornall et al. [13] found that the frequent occurrence of extreme events exerts a negative effect on
vegetation growth and leads to a decrease in vegetation coverage over the coastal areas of China.
Bokhorst et al. [14] revealed that frequent extreme temperature events during winter seriously affect
vegetation growth over the arctic subregion. The impact of extreme rainfall on vegetation coverage over
the Qinghai–Tibet Plateau is less severe than the influence of average rainfall [15]. Over central Asia,
the annual maximum and minimum air temperatures significantly increased between 1958 and 2012,
and increased winter temperatures contributed the most to the annual warming, thereby increasing
the growing season length (GSL) and productivity [16]. However, only a few extreme climate factors
are considered during the analysis of their correlations with the NDVI [17] and the relationships
between NDVI and extreme climatic indices are rarely discussed. Therefore, carefully investigating
the mechanisms of extreme weather events in response to climate change is necessary. However,
whether a time lag effect on vegetation growth caused by meteorological factors (temperature, rainfall,
etc.) exists remains unclear. In addition, the influence of time delay on vegetation growth caused by
extreme climatic indices is not considered when analyzing the correlations between NDVI and these
meteorological factors [17].

The Loess Plateau, which is located in Northwestern China, is a typical ecologically vulnerable
region. [18]. Only a few studies have addressed the relationship between extreme weather and
vegetation conditions. Sun et al. [19] studied the interannual change trends of extreme climatic factors
in the Loess Plateau. Zhao et al. [17] analyzed the variation of 12 extreme climatic indices and NDVI
in the Loess Plateau and found that extreme rainfall and temperature occurrences are significantly
correlated with different vegetation cover types. Most previous studies use the average NDVI of the
entire Loess Plateau to reflect the overall change [4,6,17,20], discounting spatial variations within the
region, or temporal variation over time. Moreover, climate change is not only a simple vegetation
state change caused by temperature change. As an important component of the lower atmosphere,
precipitable water vapor (PWV) changes dramatically with variations in temperature. PWV is among
the conditions necessary for precipitation weather evolution and an important indicator influencing
the occurrence of extreme weather [21–24]. Several studies have shown that the true rate of nowcasting
precipitation forecasting with PWV can reach 85% [24], which reveals the strong correlation between
precipitation and PWV. According to the Clausius–Clapeyron equation, a high temperature corresponds
to a strong atmospheric storage capacity [25], which reveals the close relationship between temperature
and atmospheric water vapor. Manandhar et al. [26] also proved that the relative humidity (RHU) and
SSD are two primary factors influencing precipitation.

In this work, we investigated the potential relationship of vegetation growth with extreme weather
events and meteorological parameters (PWV, T, RHU, and SSD). Variations in the relationship at
different periods were considered to better understand the time-varying characteristics of the multiple
meteorological factors and extreme climatic indices and vegetation over Loess Plateau. In addition,
we evaluated the time-lag effect of extreme weather changes and meteorological factors on vegetation
growth in detail. We aim to further understand the extreme weather change impact on the ecological
environment in the Loess Plateau.
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2. Experiment Description

2.1. Study Area and Data Used

The Loess Plateau extends from 33◦ 41′ N to 41◦ 16′ N in latitude and from 100◦ 52′ E to 114◦ 33′ E
in longitude. Given its low vegetation coverage, the ecology of Loess Plateau is very fragile, and the soil
erosion is severe [27]. The Loess Plateau features a temperate continental monsoon climate, wherein
rainfall is concentrated in July–September. In this paper, the Loess Plateau is divided into 10 subregions
(Figure 1) based on differences in soil type and topography (Table 1). This geographical zoning map of
the Loess Plateau was acquired from the Loess Plateau Scientific Data Center (http://loess.data.ac.cn).
Considering that areas IX and X do not include the selected meteorological stations (right panel of
Figure 1), only the eight remaining areas are discussed in this paper.

Figure 1. Geographical zoning (Cf. Table 1) map of the Loess Plateau and the distribution of
meteorological stations.

Table 1. Loess Plateau subdivisions.

No. Geographical Area. No. Geographical Area.

