
applied
sciences

Article

DE-CapsNet: A Diverse Enhanced Capsule Network
with Disperse Dynamic Routing

Bohan Jia and Qiyu Huang *

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240,
China; bohan_ieee@163.com
* Correspondence: iyu@sjtu.edu.cn

Received: 24 December 2019; Accepted: 22 January 2020; Published: 29 January 2020
����������
�������

Abstract: Capsule Network (CapsNet) is a methodology with good prospects in visual tasks, since
it can keep a stronger relationship of spatial information than Convolutional Neural Networks
(CNNs). However, the current Capsule Network do not provide performance as expected on several
benchmark data sets with complex data and backgrounds. Inspired by the multiple capsules of Diverse
Capsule Network (DCNet++) and the Spatial Group-wise Enhance (SGE) mechanism, we propose the
Diverse Enhanced Capsule Network (DE-CapsNet), a hierarchical architecture which uses residual
convolutional layers and the position-wise dot product to build diverse enhanced primary capsules
with various scales of images for complex data. The architecture adopts the Sigmoid function in a
dynamic routing algorithm to get a more uniform distribution of routing coefficients which obviously
distinguishes the assignment probabilities between capsules. DE-CapsNet achieved state-of-the-art
accuracy on Canadian Institute For Advanced Research (CIFAR-10) in the Capsule Network field and
provided better performance than the ensemble of seven CapsNets on Fashion-Modified National
Institue of Standards and Technology database (F-MNIST) while achieving a 50.3% reduction in the
number of parameters.

Keywords: Capsule Network; Diverse Enhanced Capsule Network; Convolutional Neural Networks;
deep learning; disperse dynamic routing; artificial intelligence

1. Introduction

Deep networks have been successful in the tasks of image classification and object recognition.
Increasing the depth of a Convolutional Neural Network (CNN) provides a substantial improvement
in the performance [1]. However, if the CNN goes too deep, it can also lead to the challenges of
vanishing gradient and saturated accuracy. The degradation problem can be countered by adopting
Residual Networks (ResNets) [2], adding connections from the initial layers to the later layers, and
by adopting Densely Connected Convolutional Networks (DenseNets) [3], adding dense connections
between every other layer. However, CNNs are not robust enough to affine transformations and cannot
reserve spatial relationships between features in an image. Diversion in the position of an object in
the image may lead the CNN to an incorrect prediction. To overcome the abovementioned weakness,
Sabor et al. [4] proposed the Capsule Network (CapsNet), which has shown huge potential compared to
the conventional CNNs on multiple datasets. A capsule is a group of neurons whose activity vector can
represent an object or a part of an object to extract structured features, while keeping the information
of the spatial relationship at the same time. The architecture comprises one convolution layer and
one fully connected capsule layer, using routing-by-agreement to achieve state-of-the-art accuracy on
the Modified National Institue of Standards and Technology database (MNIST) benchmark data set
and detecting overlapping digits by using reconstruction regularization. However, the performance
of CapsNet on complex benchmark datasets, such as Canadian Institute For Advanced Research

Appl. Sci. 2020, 10, 884; doi:10.3390/app10030884 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-8023-6117
https://orcid.org/0000-0001-9494-144X
http://www.mdpi.com/2076-3417/10/3/884?type=check_update&version=1
http://dx.doi.org/10.3390/app10030884
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 884 2 of 13

(CIFAR-10), is still not on the same level as CNNs. One reason for this is that the implementation of
CapsNet is susceptible to background information [5]. The shallow network structure of CapsNets
lacks the ability of drawing features. It is not an ideal solution to simply stack the fully connected
capsule layers, which may generate useless middle layers [6]. CapsNet passes the information of each
capsule to the next layers at the full magnitude of its activation value yet lacks a suitable mechanism of
selecting discriminative information from the outputs of each layer [7]. The initial logit bi j of “routing
Softmax” is the log prior probability that depends on the location and type of the two capsules, which
determines how tightly capsule i should be coupled to capsule j. However, the Softmax function
converts the logits of the coupling coefficients into a set of concentrative values, which may mistakenly
send the background information to the next capsule layers with too large a coefficient, resulting in
the wrong summation of the prediction vectors with larger values. This may affect the final result of
the classification. In addition, the number of computational parameters for dynamic routing used in
stacking capsules is huge, which leads to higher cost of training time.

In order to strengthen the anti-interference ability of the CapsNet [4] and discernibility of the
output vector of each class and to improve the classification accuracy of images with complicated data
and background, this paper presents the following contributions:

1. Drawing from Diverse Capsule Network (DCNet++) [8], we propose a novel architecture called
Diverse Enhanced Capsule Network (DE-CapsNet). Multiple-layer residual blocks, instead of
one convolutional layer, are used in a residual convolutional subnetwork to extract features
from complicated data such as CIFAR-10. The features are input into different levels of primary
capsules. DE-CapsNet utilizes a two-level primary capsules hierarchical model to represent
different scales of images. Furthermore, the output from the primary capsule is assigned to digit
capsules (DigitCaps) by a routing algorithm, and DE-CapsNet fuses the features of the two-level
primary capsules together to identify the instantiation. Besides this, the Spatial Group-wise
Enhance (SGE) [9] mechanism is introduced into our architecture as the enhancement method for
the original capsule-based method. The enhancement is both between the neighboring residual
blocks and inside the quasi-primary capsule layers, for the sake of helping the network to build
dedicated capsules to improve the representation power of capsules. These dedicated capsules
are focused on the true features and restrain susceptibility to the background information. It can
tell the network which object or part of an object is truly important to learn.

