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Abstract: To enhance network performance, the named data networking architecture (NDN) caches
data-packets in the network nodes on a downstream network path. Then it uses such cached requested
data-packets to respond to new request-packets. Hence, a cache management scheme (CMS) is the
essential point of NDN. CMS generally considers two main factors. One is a short response time
and the other is storage efficiency. To rapidly respond to requests, CMS generally tries to cache
data-packets near users as much as possible. To efficiently manage storage, it uses the popularity
of the data. That is, proportionally to the popularity of the data, it increases the number of nodes
caching data-packets and manages the lifetime of caches. However, few data objects are as popular
as many users globally enjoy in the real world. Hence, if the assumptions about content- usage are
practically changed, CMS can waste cache storage and not significantly improve network efficiency.
We show that many caches have expired and are not used at all. To improve such inefficiency of CMS,
this paper propose to simultaneously apply two cache decision factors, the expected frequency of a
cache hit and the popularity of data. That is, it proposes to gradually cache transmitted data in nodes
in which their expected cache-usage frequency is relatively high. To show the effectiveness of our
proposal, we implement LdC (a limited domain cache policy) and evaluate the performance of LdC.
The evaluation result shows that it can enhance the cache-storage efficiency by up to 65% compared
with existing CMS without degrading the network efficiency.
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1. Introduction

Since P2P networking technology was first introduced, it has become the general approach of
advanced network technologies to use caches (i.e., replica of data), which saves multiple nodes. One of
the main characteristics of such technologies is to shift the networking paradigm from ‘host-centric
networking’ to ‘content-centric networking’ [1–3]. When using in-network caches, data-providers can
expect that other nodes can handle most request-packets and users can seamlessly retrieve requested
data regardless of the network and system state of the data-providers. Hence, it appears very attractive
to utilize caches from the viewpoints of users and data-providers.

The named data networking architecture (NDN), which is a one information centric networking
architecture (ICN), caches a data-packet (Data) in the network-nodes on a downstream network path of
the Data. When a node receives a request-packet (Interest) for the Data, if the node has cached the Data,
it directly transmits the cached Data to requesters as a response. Since one of the intermediate nodes
on an upstream network path of Interest can directly respond to the Interest, a user can receive the
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Data more rapidly. Hence, NDN is considered as one of alternative solutions to efficiently implement
mobile edge computing [4].

Theoretically, NDN is designed to cache Data on all nodes of a downstream network path of the
Data. However, considering the amount of data that is transmitted through networks today, it must be
assumed that each network-node requires huge storage space. Additionally, if each network-node
on the upstream network path of Interest tries to search the relevant Data in its huge storage, it can
cause serious service-delays. Therefore, various cache management schemes have been presented to
improve this inefficiency of NDN [5–10].

The cache management scheme (CMS) generally tries to reduce unnecessary cache redundancy
and to improve transmission overheads for transmitting Data. To do this, many CMSs utilize common
approaches as follows:

• To gradually increase the number of nodes caching Data proportionally to the request frequency
of the Data.

• To cache Data as near a requester-side edge network (RsEN) as possible.

In particular, the latter approach expects that Interest generated in RsEN can be responded by
nodes in the RsEN without transmitting the Interest to the core network. To do this, it should be
assumed that ‘many’ nodes of ‘many’ RsENs have cached relevant Data. However, it would not be a
practical assumption because most content objects are not as popular as expected. For example, the
average usage ratio of YouTube content does not exceed 0.01%. Such an analysis leads to two facts:

• Many Interests that are generated in RsENs can be transmitted to the original content providers.
• Even if Data is cached in several RsENs, except for a few famous content objects, the caches of

most Data cannot be used at all. Therefore, such caches can just waste the storage of nodes.

In this paper, to improve the storage overheads of existing CMS, we propose an improved scheme
considering two factors at the same time as follows:

• The popularity of the Data. As existing CMSs, we also gradually increase the number of nodes
caching Data proportionally to the generation frequency of the Interests requesting the Data.

• The cache usage rate of each node. We first analyze the cache hit rate of nodes. Then, we select
nodes such that the cache hit frequency of these nodes is relatively high.

When applying these factors, this proposed scheme can enhance the storage efficiency of nodes
up to 65% compared with existing CMSs without degrading the network efficiency.

2. Named-Data Networking Architecture

2.1. NDN Overview

NDN uses a hierarchical data name that uniquely identifies Data. Based on this unique data name
of Data, NDN selects an upstream network path through which the Interest will be forwarded toward
the publisher of the Data. Additionally, NDN can efficiently search a matched cache for the Interest in
the network using a data name. NDN divides the content into several segments and then generates
Interests for each segment. Figure 1 shows the NDN Interest/Data forwarding procedure.