I River Impact Plain VI Loess Hills in the
Intermountain Basin

II Loess Tableland VII Wind Dunes
III Loessian Rolling Hills VIII Stone Mountain
IV Loess Beam Hills IX The Sandy Loess Hills
V Loess Wide Valley X Rocky Hills

Extreme climatic indices can be calculated using the Climate Dex package developed by R
Language (RClimDex) model, which was developed by the Climate Research Department, Meteorology
Office, Canada, and can be downloaded from http://etccdi.pacificclimate.org/software.shtml. The
RClimDex model is driven by daily precipitation and minimum and maximum temperatures, producing
27 indices that can be used to measure extreme weather conditions. A total of 16 extreme temperatures
and 11 extreme precipitation indices are available (see Table 2). The input meteorological parameters
of 83 stations were obtained from the China Meteorological Administration (http://data.cma.cn/).
PWV can be derived through many techniques, such as sounding measurement, very long baseline
interferometry, microwave radiation, global navigation satellite system, and reanalysis data [28]. In this
study, we used PWV data from the European Centre for Medium-Range Weather Forecasts (ECMWF)
reanalysis (https://www.ecmwf.int/). This product assimilates multi-source data, such as radiosonde
data, satellite radiation data, and satellite altimetry data [29]. The temporal and spatial resolutions of
the PWV product used were four times a day and 0.125◦ × 0.125◦, respectively. The PWV values of the
meteorological stations were interpolated using the values of the four surrounding grid points derived
from ECMWF data.

http://loess.data.ac.cn
http://etccdi.pacificclimate.org/software.shtml
http://data.cma.cn/
https://www.ecmwf.int/
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Table 2. Definition and classification of extreme climatic indices from the RClimDex model.

Category Index Name Definition Index Code Unit

Extreme
precipitation

index

Precipitation
index

Maximum 1-d
Precipitation Highest precipitation amount in 1-d period RX1day mm

Maximum 5-d
Precipitation

Highest precipitation amount in the 5-d
period RX5day mm

Strong rainfall Precipitation due to very wet days
(> 95th percentile) R95p mm

Super strong
rainfall

Precipitation due to extremely wet days (>
99th percentile) R99p mm

Simple daily
intensity index Mean precipitation amount on a wet day SDII mm*d−1

Total precipitation in wet days (>1 mm) PRCPTOT mm

Precipitation
day

index

Consecutive
dry days Maximum length of dry spell (RR < 1 mm) CDD d

Consecutive
wet days Maximum length of wet spell (RR ≥ 1 mm) CWD d

Heavy
precipitation

days

Count of days where RR (daily
precipitation amount) ≥ 10mm R10 d

Very heavy
precipitation

days
Count of days where RR ≥ 20mm R20 d

Count of days where RR ≥ 25mm threshold
in mm R25 d

Extreme
temperature

index

Relative
index

Cold nights Count of days where TN < 10th percentile TX10P %
Cold day-times Count of days where TX < 10th percentile TN10P %

Warm nights Count of days where TN > 90th percentile TX90P %
Warm

day-times Count of days where TX > 90th percentile TN90P * %

Adiabatic
index

Frost days Count of days where TN (daily minimum
temperature) < 0 ◦C FD0 d

Icing days Count of days where TX < 0 ◦C ID0 d

Summer days Count of days where TX (daily maximum
temperature) > 25 ◦C SU25 d

Tropical nights Count of days where TN > 20 ◦C TR20 d

Extreme Value
Index

Monthly maximum value of daily
maximum temperature TXx ◦C

Monthly maximum value of daily
minimum temperature TNx ◦C

Monthly minimum value of daily
maximum temperature TXn ◦C

Monthly minimum value of daily
minimum temperature TNn ◦C

Other
indicators

Warm spell
duration index

Count of days in a span of least six days
where TX > 90th percentile WSDI * %

Cold spell
duration index

Count of days in a span of at least six days
where TN > 10th percentile CSDI d

Growing
season length

Annual count of days between first span of
at least six days where TG (daily mean
temperature) > 5 ◦C and first span in

second half of the year of at least six days
where TG < 5 ◦C

GSL d

Diurnal
temperature

range
Mean difference between TX and TN (◦C) DTR ◦C

* TX and TN refer to the maximum and minimum temperature, respectively.

A long-term NDVI time series for the study region was obtained from the Global Inventory
Modeling and Mapping Studies (GIMMS). We downloaded the 15-day composite NDVI3g dataset
with a spatial resolution of 8 km over the 35 years of 1981–2015 (https://ecocast.arc.nasa.gov/data/pub/

gimms/3g.v1). This dataset has been processed such that radiation and geometric correction were
applied to the World Geodetic System 1984(WGS84) coordinate system [30]. The maximum value
composite method was adopted to obtain the monthly NDVI time series over Loess Plateau. Then,

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1
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meteorological parameters could be obtained through interpolation, including PWV, temperature,
RHU, and SSD, at the location of the weather stations.

2.2. Methodology

To better understand changes in extreme weather and vegetation growth in the Loess Plateau
from 1982 to 2015 (period S), we divided the long-time series into two segments using the year 2000 as
the cut-off point. This year was selected because China’s national policy of “returning farmland to the
forest” began in 2000 in the Loess Plateau. Therefore, two sub-periods of 1982–1999 (S1) and 2001–2015
(S2) were separately considered to ensure that specific change patterns in vegetation growth under
extreme weather and human intervention in these corresponding periods would not be overridden by
long-term trends.