2. Disperse dynamic routing is proposed that improves the performance of the dynamic routing
algorithm. We found that the coupling coefficients using the Softmax function were mainly
distributed around the interregion from 0.09 to 0.109, which is not as well distributed as can be
obtained using the Sigmoid function. The Sigmoid function can assign larger coupling coefficients
to real features, which transfer the true features actually related to the class to the next capsule
layers, while assigning relatively smaller coupling coefficients to the fallacious ones. The true
ones can be decisive in preventing the predicted sums of false classes from getting larger values.

3. Dynamic agreement routing is time-consuming due to the relatively higher complexity of its
constituting elements. Our architecture is designed as two-level primary capsule layers with
smaller kernel size in each primary capsule layer in order to reduce the training time compared
with the seven ensembles of CapsNets.

2. Related Work

Increasing the depth of layers in networks promotes the performance of deep networks and
stimulates the innovation of architectures. Highway Networks [10] is a deep feedforward network that
provides an effective way to train networks with more than 100 layers by using bypassing paths [10].
ResNets further explores the effect of pure identity mapping by using it as the bypassing path, with
deep layers which can achieve excellent performance in many challenging benchmark datasets [2].
Increasing the width of a network can help to train deeper networks. Feature maps operated by kernels
with different sizes are concentrated using the “inception module” in GoogLeNet [1]. Huang et al. [3]

Appl. Sci. 2020, 10, 884 3 of 13

proposed a novel architecture called DenseNets that provides dense connections between all layers. It
allows better gradient flow across deeper networks.

The current CapsNet [4] consists of one convolution layer, one primary capsule layer, and one
digit capsule layer [4]. The input image is operated by a convolution layer with 256 9 × 9 kernels using
a stride of 1 to extract features and then activated by the Rectified Linear Unit (ReLU) function. The
output of the ReLU function is a feature map tensor. The primary capsule (PrimaryCaps) layer adopts
a second convolutional layer with 9 × 9 kernels using a stride of 2 to deal with the feature map tensor.
The output of the PrimaryCaps is also activated by the ReLU function. Every group of 8 scalars in the
feature map tensor constitutes the primary capsule i. Capsules use feature vectors to represent the
properties of entities which can capture position, size, texture, and other information. ui is the output
of primary capsule i. ûi is the prediction vector which is the input of final digit capsule j. Wi j is the
weight matrix. ûi is calculated by Equation (1) [4].

û j|i = Wi jui (1)

Routing-by-agreement will send the output of the primary capsules to the final capsules by
increasing or decreasing the connection strength between the primary capsules and the digit capsules
(DigitCaps) instead of pooling operation and keeping the spatial relations between object parts. It can
be seen as a prediction which sends the output of the primary capsule i to the final digit capsule j. The
coupling coefficient between the two capsules will increase when the output matches. bi j is a logit of
the Softmax function, which defines the coupling coefficient ci j between capsule i in the layer above
and capsule j in the layer below, as given by Equation (2) [4].

ci j =
exp

(
bij

)∑
k exp(bik)

, s j =
∑

i

ci jû j|i (2)

The length of these vectors s j is the input of the digit capsule layer and is restricted to 1 by the
squash function [4] to get the output v j. The inner product of v j and û j|i updates the log probabilities
bi j. The more similar the two vectors, the longer the vector v j will be. After several iterations, the one
with the largest vector length in the final capsule layer corresponds to the true class.

Based on this, Hinton et al. [11] proposed matrix capsules using logistic units to represent
the presence of entities and a pose matrix to represent the poses of the entities with the
Expectation-Maximization (EM) routing algorithm. HitNet [12] uses centripetal function loss to
train the Hit-or-Miss layers of capsules. The capsule corresponding to the true class makes a hit in its
target space, while the others make misses. Zhao et al. [13] showed that the scale-invariant Max-Min
function can promote the performance of CapsNet [4]. An optimization of the routing strategy and
a new routing approach proposed in reference [14] outperformed the dynamic routing method in
reference [4]. The Multi-Lane Capsule Network [15] divide the original Capsule Network [4] into
multiple lanes to learn different dimensions of vectors that represent distinct features. The Diverse
Capsule Network [8] uses three-level capsule layers to learn diverse features and concentrates the
features into multi-dimensional vectors. Similarly, the Complex-valued Diverse Capsule Network [16]
also utilizes a three-level hierarchical model but encodes complex-valued features for complicated
datasets. DeepCaps [17] uses three-dimensional (3D) convolution and surpassed the state-of-the-art
results in the field of Capsule Network. Capsule Network have been widely applied in many fields.
Furkan et al. [18] investigated the performance of in-shop clothing retrieval using densely connected
Capsule Network. Parnian et al. [19] studied the application of Capsule Network for the classification
of Magnetic Resonance Imaging (MRI) images.