À Requestor-A transmits Interest for a segment of data.
Á When a node (Node-b) receives the Interest through the incoming network interface (Face-b1),

Node-b reads a lookup table (PIT, Pending Interest Table). An entry of the PIT consists of both
the data name of the Interest and the incoming network interface (Face) of the Interest. Node-b
conducts the PIT lookup to find a PIT entry matching the Interest. If there is a match, Node-b
adds Face-b1 to the found PIT entry and then finishes handling the Interest. Otherwise, Node-b
records a new entry on the PIT for the Interest.
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Â Node-b conducts the CS (Content Store) lookup using the data name of the Interest to find a
matched cache to the Interest. If there is a match, Node-b forwards the found cache to Requestor-
A through Face-b1 and then deletes the relative entry from the PIT. It then finishes dealing with
the Interest.

Ã Otherwise, Node-b forwards the Interest using the information from the FIB (Forwarding
Information based) table.

Ä If a node having the relevant Data receives the Interest, the node forwards the Data along the
reverse of the path through which the Interest passed.

Å When receiving the Data, Node-b conducts the PIT lookup to find a PIT entry matching the Data.
If there is no matching entry, Node-b discards the Data.

Æ Otherwise, Node-b caches the Data in its CS, and then forwards the Data through the network
interfaces that are recorded on the found PIT entry.

Ç Finally, Requestor-A receives the Data.
È Thereafter, Requestor-B generates Interest for the Data that has been previously transmitted

to Requestor-A.
É If Node-b receives the Interest from Requestor-B, Node-b forwards the cached Data to Requestor-

B and then accomplishes the operation of the Interest.
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2.2. NDN Cache Management Overview

Considering the transmission overheads for forwarding Interest/Data, the storage overheads for
caching Data, and the computation overheads for searching the matched Data in-network caches, many
CMSs proposed to selectively and gradually cache transmitted Data propositionally to the request
frequency of the Data [5–11]. Some CMSs probabilistically/randomly select one or several nodes on
a downstream path of the Data and then cache the Data in the selected nodes [5–7]. Such schemes
can reduce the unnecessary redundant caches. However, they cannot correctly predict/evaluate the
transmission overheads because they can neither predict nor designate which nodes on a downstream
path will cache transmitted Data.

Other CMSs gradually increase the number of nodes caching Data propositionally to the request
frequency of the Data [8–11]. They can enhance the transmission overheads and reduce the unnecessary
cache redundancy [12–14]. Both LCD (Leave Copy Down) and WAVE take this approach. Figure 2
shows WAVE [10]. If the kth node on an upstream path of Interest has cached the matched Data
and it forwards the Data, LCD/WAVE proposes that only the first node receiving the Data caches the
transmitted Data. Practically, the node is the k-1th node on the upstream path of the Interest. While LCD
increases the number of newly cached segments of content by one for each time the content is required,
WAVE exponentially increases the number of segments that are newly cached, as shown in Figure 2.
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(1) Let the content consist of seven segments {s0, . . . , s6}. When receiving the first Interests of the
content, only the first segment s0 of the content will be cached in a node (Node[3]) on a downstream
path. Other segments are transmitted to a requestor without being cached.

(2) If the second Interests for the content are forwarded, Node[3] can respond to the Interest for
requiring the cached s0. Then, while the s0 is transmitted, only Node[2] caches it. The other Interests for
{s1, . . . , s6} are responded to by the provider of the content. Then, only two segments, s1 and s2, are
newly cached in Node[3].

(3) Finally, if the provider receives the third Interests for the content, four segments {s3, . . . , s6} are
newly cached in Node[3].

2.3. NDN Cache Management Limitation

Most CMSs commonly propose to cache popular content on RsEN. Such schemes expect that
many Interests generated in RsEN can be responded to within the RsEN. So, they also expect that the
number of Interest/Data transmitted to the core network can be reduced. However, such an expectation
has some unrealistic issues.

First, such schemes generally assume that the requested content is popular such that many users
who have geographically dispersed locations in RsENs enjoy them. However, that is a very unusual
case. For example, YouTube statistics published in 2019 show that more than 1.9 billion users watch
YouTube content a month, 250 million hours of YouTube viewed per day on TV screens, and the most
popular videos generate over 3 billion views. However, considering the average cumulative views of
each video, most videos generate less than 10,000 views [14–18]. This means that most YouTube videos
are viewed only by 0.0005% of users. Hence, the number of RsENs that have cached the requested
content may be smaller than expected. In this case, most Interests will finally be transmitted to content
providers. Additionally, although some contents have been cached in RsENs, most caches in RsENs
may not be used if the cache hit rate of the nodes in RsENs is relatively low. Moreover, if a cache hit
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rate of caches is low, the caches can be deleted from the RsEN over time due to the cache management
policy of the RsEN provider.