To understand the change trends of the NDVI during the experimental period, the average value,
linear trend, and F-test of the NDVI were calculated over the three selected periods. Here, the annual
change rate in NDVI was calculated; a positive value was considered to represent an increasing trend
of vegetation, whereas a negative value represents a decreasing trend. Three levels of significance
were evaluated for the F-test, i.e.; P = 0.1, P = 0.05, and P = 0.01. In addition, the percentages of pixels
with decreasing and increasing trends for different significance levels were counted.

To analyze the spatiotemporal distribution of PWV, RHU, and SSD in the Loess Plateau over the
experimental period, several processes were performed. The 5-year sliding averages of PWV, RHU,
and SSD were introduced to directly reflect the change trends of the corresponding time series, and the
spatial distribution of the average PWV, RHU, and SSD was calculated over the period of 1982–2015.

To better understand changes in extreme climate indices in the Loess Plateau, the first derivatives
of 7 extreme precipitation indices and 13 extreme temperature indices were calculated over the three
periods of S, S1, and S2. In addition, the year in which an abrupt change in trend occurred was also
calculated using the Mann–Kendall trend and abrupt analysis method. The Mann–Kendall test is
a nonparametric method that does not require a certain distribution and is minimally affected by
outliers [31].

The Pearson correlation coefficient was introduced to calculate correlations between NDVI and
the meteorological factors (i.e.; PWV, RHU, and SSD) observed through the weather stations. The
formula of calculating Pearson correlation coefficient is give as follows:

r =

n∑
i=1

(Xi −X
)
(Yi −Y)√

n∑
i=1

(Xi −X)2

√
n∑

i=1

(
Yi −Y)2

(1)

where r is the correlation coefficient, and r > 0 is a positive correlation, r < 0 is a negative correlation,
the greater the absolute value of r, the stronger the correlation. X and Y are variables, n is the number
of samples, X and Y are the average values of X and Y, respectively. Considering that the relationship
between precipitation and NDVI has been widely investigated, we do not discuss precipitation in
this paper. A comprehensive analysis between extreme climatic indices and NDVI was performed
to explain the response of vegetation growth to climate change. The F-test was also performed to
determine the significance level of vegetation change in the different subregions of the Loess Plateau
during the three specified periods.

To better understand the time delay impacts of extreme climatic indices on vegetation growth,
the monthly time series of the factors TXn, TNn, TXx, TNx, mean of max temperature (TMAXmean)
mean of min temperature (TMINmean), RX1day, RX5day, and diurnal temperature range (DTR) were
calculated using the RClimDex model. Their Pearson correlation coefficients were also analyzed along
with the corresponding NDVIs for the current month and after 1–3 months during the growing season
(April–October) in the Loess Plateau. In this paper, the correlation degree was defined based on
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previous studies on the relationship between climatic indices and ecological factors [32–34]. Table 3
shows the level of correlation.

Table 3. Range of Pearson correlation coefficients and correlation degrees.

Range −1~−0.4 −0.4~−0.2 −0.2~0.2 0.2~0.4 0.4~1

Correlation
degree

Strong negative
correlation

Moderate
negative

correlation

Weak
correlation

Moderate
positive

correlation

Strong positive
correlation

3. Results

3.1. Vegetation Distribution over the Loess Plateau

The distributions of the average values, linear trends, and F-test results of NDVI over the three
selected periods are presented in Figure 2. Figure 2a,c shows that the vegetation coverage generally
decreases from southeast to northwest with a relatively low NDVI of 0–0.4 in the northwestern region.
The overall vegetation coverage rate improved during S compared with that during S2, which suggests
that the major contributor to the vegetation growth in S is the vegetation growth of S1 (Figure 2d,f). The
statistical results reveal that the average trends over Loess Plateau during S, S1, and S2 were 0.022/10a,
0.013/10a, and 0.059/10a, respectively. After 2000, the growth rate of vegetation over Loess Plateau was
4.5 times that before 2000, In addition, [35] shows that the vegetation change rate of the whole China
during 1982-2012 is 0.002/10a, and the vegetation growth rate of Loess Plateau during S and S2 is 11 and
29.5 times than that of the whole China. From the spatial distribution of NDVI, vegetation decreased
in the southern and northern portions of Loess Plateau, especially in area I. Figure 2g–i shows the
F-test distributions vegetation change in the three periods of S, S1, and S2 in the Loess Plateau; Table 4
provides the statistical results of the F-test showing decreasing and increasing trends for different
significance levels. Approximately 56.76% of the pixels revealed an increasing trend during S2, while
72.23% of the pixels showed an increasing trend during S (P < 0.01).