Attention mechanisms have achieved encouraging progress in the field of computer vision.
These help the model to focus on the correlations between regions of images, including long-range
dependence across image regions. The Squeeze-and-Excitation Network (SENet) [20] uses channel-wise
importance to help attract attention for the model which puts higher weights on the channels with true

Appl. Sci. 2020, 10, 884 4 of 13

significance. Non-local Neural Networks [21] (NLNets) create blocks to compute the spatial weight
of each point from the weighted sum of all positions. The Global Context Network (GCNet) [22]
unifies the advantages of both Non-local and Squeeze-and-Excitation (SE) blocks together to get a more
effective global context block based on the analysis of both blocks. Sanghyun et al. [23] proposed the
Convolutional Block Attention Module (CBAM) focusing on both the spatial positions and channels
via resizing. The results on object detection tasks are attractive.

3. Diverse Enhanced Capsule Network

3.1. Enhanced Capsules

We drew inspiration from the Spatial Group-wise Enhance module [9] in our architecture to
enhance the representation power of capsules. Figure 1 shows the procedure of capsule enhancement.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 13

a more effective global context block based on the analysis of both blocks. Sanghyun et al. [23]
proposed the Convolutional Block Attention Module (CBAM) focusing on both the spatial positions
and channels via resizing. The results on object detection tasks are attractive.

3. Diverse Enhanced Capsule Network

3.1. Enhanced Capsules

We drew inspiration from the Spatial Group-wise Enhance module [9] in our architecture to
enhance the representation power of capsules. Figure 1 shows the procedure of capsule enhancement.

Figure 1. Illustration of capsule enhancement by dot product for group feature learning from Spatial
Group-wise Enhance.

A capsule is a group of neurons. In the Spatial Group-wise Enhance module [9], the operations
are based on each group of neurons, which can learn diversifying entity representations and learn
the group-wise similarity. In view of this, we arranged 𝒞 channels and 𝑓 = H × W feature maps in
groups. The quantity of feature maps in each set was equal to the dimension of each capsule.
Therefore, 𝒢 groups of feature maps are able to be viewed as 𝒢 channels of 𝜅 = 𝒞 𝒢 dimension

capsules. 𝑝௜ is a vector that represents the capsule, 𝑝௜ ∈ ℝ఑. Different sets of feature maps constitute
a space containing several capsules. The space is named Γ = {pଵ, … p୤}.

First, we obtained the global feature g of each set of grouped capsules by computing the spatial
average, as in Equation (3) [9].

g = ଵ௙ ∑ 𝑝௜௙௜ୀଵ (3)

After that, the simple dot product was used to compare the resemblance between the global g
feature and the capsule 𝑝௜. This can be simply seen as the projection of capsule 𝑝௜ onto the global
feature vector g. 𝜃௜ is the angle between the two vectors, as in Equation (4) [9]. 𝑟௜ = g ∙ 𝑝௜ = || g || ||𝑝௜|| cos(𝜃௜) (4)

Normalizing 𝑟௜ , which is shown in Equation (5), can offset the bias size between different
samples [24].

Figure 1. Illustration of capsule enhancement by dot product for group feature learning from Spatial
Group-wise Enhance.

A capsule is a group of neurons. In the Spatial Group-wise Enhance module [9], the operations
are based on each group of neurons, which can learn diversifying entity representations and learn the
group-wise similarity. In view of this, we arranged C channels and f = H ×W feature maps in groups.
The quantity of feature maps in each set was equal to the dimension of each capsule. Therefore, G
groups of feature maps are able to be viewed as G channels of κ = C

G
dimension capsules. pi is a vector

that represents the capsule, pi ∈ Rκ. Different sets of feature maps constitute a space containing several
capsules. The space is named Γ =

{
p1, . . .pf

}
.

First, we obtained the global feature g of each set of grouped capsules by computing the spatial
average, as in Equation (3) [9].

g =
1
f

∑ f

i=1
pi (3)

After that, the simple dot product was used to compare the resemblance between the global g
feature and the capsule pi. This can be simply seen as the projection of capsule pi onto the global
feature vector g. θi is the angle between the two vectors, as in Equation (4) [9].

ri = g·pi =
∣∣∣∣∣∣ g

∣∣∣∣∣∣ ∣∣∣∣∣∣pi
∣∣∣∣∣∣ cos(θi) (4)

Appl. Sci. 2020, 10, 884 5 of 13

Normalizing ri, which is shown in Equation (5), can offset the bias size between different
samples [24].

r̂i =
ri − µr

σr + ε
(5)

Here, ε is a constant for numerical stability [24], µr is the expectation of R = {r1, . . . ri}, and σr is the
variance of R, with [9,25,26]

µr =
1
f

∑f

j
rj,σ2

r =
1
f

∑f

j

(
rj − µr

)2
.

Parameters γ and β corresponding to each coefficient of r̂i scale and divert the normalized value
to represent the characteristic transform, as indicated in Equation (6) [9].

ai= γ r̂i + β (6)

Finally, we adopt the Sigmoid function σ to scale the transforming space, and p̂i is the enhanced
capsule, as shown in Equation (7) [9].

p̂i = pi·σ(ai) (7)

The group of enhanced capsules is named Γ̂ =
{
p̂1, . . . p̂f

}
. The enhanced capsule blocks are

inserted in between the residual blocks in enhanced capsule residual convolutional subnetworks.
Furthermore, the enhancement is introduced after convolution on the quasi-primary capsule layers.

3.2. Disperse Dynamic Routing

The inputs to the digit capsules (DigitCaps) are the “prediction vectors” û j|i produced by learned
transformation weight matrices and the outputs of the primary capsule layer [4]. The routing algorithm
calculates the “digit capsules” v j from û j|i, which is kept fixed throughout the procedure. The dynamic
routing procedure from reference [4] is given as follows (Algorithm 1).