Second, such schemes overlook a practical fact that the providers of RsENs do not have any
responsibility to cache the transmitted content. Instead, as shown in the case of the CDN (Content
Delivery Network) service, it is generally accepted that content providers pay a cost for caching content.
Hence, it cannot be guaranteed that RSEN providers cache the received content generated by publishers
who are not members of their RsENs.

3. Cache Decision Factors

To solve the problems mentioned in the previous section, this paper proposes two decision factors
as follows:

• The first factor is the popularity of the Data. As existing CMSs, it proposes to gradually increase
the number of nodes caching Data proportionally to the generation frequency of the Interests
requesting the Data.

• The second factor is the cache usage rate of each node. For that, we first analyze the cache hit rate
of the nodes. Figure 3 shows the evaluation result of the cache usages of NDN. To evaluate the
cache usages of NDN, we utilize a network topology and configuration as described in Section 5.
This assumes that the average popularity of the content is 0.001. It means that a new Interest for the
content is published per each 1000 s. Then it measures the cache hit rate of each node according
to the different cache lifetimes (1 h, 1 day, and 1 week). Specifically, if a custodian based-NDN
is applied [19], the cache hit rate of the custodian nodes of a publisher-side domain is relatively
higher than those of RsENs. Figure 3 shows that the cache usages rate of the nodes of the domain
of a publisher is relatively high.
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Figure 3 could cause misunderstanding that caching Data in RsEN is useless. However, the result
of Figure 3 has some limitations because the average popularity of the content is fixed. Nevertheless,
it is sufficiently meaningful since it shows the necessity of consideration of the cache usage rate of
a node.

4. A Limited Domain Cache Management Policy

In this section, we propose a simple cache policy (a limited domain cache policy, LdC) using the
previously described two factors. It is the main purpose of this proposal to prove the usefulness of
applying the previous two caching decision factors to CMS simultaneously.

For that, we select nodes such that the cache hit frequency of these nodes is relatively high.
LdC aims at ‘gradually’ caching Data in nodes that many Interests are ‘frequently’ passed through.
Also, like LCD/WAVE, it gradually increases the number of nodes caching Data. As shown in Figure 3,
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since nodes in a publisher-side network domain have a higher hit rate than nodes in a requestor-side
network domain, we simply suggest improving LCD such that it caches the transmitted Data only in
the nodes of the publisher-side network domain. Then we compare the performances between existing
CMSs and LdC to show the effect of the two factors.

4.1. Hierarchical Named Node

NDN originally used a hierarchical data name. Recently, although NDN additionally utilizes a
flat data name like other ICNs, NDN does not utilize a name resolution server that resolves the flat
name of the content to a host identity caching the content. Therefore, to forward Interest for Data to a
content provider which generated the Data, NDN still needs a hierarchical data name for the Interest.

Taking advantage of the characteristics of a layered data name, is an efficient approach to transmit
the Interest by referring to the prefixes of the data name of the Interest sequentially from a higher
layer prefix. Therefore, the LdC rationally assumes that there are hierarchical representative nodes
to which Interests having the same name prefixes are commonly forwarded. That is, these nodes are
the domain gateway nodes of a publisher-side network domain. The nodes have a hierarchical node
identity which publishers use as the prefix of the data name. So, every Interest having a data name in
which the prefix of the data name is the same as the node identity should be transmitted to one of
these nodes. For example, Interest having a data name “/n1/n2/n3/text.txt/s1/239” is first forwarded to a
node having the identity “/n1”. Then the node forwards the Interest to an internal node having the
identity “/n1/n2”. The LdC calls such nodes the representative nodes of the name prefix “/n1”. A node
can have several different identities. LdC assumes that the data name hierarchy of NDN consists of
two parts, as shown in Figure 4.

• A named domain hierarchy (NDH): NDH is used to forward Interest toward a data publisher.
In Figure 4, “/suv/research/security/david” is the NDH. A name prefix with 1-layer is “/suv”.
Then, one of the representative nodes having identity “/suv” handles the Interest with the data
name prefix “/suv”. In addition, a name prefix with a 2-layer is “/suv/research”. One of the
representative nodes having identity “/suv/research” handles the Interest with the data name
prefix “/suv/research”.