Figure 2. The (a–c) are average values, (d–f) are linear trends (unit: year-1), and (h–j) ars F-tests of the
GIMMS NDVI for three periods, where S, S1, and S2 represent the periods of 1982–2015, 1982–1999,
and 2000–2015, respectively.
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Table 4. The proportion of pixels that showed increases and decreases in vegetation growth for S, S1,
and S2, for each significance level according to the F-test (Unit: %).

Significance Level

Period Increase Decrease

S S1 S2 S S1 S2

P < 0.01 72.23 12.28 56.76 1.96 0.14 0.90
0.01 < P < 0.05 6.38 9.64 13.68 1.05 0.53 0.72
0.05 < P < 0.1 2.67 6.78 16.66 0.75 0.75 0.44

0.1 < P 9.42 50.5 5.42 5.54 19.63 0.44

According to the spatial distribution of vegetation in the Loess Plateau (Figure 1), in the north and
south (area I), the vegetation decreased significantly. The main reason is that there are cities of Zhong,
Yinchuan, Shizuishan, Wuhai, Linhai, Baotou, Hohhot and others in the north of area I. These cities
have sufficient sunshine, strong evaporation, short summer, and late spring, and are prone to extreme
days such as cold waves and sandstorms. In recent years, with the acceleration of urbanization, the area
of construction land has increased, and the change of land use has led to the obvious degradation of
vegetation in this area in the past 30 years. For the south of zone I, there are 12 cities, such as Shuozhou,
Linfen and Yuncheng. The open-pit coal mining in these areas all year-round has caused serious
damage to the surface vegetation in this area and is not easy to repair. These reasons directly lead to
the significant degradation of vegetation in zone I of the Loess Plateau.

3.2. Analysis of Meteorological Factors

3.2.1. Spatial Distribution of Precipitable Water Vapour over the Loess Plateau

Figure 3 presents the average PWV time series with a 5-year sliding average and its spatial
distribution from 1982 to 2015. Figure 3a shows that the PWV did not undergo evident variations in the
Loess Plateau over the past 33 years, and values ranged from 12 mm to 14 mm. However, the spatial
distribution of PWV in Figure 3b reveals that the atmospheric water decreased from southeast to
northwest with values varying from 6 mm to 23 mm, which is partially caused by the topography
of Loess Plateau (Figure 4). In addition, an increase in the continental effect toward the northwest
increased the dryness of the climate. Figure 4 shows that the variation of elevation is consistent with
that of PWV, especially for the eastern portion of Qinghai Province (marked by a red rectangle in
Figure 3), which features an elevation of approximately 2250 m above sea level. However, the average
PWV was only approximately 6 mm.

Figure 3. Annual average time series (a) and the spatial distribution of the average precipitable water
vapour of multiple years (1982–2015) over the Loess Plateau region (b).
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Figure 4. Elevation distribution of the Loess Plateau region.

3.2.2. RHU and SSD

The time series of the annual average RHU and SSD with the corresponding 5-year sliding
averages and spatial distributions are presented in Figures 5 and 6, respectively. Figures 5a and 6a
show that RHU and SSD presented a slight downward trend in the Loess Plateau over the past 34 years.
RHU varied from 54% to 64%, whereas SSD fluctuated from 6.3 h to 7.3 h. RHU was relatively high
north and west of Loess Plateau, but low in the cities of Wuzhong, Taiyuan, and Changzhi (Figure 1).
SSD was only approximately 4–5 h in the north of Loess Plateau but increased to 7–9 h in the middle of
this region. This phenomenon may be associated with the latitudes and topography. RHU and SSD
further showed a significant negative correlation in Figures 5b and 6b in the Loess Plateau. For areas
with a long SSD, the corresponding RHU was low, whereas areas with a short SSD had a high RHU.

Figure 5. Time series of the average RHU (a) and spatial distribution over the Loess Plateau region (b).
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Figure 6. Time series of the average SSD (a) and spatial distribution over the Loess Plateau region (b).

3.3. Change in Extreme Climatic Indices over the Loess Plateau Region

The time series of the highest temperature of the daily maximum per month (TXx) is presented
in Figure 7, where TXx showed an overall upward trend with increasing global temperature during
S. However, while the slope of TXx during the period S1 was positive, the slope in period S2 was
negative. This finding suggests that the increase in TXx during S is mainly contributed by that during
S1. Compared with the vegetation variation in Figure 2, the vegetation coverage is obviously poor
during S1. The statistical results revealed that an increase in NDVI by 0.0015 is associated with a
decrease the TXx by 0.0327 ◦C during S2 period in the Loess Plateau.

Figure 7. Trend change and abrupt trend analyses of the Loess Plateau region, (a) refers to the trend
of TXx during S, S1 and S2 periods, respectively, while (b) is the Mann–Kendall trend analysis and
confidence level test of TXx during S period, UF and UB refer to the forward and backward statistics of
standardized variables, respectively.