Algorithm 1. Softmax Routing Procedure

1: Input to Routing Procedure: (
^
uj|i, r, l)

2: for capsule i in layer l and capsule j in layer (l + 1): bi j ← 0
3: for r iterations:
4: for capsule i in layer l :
ci j ← So f tmax

(
bi j

)
5: for capsule j in layer (l + 1):
s j ←

∑
i

ci jû j|i

6: for capsule j in layer (l + 1): v j ← Squash
(
s j
)

7: for capsule i in layer l and capsule j in layer (l + 1): bij ← bij +
^
uj|i · vj

8: Return vj

û j|i is the prediction vector that means feature i belongs to final digit capsule j. Digit capsule
j matches one class of images. The coupling coefficient ci j represents the relative strength between
primary capsule i and digit capsule j, which are refined as Equation (2) is iterated. s j is the input of
digit capsule j and is calculated via Equation (2). In the digit capsule layer, we restrict the vector s j to 1
by the squashing function as shown in Equation (8) [4].

vj =

∣∣∣∣∣∣sj
∣∣∣∣∣∣2

1 +
∣∣∣∣∣∣sj

∣∣∣∣∣∣2 s j∣∣∣∣∣∣s j
∣∣∣∣∣∣ (8)

Appl. Sci. 2020, 10, 884 6 of 13

The function shrinks short vectors to almost zero and long vectors to a length below 1. In
reference [4], there are 10 classes represented by 10 capsules in the digit capsule layer. However, the
distribution of coefficients is concentrated in the interval from 0.09 to 1.09, as demonstrated in Figure 2,
which makes the “sum” sj of prediction vectors poorly distinguishing. In other words, the probabilities
of the features sent to digit capsules are nearly equal. As a result, the lengths of each vector v j in the
final digit capsule layer are close to each other, which may produce a wrong class.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 13

Figure 2. Distribution of routing coefficients for the same training image from the CIFAR-10 dataset
for network training using Softmax. The horizontal axis represents the logarithm of the number of
coefficients to base 10; the vertical axis represents the interval of coefficients.

Therefore, we calculated the coefficients by using the Sigmoid function instead of the Softmax
function. Our Sigmoid routing procedure is almost the same as the Softmax routing procedure in
reference [4], but we replace the Softmax function with the Sigmoid function as shown in Equation
(9). 𝑐௜௝ no longer stands for the allocation probabilities toward the final capsules, but the correlation
strength between the primary capsules and the final capsules. As can be seen from Figure 3, the
distribution interval of the logarithm value of c୧୨ to base 10, as indicated in Equation (9), is much
better distributed. The difference between the minimum and maximum coefficients is even bigger.
The important prediction vectors are multiplied with larger coupling coefficients to make the
significant features more decisive, while unrelated features get smaller ones. Besides this, it increases
the difference between the lengths of the vectors in the final capsule layer. The correct digit capsule
then exceeds all the other digit capsules in length. We adopted the Sigmoid routing in our model and
the performance was better than that of the model using Softmax routing, which is shown as follows. c୧୨ = ଵଵାୣ୶୮ (ୠ౟ౠ) (9)

Figure 2. Distribution of routing coefficients for the same training image from the CIFAR-10 dataset
for network training using Softmax. The horizontal axis represents the logarithm of the number of
coefficients to base 10; the vertical axis represents the interval of coefficients.

Therefore, we calculated the coefficients by using the Sigmoid function instead of the Softmax
function. Our Sigmoid routing procedure is almost the same as the Softmax routing procedure in
reference [4], but we replace the Softmax function with the Sigmoid function as shown in Equation (9).
ci j no longer stands for the allocation probabilities toward the final capsules, but the correlation
strength between the primary capsules and the final capsules. As can be seen from Figure 3, the
distribution interval of the logarithm value of cij to base 10, as indicated in Equation (9), is much better
distributed. The difference between the minimum and maximum coefficients is even bigger. The
important prediction vectors are multiplied with larger coupling coefficients to make the significant
features more decisive, while unrelated features get smaller ones. Besides this, it increases the difference
between the lengths of the vectors in the final capsule layer. The correct digit capsule then exceeds all
the other digit capsules in length. We adopted the Sigmoid routing in our model and the performance
was better than that of the model using Softmax routing, which is shown as follows (Algorithm 2).

cij =
1

1 + exp
(
bij

) (9)

Appl. Sci. 2020, 10, 884 7 of 13

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 13

Figure 3. Distribution of routing coefficients for the same training image from the CIFAR-10 dataset
for network training using Sigmoid. The horizontal axis represents the logarithm of the number of
coefficients to base 10; the vertical axis represents the interval of coefficients.