The trends of extreme climate indices during S, S1, and S2 in the Loess Plateau are presented in
Figure 8. All first derivatives of the 7 extreme precipitation indices were higher than 0 and showed an
upward trend over the past 34 years (period S). However, the first derivatives of RX1day, RX5day, R95p,
and R99p were less than 0 and demonstrated a downward trend over the past 15 years (period S2). The
first derivatives of R10, R20, and R25 showed trends completely contrasting those during S1 (less than
0) and S2 (larger than 0). Therefore, the upward trends of these three indices during S2 greatly affected
the trends during S, and explain the frequent occurrence of extreme precipitation events during S2.

In terms of extreme temperature cold indices, the first derivatives of TX10P, FD0, and CSDI were
consistently less than 0 during the three periods under study, but more so in S1 than in S2. The
extreme temperature cold indices show a downward trend during the S, S1 and S2 periods, and the
decreased rates are S1 > S > S2, which suggests that the downward trend during S is mainly affected
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by the discredited trend of period S1. In terms of extreme temperature warm indices, the variation
characteristics of TNx were similar to those of TXx. The first derivatives of TX90P, SU25, GSL,
TMAXmean, and TMINmean were higher than 0 during S. However, the values derived from S1 were
higher than those from S, whereas the values obtained from S2 were less than those from S, which
suggests that the upward trend during S is mainly affected by the increased trend of period S1.

Figure 8. Variation trend of extreme climatic indices during S, S1, and S2 over the Loess Plateau region.
The red values represent the average during the corresponding periods (1982–2015), and the blue
columns refer to the first derivatives.

TXx revealed an abrupt increase at around 1994 (P < 0.01) (Figure 7b). The statistical results of
Figure 7 reveal that the multi-year average value of TXx over the entire Loess Plateau was 34.36 ◦C.
An extremely high value of 36.37 ◦C occurred in 2010, while an extremely low value of 32.56 ◦C was
observed in 1989. The change rate of TXx was 0.48 ◦C/10a, and the statistical result of other extreme
climate indices are provided in Table 5.

Table 5. Statistical results of abrupt trend analysis of extreme climate indices.

ID mean Max-Year Max Min-Year Min Rate (/10a) Jump Year

FD0 139.8 1986 151.75 2015 125.68 0.59 1996
ID0 32.00 1984 50.91 2015 22.17 −2.1 1990

TX90p 11.97 2002 21.29 1983 5.13 119.7 2002
TX10p 11.92 1984 20.01 2016 7.32 119.2 1984

TXx 34.36 2010 36.37 1989 32.56 0.48 1995
TNx 21.67 2010 23.65 1993 20.25 0.55 1995
TXn 7.91 1984 10.94 2015 5.21 −0.8 ——
TNn 19.02 1991 22.15 2015 12.73 −0.25 ——
GSL 236.8 2016 250.70 1986 220.90 5.82 2000
DTR 12.49 2014 14.40 2008 9.85 −0.11 ——

TMAXmean 15.82 2013 17.09 1984 14.18 0.46 1994
TMINmean 3.58 2016 4.64 1984 2.29 0.52 1996
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Table 5. Cont.

ID mean Max-Year Max Min-Year Min Rate (/10a) Jump Year

RX1day 48.09 2016 62.71 2015 38.74 1.2 ——
RX5day 75.71 2013 90.48 1986 58.08 1.3 ——

R95p 112.3 2003 147.43 2015 66.59 2.1 ——
R99p 35.81 2016 70.47 2015 15.55 2.7 ——
R10 74.36 1999 126.27 1980 50.20 −0.98 ——
R20 4.75 1985 6.22 2012 3.75 −0.32 ——
R25 13.65 2003 18.46 1986 9.64 0.89 ——

3.4. Correlation Analysis

3.4.1. NDVI and Meteorological Factors

Considering that the PWV is highly related to temperature and precipitation, its variation with
NDVI was also analyzed. The Pearson correlation coefficients of NDVI with PWV, RHU, and SSD were
calculated (Figure 9). Strong correlations existed between NDVI and PWV with a correlation value of
0.94. Many studies have shown that vegetation growth is highly influenced by precipitation [36–39],
and precipitation mainly originates from atmospheric water vapor [24]; thus, a strong correlation
exists between NDVI and PWV. Most parts of Loess Plateau are semi-arid regions, and a large part of
the moisture in the near-surface air comes from the evapotranspiration of the vegetated land surface.
Thus, a moderate correlation of 0.52 between NDVI and RHU was observed. SSD is among the most
influential factors contributing to the vegetation photosynthetic active radiation [40], and a good
correlation of 0.464 was found between NDVI and SSD.

Figure 9. Correlations of NDVI with (a) PWV, (b) RHU, and (c) SSD.

3.4.2. Correlations between Meteorological Factors and Extreme Climatic Indices

The Pearson correlation coefficients of PWV with extreme temperature indices are provided in
Figure 10a. A strong correlation of above 0.78 was found between PWV and extreme temperature
indices, such as TMAXmean, TMINmean, TNn, TXx, TNx, and TXn. The Pearson correlation coefficients
of the extreme temperature indices showed a decreasing trend from southwest to northeast, which is
possibly associated with the PWV distribution. Xu et al. [25] found that a high temperature corresponds
to high atmospheric moisture content. Figure 11 shows the correlation coefficient distribution statistics
of extreme temperature index, extreme rainfall index and PWV in the Loess Plateau; five different
colors in the figure represent different statistical intervals of correlation coefficient. It can be found that
the coefficients of the correlations of PWV with TMAXmean, TMINmean, TXx, TNx, TXn, and TNn
were higher than 0.4. Weak correlations existed between PWV and other extreme temperature indices,
such as FD0, SU25, WSDI, CSDI, and GSL, accounting for 55.07%, 45.65%, 58.70%, 44.20%, and 63.77%
of Loess Plateau, respectively. The increase in extreme cold indices could accelerate the transformation
of atmospheric water vapor into the rain, further causing a decrease in atmospheric PWV. Therefore,
the extreme cold indices FD0 and CSDI showed negative relationships with PWV, accounting for 42%
and 59.4% of Loess Plateau, respectively.
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Figure 10. Pearson correlation coefficients of PWV with extreme climatic indices in the Loess Plateau
region, the extreme climatic indices are (a) TMAXmean, (b) TMINmean, (C) TNn, (d) TXx. (e)TNx, (f)
TXn. (g)FD0, (h) SU25. (i)WSDI, (j) CSDI and (k) GSL.

Figure 11. Statistical results of the Pearson correlation coefficients of PWV with extreme temperature
indices, where TMAXm and TMINm represent TMAXmean and TMINmean, respectively.

The statistical results of the Pearson correlation coefficients of extreme climate indices with RHU
and SSD are also presented in Figures 12 and 13, respectively. Figure 12 shows that the Pearson
correlation coefficients of the relationships of RHU with TMAXmean, TMINmean, TXx, TNx, TXn,
and TNn are higher than 0.2, accounting for 67.39%, 80.43%, 60.15%, 68.37%, 72.74%, and 82.6% of
Loess Plateau, respectively. Extreme temperature cold indices did not show evident correlations with
RHU, whereas negative correlations existed between RHU and extreme temperature warm indices
(SU25, WSDI, and GSL). Some extreme precipitation indices, such as RX1day and RX5day, showed
good correlations with RHU (0.2–1), accounting for 88.40% and 92.75% of Loess Plateau, respectively.
Extreme temperature indices, such as TMAXmean, TMINmean, TXx, TNx, TXn, and TNn, also showed
positive relationships with SSD with Pearson correlation coefficients ranging from 0.2–1, accounting
for 88.5%, 84.05%, 88.41%, 84.05%, 87.68%, and 84.78% of Loess Plateau, respectively.
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Figure 12. Statistical results of the Pearson correlation coefficients of RHU with extreme climatic
indices in the Loess Plateau region, where TMAXm and TMINm represent the TMAXmean and
TMINmean, respectively.

Figure 13. Statistical results of the Pearson correlation coefficients of SSD with extreme climatic
indices in the Loess Plateau region, where TMAXm and TMINm represent TMAXmean and
TMINmean, respectively.

3.4.3. NDVI and Extreme Climate Indices

Comparisons revealed that extreme temperature indices, such as TX10P, TN10P, TX90P, TN90P,
R95p, R99p, R10, R20, R25, CWD, CDD, PRCPTOT, and SDII, were not correlated with NDVI in the
Loess Plateau. Figures 14 and 15 respectively present the distribution of Pearson correlation coefficients
between NDVI and extreme temperature indices and their percentages. The percentages of the Pearson
correlation coefficients of NDVI with cold indices FD0 and ID0 ranged from −1 to −0.2 and accounted
for 56.33% and 40.58% of Loess Plateau, respectively, while that of NDVI with warm indices SU25
and TR20 ranged from 0.2 to 1 and accounted for 62.31% and 45.46% of Loess Plateau, respectively.
This finding is indirectly supported by analyzing the Pearson correlation coefficients of NDVI with
DTR. The percentages of the Pearson correlation coefficients of NDVI with WSDI and GSL ranged
from 0.2 to 1 and accounted for 47.58% and 52.17% of the variation in the Loess Plateau, respectively.
Statistical results reveal that the Pearson correlation coefficients between NDVI and TXn, TNn, TXx,
TNx, TMAXmean, TMINmean, RX1day, and RX5day are very high, with values ranging from 0.4–1 and
accounting for 95% of Loess Plateau; by contrast, the percentages of Pearson correlation coefficients
between NDVI and DTR ranged from −1 to 0.2 and accounted for 34.78% of Loess Plateau.
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Figure 14. Distribution of Pearson correlation coefficients of NDVI with extreme climatic indices in the
Loess Plateau region, the extreme climatic indices are (a) FD0, (b) ID0, (c) SU25, (d) TR20. (e) WSDI, (f)
CSDI. (g) GSL.