Algorithm 2. Sigmoid Routing Procedure
1: Input to Routing Procedure: (uො୨|୧, r, l)
2: for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (l + 1): 𝑏௜௝ ← 0
3: for r iterations:
4: for all capsule 𝑖 in layer 𝑙: 𝑐௜௝ ← 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑏௜௝)
5: for all capsule j in layer (l + 1):

 𝑠௝ ← ∑ 𝑐௜௝௜ 𝑢ො௝|௜
6: for all capsule 𝑗 in layer (l + 1): 𝑣௝ ← 𝑆𝑞𝑢𝑎𝑠ℎ(𝑠௝)
7: for all capsule 𝑖 in layer 𝑙 and capsule 𝑗 in layer (l + 1): 𝑏௜௝ ← 𝑏௜௝ + 𝑢ො௝|௜ ⋅ 𝑣௝
8: Return v୨

3.3. DE-CapsNet Architecture

Figure 4 demonstrates the training process of the CIFAR-10 dataset using our model. An
enhanced capsule residual convolutional subnetwork was used to build the capsules based on the
residual basic block [2] for complex datasets. These layers can copy other layers from the learned
shallower model to reduce gradient loss [2] based on the connections from the initial layers to the
later layers. Going deeper improves the learning for capturing diversified features. The architecture
contains two levels of primary capsule layers. Each primary capsule represents a small area of input,
and different levels of capsules carry different scales of the image. The first-level primary capsules
were established with two residual convolutional subnetworks and two quasi-primary enhanced
capsule convolutional layers. The second-level primary capsules were established with one residual

Figure 3. Distribution of routing coefficients for the same training image from the CIFAR-10 dataset
for network training using Sigmoid. The horizontal axis represents the logarithm of the number of
coefficients to base 10; the vertical axis represents the interval of coefficients.

Algorithm 2. Sigmoid Routing Procedure

1: Input to Routing Procedure: (
^
uj|i, r, l)

2: for all capsule i in layer l and capsule j in layer (l + 1): bi j ← 0
3: for r iterations:
4: for all capsule i in layer l :

ci j ← Sigmoid
(
bi j

)
5: for all capsule j in layer (l + 1):
s j ←

∑
i

ci jû j|i

6: for all capsule j in layer (l + 1):
v j ← Squash

(
s j
)

7: for all capsule i in layer l and capsule j in layer (l + 1): bi j ← bi j + û j|i · v j
8: Return vj

3.3. DE-CapsNet Architecture

Figure 4 demonstrates the training process of the CIFAR-10 dataset using our model. An enhanced
capsule residual convolutional subnetwork was used to build the capsules based on the residual
basic block [2] for complex datasets. These layers can copy other layers from the learned shallower
model to reduce gradient loss [2] based on the connections from the initial layers to the later layers.

Appl. Sci. 2020, 10, 884 8 of 13

Going deeper improves the learning for capturing diversified features. The architecture contains
two levels of primary capsule layers. Each primary capsule represents a small area of input, and
different levels of capsules carry different scales of the image. The first-level primary capsules
were established with two residual convolutional subnetworks and two quasi-primary enhanced
capsule convolutional layers. The second-level primary capsules were established with one residual
convolutional subnetwork and one quasi-primary enhanced-capsule convolutional layer. One example
of the residual convolutional subnetwork and the quasi-primary enhanced capsules is shown in
Figure 5. We used a 1 × 1 convolutional layer before every subnetwork to implement cross-channel
information combination and to add nonlinear features. The feature maps of subnetworks act as
grouped capsules called quasi-primary capsules. Compared to the model in reference [4], our model
adopts one convolutional layer with 5 × 5 kernels using a stride of 2 and 3 × 3 kernels using a stride
of 1 to build primary capsules, rather than 9 × 9 kernels. This significantly reduces the number of
parameters that need to be calculated. The first quasi-primary capsule layer consists of 32 groups of
capsules and the second quasi-primary capsule layer consists of 8 groups of capsules. The features
from the quasi-primary capsules are reshaped by the squash function to form the primary capsule
layer. Carrying various scales of images at different levels of primary capsules provides macro and
local entities of features as shown in Figures 6 and 7. The output from the two-level primary capsule
layers is passed into the squash activation layer by disperse dynamic routing to generate two digit
capsule (DigitCaps) layers. Besides this, one more DigitCaps output layer is created by routing the
concatenation of the two-level primary capsule layers to learn features from the various scales of images.
The DE-CapsNet performs better than simple stacking of DigitCaps and joint back-propagation. Finally,
the DigitCaps layers are concatenated and squashed to create a 32-dimension (32D) capsule for each of
the 10 classes.

Margin loss [4] was adopted as the loss function in the proposed architecture to enhance the probability
of the true class and restrain the others. The loss function is defined as shown in Equation (10) [4]:

Lk= Tk max
(
0, m+

− ||vk||
)2
+ λ(1− Tk) max(0, ||vk|| −m−)2. (10)

In Equation (10), Tk = 1 if class k is true and Tk = 0 otherwise. λ, m+, and m− are hyper parameters.
We set m+ = 0.9, m− = 0.1, and λ = 0.5 before training. λ is used to control the effect of gradient
backpropagation at the initial learning [4]. The losses of the two layers are backpropagated separately.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 13

convolutional subnetwork and one quasi-primary enhanced-capsule convolutional layer. One
example of the residual convolutional subnetwork and the quasi-primary enhanced capsules is
shown in Figure 5. We used a 1×1 convolutional layer before every subnetwork to implement cross-
channel information combination and to add nonlinear features. The feature maps of subnetworks
act as grouped capsules called quasi-primary capsules. Compared to the model in reference [4], our
model adopts one convolutional layer with 5 × 5 kernels using a stride of 2 and 3 × 3 kernels using
a stride of 1 to build primary capsules, rather than 9 × 9 kernels. This significantly reduces the
number of parameters that need to be calculated. The first quasi-primary capsule layer consists of 32
groups of capsules and the second quasi-primary capsule layer consists of 8 groups of capsules. The
features from the quasi-primary capsules are reshaped by the squash function to form the primary
capsule layer. Carrying various scales of images at different levels of primary capsules provides
macro and local entities of features as shown in Figures 6 and 7. The output from the two-level
primary capsule layers is passed into the squash activation layer by disperse dynamic routing to
generate two digit capsule (DigitCaps) layers. Besides this, one more DigitCaps output layer is
created by routing the concatenation of the two-level primary capsule layers to learn features from
the various scales of images. The DE-CapsNet performs better than simple stacking of DigitCaps and
joint back-propagation. Finally, the DigitCaps layers are concatenated and squashed to create a 32-
dimension (32D) capsule for each of the 10 classes.

Figure 4. Pipeline of two-level DE-CapsNet for CIFAR-10. Figure 4. Pipeline of two-level DE-CapsNet for CIFAR-10.

Appl. Sci. 2020, 10, 884 9 of 13
Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13

Figure 5. Enhanced Capsule Residual Convolutional Subnetwork 0 and Quasi-Primary Enhanced
Capsule Layer 0.

Margin loss [4] was adopted as the loss function in the proposed architecture to enhance the
probability of the true class and restrain the others. The loss function is defined as shown in Equation
(10) [4]: 𝐿௞=𝑇௞ max൫0, 𝑚ା − ห|𝑣௞|ห൯ଶ+𝜆(1 − 𝑇௞) max(0, ||𝑣௞|| − 𝑚ି)ଶ. (10)

In Equation (10), 𝑇௞ =1 if class k is true and 𝑇௞ = 0 otherwise. 𝜆, 𝑚ା , and 𝑚ି are hyper
parameters. We set 𝑚ା = 0.9, 𝑚ି = 0.1, and 𝜆 = 0.5 before training. 𝜆 is used to control the effect of
gradient backpropagation at the initial learning [4]. The losses of the two layers are backpropagated
separately.

Figure 6. Output of the cat image from the first-level primary capsules.

Figure 7. Output of the cat image from the second-level primary capsules.

Figure 5. Enhanced Capsule Residual Convolutional Subnetwork 0 and Quasi-Primary Enhanced
Capsule Layer 0.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13

Figure 5. Enhanced Capsule Residual Convolutional Subnetwork 0 and Quasi-Primary Enhanced
Capsule Layer 0.

Margin loss [4] was adopted as the loss function in the proposed architecture to enhance the
probability of the true class and restrain the others. The loss function is defined as shown in Equation
(10) [4]: 𝐿௞=𝑇௞ max൫0, 𝑚ା − ห|𝑣௞|ห൯ଶ+𝜆(1 − 𝑇௞) max(0, ||𝑣௞|| − 𝑚ି)ଶ. (10)

In Equation (10), 𝑇௞ =1 if class k is true and 𝑇௞ = 0 otherwise. 𝜆, 𝑚ା , and 𝑚ି are hyper
parameters. We set 𝑚ା = 0.9, 𝑚ି = 0.1, and 𝜆 = 0.5 before training. 𝜆 is used to control the effect of
gradient backpropagation at the initial learning [4]. The losses of the two layers are backpropagated
separately.

Figure 6. Output of the cat image from the first-level primary capsules.

Figure 7. Output of the cat image from the second-level primary capsules.

Figure 6. Output of the cat image from the first-level primary capsules.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 13

Figure 5. Enhanced Capsule Residual Convolutional Subnetwork 0 and Quasi-Primary Enhanced
Capsule Layer 0.

Margin loss [4] was adopted as the loss function in the proposed architecture to enhance the
probability of the true class and restrain the others. The loss function is defined as shown in Equation
(10) [4]: 𝐿௞=𝑇௞ max൫0, 𝑚ା − ห|𝑣௞|ห൯ଶ+𝜆(1 − 𝑇௞) max(0, ||𝑣௞|| − 𝑚ି)ଶ. (10)

In Equation (10), 𝑇௞ =1 if class k is true and 𝑇௞ = 0 otherwise. 𝜆, 𝑚ା , and 𝑚ି are hyper
parameters. We set 𝑚ା = 0.9, 𝑚ି = 0.1, and 𝜆 = 0.5 before training. 𝜆 is used to control the effect of
gradient backpropagation at the initial learning [4]. The losses of the two layers are backpropagated
separately.

Figure 6. Output of the cat image from the first-level primary capsules.

Figure 7. Output of the cat image from the second-level primary capsules. Figure 7. Output of the cat image from the second-level primary capsules.

4. Experiments

4.1. Datasets

The proposed model was evaluated on the Fashion-MNIST (F-MNIST) and CIFAR-10 datasets, with
the results compared to those of the Capsule Network (CapsNet) [4] and the DeepCaps Network [18].
F-MNIST and CIFAR-10 were chosen as our datasets because of their complexity compared to MNIST.
After scaling each pixel in the range of 0 to 1, each pixel value was divided by 255 before the model
was trained on the image datasets.

Appl. Sci. 2020, 10, 884 10 of 13

CIFAR-10 is a subset of samples consisting of 32 × 32 × 3 colored and labeled images in 10 classes,
with 6K images per class. Five batches were used as the training data and one batch was used as the
test data. F-MNIST includes 70K examples in the size of 28 × 28 × 1, of which 60K and 10K labeled
images were assigned as the training and test sets, respectively.