Figure 15. Percentages of Pearson correlation coefficients of NDVI with extreme climate indices over
the Loess Plateau region.

3.5. Time Lag Effect

The Pearson correlation coefficients between the extreme climatic indices factors (TXn, TNn, TXx,
TNx, TMAXmean, TMINmean, RX1day, RX5day, and DTR) and the corresponding NDVI in the current
month and after 1−3 months are provided in Figure 16 for the growing season (April−October) in
the Loess Plateau. While the effect of the time delay of some factors, such as TXn, TNn, TXx, TNx,
TMAXmean, and TMINmean, on vegetation growth was 0 month, that of DTR showed various time
lengths in different areas of Loess Plateau (Table 6). The time lengths of time lag effects of DTR on
vegetation growth differed for various vegetation types in the Loess Plateau.
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Figure 16. Time delay effects of extreme climate factors on NDVI over the Loess Plateau region.

Table 6. Time delay effects of DTR with different time lengths on vegetation growth in various
subregions of the Loess Plateau region.

Subregion I II III IV V VI VII VIII

Time
delay/(month) 3 2 0 1 0 3 0 0

The distribution of time delay impacts on vegetation growth caused by meteorological factors in
the Loess Plateau (PWV, RHU, and SSD) is presented in Figure 17. Among other factors, the correlation
between PWV and NDVI was the highest when the time delay was 0, accounting for 98.55% of Loess
Plateau. The time delay impacts on vegetation growth associated with RHU and SSD differed. Statistical
results reveal that only 66.67% of Loess Plateau shows maximum Pearson correlation coefficients
between NDVI and RHU when the time delay is 0. The time lag effect of SSD on vegetation growth
was distributed from 0 to 3 months, and the response of vegetation to SSD in the northern part of the
Loess Plateau was mainly two months, accounting for 30.43% of Loess Plateau. In the middle and
south of Loess Plateau, the lag response was mainly 3 months, accounting for 34.78% of the total Loess
Plateau area. SSD has no lag effect on 15.22% of the regional vegetation growth in the western region
of the Loess Plateau and 19.57% of the vegetation growth in the northeast region.



Appl. Sci. 2020, 10, 1000 16 of 20

Figure 17. Spatial distribution of time delay impacts on vegetation growth associated with PWV,
RHU, and SSD, where (a)–(d) refer to 0 month, 1 month before, 2 monthe before and 3 month before,
respectively in the thee subfigures.

4. Discussion

The period 1982–2015 was divided into two shorter sub-periods in this paper to highlight the
variation features of various factors within each sub-period. For example, Figure 2 suggests that the
major contribution to the vegetation growth in period S comes from period S2 and that implementation
of the “returning farmland to the forest” policy effectively promoted vegetation growth and ecological
construction in the Loess Plateau. In addition, reductions in vegetation in area I of Loess Plateau
are mainly associated with some cities located in the northern portion of Loess Plateau (Figure 1),
where urbanization is accelerated, and the construction land has increased. Therefore, changes in land
use caused an obvious decrease in vegetation in this region over the past 34 years. In the southern
portion of Loess Plateau in area I, a perennial open-pit coal mining has caused serious damage to the
surface vegetation. Zhao et al. [17] showed that the average growth rate of vegetation in the whole
Loess Plateau during the period of 1982–2013 is 0.025/10a. In this paper, the vegetation change rate
of the Loess Plateau from 1982 to 2015 is 0.022/10a, which is similar to Zhao et al. [17]. In addition,
the vegetation growth of the Loess Plateau in S2 period is far greater than that of S1 and the vegetation
growth of the whole region of China is mainly related to human activities, such as the implementation
of the policy of “returning farmland to forest”.
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Several studies have been carried out to analyze extreme climate indices during the period of
1982–2013 [10,19]. Figure 7 shows that extreme temperature indices (TXx) increased rapidly during S
and S1, and the values are larger in S1 period than that in S period, but TXx revealed a downward trend
during S2. In addition, the order of vegeration increased rate in the Loess Plateau in three periods are
S2>S>S1. Such a phenomenon may suggests that the increase in TXx is may hindered by improved
vegetation conditions. Comparison of the correlations between extreme climatic indices and vegetation
index during S, S1, and S2 showed that the decrease rate of extreme temperature cold indices and
increase rate of extreme temperature warm indices slowed due to the continuous increase in vegetation
cover in the Loess Plateau. We found that the slopes of TX10P, FD0, and CSDI are downward during
S2 period but with a slowing rate; these values were lower than those from S and S1. By comparing the
Figure 2c,f,j, we found that the vegetation cover in the Loess Plateau increased significantly during S2,
and the decrease rate of cold index in the Loess Plateau during S2 period may be associated with the
increase of vegetation. These findings also revealed that the upward slower trends of the warm indices
of extreme temperature (such as TX90P, SU25, GSL, TMAXmean, and TMINmean) and the increase in
vegetation coverage during S2 over the Loess Plateau. This finding may suggest that vegetation exerts
a negative impact on extreme event occurrences, which is rarely reported.