4.2. System Setup

Pytorch libraries were used to implement the DE-CapsNet. All the experiments were performed
using GeForce GTX 1080 Ti with 16GB RAM. The initial learning rate was 0.0001 and the decay rate
was 0.9 with Adam as the optimizer. Different hyperparameters were set for training CIFAR-10 and
F-MNIST. The numbers of iterations were set to 80 and 60, respectively.

4.3. Results

The accuracy of prediction is defined as in Equation (11) [16].

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

TP represents the number of true positive samples and TN represents the number of true negative
samples. Similarly, FP represents the number of false positive samples and FN represents the number
of false negative samples. Table 1 presents a comparison of the accuracy of our model with that
of DeepCaps, CapsNet, and other variants of Capsule Network, which showed that we achieved
state-of-the art results on CIFAR-10 in the Capsule Network field. Our results exceeded those of all
other models in the Capsule Network field on CIFAR-10 and outperformed CapsNet which had seven
ensembles on F-MNIST. There was a 3.56% improvement on CIFAR-10 and a 0.88% improvement on
F-MNIST compared to the CapsNet results in [4]. Even though our results were slightly below those of
the DeepCaps that had seven ensembles on F-MNIST, which does not have complex backgrounds, our
model outperformed both DeepCaps with a single model [17] by 1.95% and DeepCaps with seven
ensembles by 0.22% on CIFAR-10.

Table 1. Comparison of the accuracy of our model with that of DeepCaps, CapsNet, and other variants
of CapsNets.

Model CIFAR-10 F-MNIST

Sabour et al. [4] 89.40% 93.60%
HitNet [12] 73.30% 92.30%

Zhao et al. [13] 75.92% 92.07%
DeepCaps [17] 91.01% 94.46%

DeepCaps (7 ensembles) [17] 92.74% 94.73%
DE-CapsNet (ND) 92.33% 93.64%

DE-CapsNet 92.96% 94.25%

Our model achieved state-of-the-art results among capsule domain networks on CIFAR-10, being only slightly
worse than seven ensembles of DeepCaps. ND—No Disperse Dynamic routing.

For our proposed model trained on CIFAR-10, DE-CapsNet had only 11.2 million parameters,
while DeepCaps with seven ensembles [17] had 7 × 7.22 million parameters and CapsNet [4] had
22.48 million parameters. Our model achieved 92.96% accuracy on CIFAR-10, while DeepCaps
with seven ensembles [17] achieved 92.74% and CapsNet [4] achieved 89.40%. Our architectures for
CIFAR-10 are shown in Table 2.

Appl. Sci. 2020, 10, 884 11 of 13

Table 2. Our architectures for CIFAR-10.

Layer Name Subwork-0 Subwork-1 Subwork-2

Conv1 3 × 3, 128, stride = 1 1 × 1, 256, stride = 1 1 × 1, 64, stride = 1

Conv2_x
[

3× 3 128
3× 3 128

] [
3× 3 256
3× 3 256

] [
3× 3 64
3× 3 64

]
Caps-enhance Groups = 32

Capsule dimension = 4
Groups = 32

Capsule dimension = 8
Groups = 8

Capsule dimension = 8

Conv3_x
[

3× 3 256
3× 3 256

] [
3× 3 256
3× 3 256

] [
3× 3 64
3× 3 64

]
Caps-enhance Groups = 32

Capsule dimension = 8
Groups = 32

Capsule dimension = 8
Groups = 8

Capsule dimension = 8

Conv4_x
[

3× 3 256
3× 3 256

] [
3× 3 256
3× 3 256

] [
3× 3 64
3× 3 64

]
Caps-enhance Groups = 32

Capsule dimension = 8
Groups = 32

Capsule dimension = 8
Groups = 8

Capsule dimension = 8
Quasi-conv 5 × 5, 256, stride = 2 5 × 5, 256, stride = 2 3 × 3, 64, stride=1

Quasi-primarycaps-enhance Groups = 32
Capsule dimension = 8

Groups = 32
Capsule dimension = 8

Groups = 8
Capsule dimension = 8

5. Conclusions

In this paper, we proposed the Diverse Enhanced Capsule Network, or DE-CapsNet, with disperse
dynamic routing. We drew inspiration from residual learning and Spatial Group-wise Enhance [9] to
enhance the capsules in grouped channels representing the entities of images with complex data or
backgrounds. Furthermore, on the basis of analyzing the distribution of coupling coefficients clustered
around the value of 0.1, we proposed a disperse dynamic routing algorithm to increase the range of
coefficients and strengthen the difference between the lengths of the true class and the others. We also
adopted a smaller kernel size for primary capsules compared to Hinton’s work [4] to reduce the number
of computed parameters. Our model showed better performance and fewer trainable parameters than
seven ensembles of CapsNets on CIFAR-10 and F-MNIST. This work has been proved applicable in the
field of image classification. Compared to Convolutional Neural Networks (CNNs), our model has
only few more parameters to calculate when achieving the same results because of the convolutional
layers with larger kernel size in the primary capsule layers. Besides this, disperse dynamic routing
agreement has to calculate the parameters cyclically for set iterations. The computational complexity
could be further reduced for our model in the future. We plan to optimize the convolutional layers in
the primary capsule layers and the disperse dynamic routing.

Author Contributions: B.J. designed and performed the experiments. B.J. and Q.H. wrote this paper. Q.H.
supervised the whole work. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded in part by the National Natural Science Foundation of China (NSFC) through
Grant U1732120.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

2. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Las Vegas, NV, USA, 26 June–1 July
2016; pp. 770–778.

3. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Honolulu, HI,
USA, 21–26 July 2017; pp. 4700–4708.

Appl. Sci. 2020, 10, 884 12 of 13

4. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing Between Capsules. In Advances in Neural Information
Processing Systems 30. In Proceedings of the Annual Conference on Neural Information Processing Systems,
NIPS, Long Beach, CA, USA, 4–9 December 2017; pp. 3856–3866.

5. Hinton, G.E.; Krizhevsky, A.; Wang, S.D. Transforming Auto-Encoders. In Artificial Neural Networks
and Machine Learning—ICANN 2011; Honkela, T., Duch, W., Girolami, M., Kaski, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2011; Volume 6791, pp. 44–51. ISBN 978-3-642-21734-0.

6. Xi, E.; Bing, S.; Jin, Y. Capsule Network Performance on Complex Data. arXiv 2017, arXiv:1712.03480.
7. Yang, Z.; Wang, X. Reducing the dilution: An analysis of the information sensitiveness of capsule network

with a practical solution. arXiv 2019, arXiv:1903.10588.
8. Phaye, S.S.R.; Sikka, A.; Dhall, A.; Bathula, D. Dense and Diverse Capsule Networks: Making the Capsules

Learn Better. arXiv 2018, arXiv:1805.04001.
9. Li, X.; Hu, X.; Yang, J. Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional

Networks. arXiv 2019, arXiv:1905.09646.
10. Srivastava, R.K.; Greff, K.; Schmidhuber, J. Training Very Deep Networks. In Advances in Neural Information

Processing Systems 28. In Proceedings of the Annual Conference on Neural Information Processing Systems,
NIPS 2015, Montreal, QC, Canada, 7–12 December 2015; pp. 2377–2385.

11. Hinton, G.; Sabour, S.; Frosst, N. Matrix Capsules With EM Routing. In Proceedings of the 6th International
Conference on Learning Representations, ICLR, Vancouver, BC, Canada, 30 April–3 May 2018.

12. Deliège, A.; Cioppa, A.; Van Droogenbroeck, M. HitNet: A neural network with capsules embedded in a
Hit-or-Miss layer, extended with hybrid data augmentation and ghost capsules. arXiv 2018, arXiv:1806.06519.

13. Zhao, Z.; Kleinhans, A.; Sandhu, G.; Patel, I.; Unnikrishnan, K.P. Capsule Networks with Max-Min
Normalization. arXiv 2019, arXiv:1903.09662.

14. Wang, D.; Liu, Q. An Optimization View on Dynamic Routing Between Capsules. In Proceedings of the 6th
International Conference on Learning Representations, ICLR, Vancouver, BC, Canada, 30 April–3 May 2018.

15. do Rosario, V.M.; Borin, E.; Breternitz, M., Jr. The Multi-Lane Capsule Network (MLCN). IEEE Signal Process.
Lett. 2019, 26, 1006–1010. [CrossRef]

16. Cheng, X.; He, J.; He, J.; Xu, H. Cv-CapsNet: Complex-Valued Capsule Network. IEEE Access 2019, 7,
85492–85499. [CrossRef]

17. Rajasegaran, J.; Jayasundara, V.; Jayasekara, S.; Jayasekara, H.; Seneviratne, S.; Rodrigo, R. DeepCaps: Going
Deeper with Capsule Networks. In Proceedings of the 2019 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 15–20 June 2019; pp. 10725–10733.

18. Kınlı, F.; Özcan, B.; Kıraç, F. Fashion Image Retrieval with Capsule Networks. In Proceedings of the 2019 IEEE
International Conference on Computer Vision Workshops, ICCV Workshops, Seoul, Korea, 29 October–1
November 2019.

19. Afshar, P.; Mohammadi, A.; Plataniotis, K.N. Brain Tumor Type Classification via Capsule Networks.
In Proceedings of the 25th IEEE International Conference on Image Processing, ICIP, Athens, Greece,
7–10 October 2018; pp. 3129–3133.

20. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 7132–7141.

21. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local Neural Networks. In Proceedings of the 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 7794–7803.

22. Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. GCNet: Non-local Networks Meet Squeeze-Excitation Networks and
Beyond. arXiv 2019, arXiv:1904.11492.

23. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the
15th European Conference on Computer Vision, ECCV, Part VII, Munich, Germany, 8–14 September 2018;
pp. 3–19.

24. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the 32nd International Coference on Machine learning, ICML, Ithaca, NY,
USA, 6–11 July 2015; pp. 448–456.

http://dx.doi.org/10.1109/LSP.2019.2915661
http://dx.doi.org/10.1109/ACCESS.2019.2924548

Appl. Sci. 2020, 10, 884 13 of 13

25. Qiao, S.; Wang, H.; Liu, C.; Shen, W.; Yuille, A. Weight Standardization. arXiv 2019, arXiv:1903.10520.
26. Wu, Y.; He, K. Group Normalization. In Proceedings of the 15th European Conference on Computer Vision,

ECCV, Part XIII, Munich, Germany, 8–14 September 2018; pp. 3–19.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Diverse Enhanced Capsule Network
	Enhanced Capsules
	Disperse Dynamic Routing
	DE-CapsNet Architecture

	Experiments
	Datasets
	System Setup
	Results

	Conclusions
	References