Additionally, spatial–temporal analysis of PWV is presented in this paper, which has not been
previously investigated, in contrast to precipitation, which has been widely analyzed in the Loess
Plateau [32,41–43]. PWV revealed good consistency with the elevation distribution of Loess Plateau,
agreeing with the results of Gui et al. [28] and Zhao et al. [44]. Our study suggests that the increase
in temperature in the Loess Plateau over the past 34 years has caused the climate to become drier,
as indicated by the reduced RHU observed.

Zhao et al. [17] showed good correlations between NDVI with extreme climate indices (P < 0.01),
such as TXn, TNn, TXx, TNx, TMAXmean, TMINmean, RX1day, and RX5day, a similar conclusion is
obtained in this paper. In addition, more extreme climate factors, and time-lag effects are discussed.
Among the 9 indices of extreme climate factors, DTR has a lag effect on vegetation growth from 0
to 3 months, and the other 8 extreme climate indexes have an impact on NDVI in the same month.
Analysis of the delay effect of meteorological factors and NDVI, it is found that SSD had 0-3 months of
lag response to vegetation while the lag effect of PWV and RHU on vegetation is mainly 1 month in
the Loess Plateau. The main reasons for this phenomenon may be the characteristics of topography
and rapid growth of vegetation in this area; in addition, the level of urbanization may also be another
important reason for the change of climate and meteorological factors. Changes in the growing season
can affect the exchange and transfer of energy through the biosphere and atmosphere, as well as the
global carbon and energy cycles [45]. Therefore, variations in GSL were investigated, and GSL was
found to be extended over the past 34 years, which agrees with the conclusions of Liu et al. [4] and
Piao et al. [45] that the GSL in Northern China is prolonged. The extreme climatic and meteorological
factors change, and their responses to vegetation growth in the recent 33 years may be associated with
the vegetation growth rapidly and topography in the Loess Plateau. The surface vegetation cover
change and urbanization recent 33 years may be one of the important reasons for climate change in the
Loess Plateau during the S2 period [46–48]. Additionally, only 53 and 68 meteorological stations in the
Loess Plateau were used by Zhao et al. [17] and Sun et al. [19], whereas 83 meteorological stations were
selected in this paper. More evenly distributed meteorological stations can better reflect the actual
situation of the entire Loess Plateau. Hence, the results obtained in this paper may slightly differ from
those of previous studies.

5. Conclusions

This paper analyzed the relationships of the spatial–temporal variation characteristics of multiple
factors with NDVI in the Loess Plateau during S1, S2, and S. Some interesting results were obtained:
(i) the growth rate of vegetation coverage increased in the Loess Plateau over the past 15 years due
to reforestation, which is approximately 4.5 times higher than that from 1982 to 2000 and 29.5 times



Appl. Sci. 2020, 10, 1000 18 of 20

than that in the whole of China over the past 34 years; (ii) anthropogenic activities, such as accelerated
urbanization and excessive mining easily caused vegetation degradation, especially in area I of Loess
Plateau; (iii) The increase of vegetation in the Loess Plateau is associated with the change of extreme
weather events and was embodied by a slowing of the decrease rate of extreme temperature cold
indices as well as the slowing of increase rate of extreme temperature warm indices; (iv) the regional
climate change shifted toward warm and dry over Loess Plateau; and (v) atmospheric water vapor
or PWV was strongly correlated with NDVI over Loess Plateau, as confirmed by Pearson correlation
coefficients reaching 0.94.

Although some novel findings were discovered in this paper, some results involve qualitative
data, and quantitative results could not be obtained because of some limitations. For example,
vegetation growth revealed an inhibitory effect on the change in extreme climatic indices, but the
specific contribution rate of vegetation growth to the inhibitory effects of extreme climatic indices was
not determined. In future research, such problems may be resolved by establishing the corresponding
quantitative models.
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