• Object File Information (OFI): This is the information of a segment of data. It is formatted as
“/doc/report.txt/s2/239”. The “/doc” denotes the file path of the segment. The “/report.txt” is the
file name of the segment. The “s2” is the segment number and the “239” is the time stamp.
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4.2. Limited Domain Caching Policy (LdC)

For simple implementation, LdC utilizes a custodian-based NDN [19]. Each network domain
has a custodian node that every Interest/Data entering or leaving this domain must pass through.
LdC proposes to utilize the custodian node as a representative node. By this assumption, when data is
published in a named domain, all Interests for the data are commonly forwarded via the custodian node
of the domain. Hence, as shown in Figure 4, if a node having the identity “/suv/research/security/david”
receives the Interest for Data having the data name “/suv/research/security/david/doc/report.txt/s2/239”,
the Data are forwarded to the custodian nodes (i.e., representative nodes) of the domains named
“/suv/research/security”, “/suv/research”, and “/suv” in order. These representative nodes gradually
cache the Data like LCD/WAVE.

To limit a cache area to a publisher-side name domain, if the representative node of a named
domain receives Data with a name prefix that does not match its node identity, the node forwards the
Data without caching the Data. To implement this functionality, LdC adds two fields, a cache flag (CF),
and a cache remove flag (RF), to the Data structure.

• If the CF of the Data has ‘1’ and the domain name of a node receiving the Data matches the name
prefix of the Data, the node caches the Data. Otherwise, the node does not cache it.

• The RF is an optional field. It is used to delete the content that is cached in a node after the node
forwards the Data. If the RF has ‘1′, except for the custodian node with the layer 1 name domain
of a data publisher, each node deletes the cached Data after forwarding the Data.

Figure 5 describes in detail the LdC procedure. Assume that the CF of the Data has ‘1′.

1O If a node receives the Interest for Data that it has cached, the node forwards the Data back to the
requestors. Then, if the node is neither a custodian node of a name domain nor the publisher of
the Data, it checks whether the RF of the Data has ‘1′. If it does, the node deletes the cached Data
from its CS.

2O If a node receives Data from its neighboring node, the node confirms the CF of the Data. If CF = 0,
it forwards the Data without caching the Data. Otherwise, the node compares its node name with
the name domain hierarchy of the Data. If these two names match, it caches the Data with CF = 1.
Otherwise, it does not cache the Data.

3O The node sets the CF of the Data to ‘0′. Then, it sends the Data to the requestors. However, it still
has a cache of the Data that has a CF = 1.
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Using LdC, the cache of Data gradually moves toward a node matching the highest layer name
prefix of the Data. Additionally, to enhance the performance of LdC, it is possible to increase the
amount of cached Data per each content transmission time like in WAVE.

5. Performance Evaluation

To evaluate the performance using a simulation (an ns-3 based ndnSIM), we configure a discrete
event-driven simulation and utilize a name domain topology with five domains as follows:

• A domain consists of a hierarchical name domain topology with a depth of 5.
• A root node has 5 child nodes. Except for leaf nodes, each internal node has 4 child

nodes, respectively.
• A root node is a custodian node of the domain.
• Except for a root node and leaf nodes, each node is the custodian node of a hierarchical subdomain.
• A leaf node is a user’s device.

Additionally, the configuration for this simulation is as follows.
• 16,000 objects are available, and these objects have the same popularity.
• Each node can cache up to 1000 objects.
• A node has a cache life of 50 s. Therefore, if no cache hit occurs for 50 s, the cache is deleted from

the node.
• We randomly selected users’ devices to generate the Interests for objects that are also

randomly selected.

Figure 6 shows the results of the performance evaluation of the four schemes: [NDN], [LCD],
[WAVE], and [LdC]. “The number of requests” means the number of Interests generated by users.
The average response rate is 96.7%. Figure 6a,b shows the total number amount of Interests and Data
respectively which are transmitted between nodes. It shows that, in the three cases of the [LCD],
[WAVE] and [LdC], the number of transmitted Interests increases a small amount. However, this
difference is very slight. It means that the hop counts of the transmitted Interests/Data are similar
when applying these four schemes. Additionally, it means that almost the same nodes respond to the
Interests regardless of the applied scheme.
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Nevertheless, as shown in Figure 6c, there are huge differences among the storage overheads
of these four schemes. It is expected that [LdC] improves the storage overheads for caching Data
by approximately 65% compared with [LCD]/[WAVE] and by approximately 95% compared with
[NDN]. Hence, Figure 6a–c shows that LdC can improve the storage overheads of nodes without the
degradation of transmission performance.

Furthermore, Figure 6d shows the comparison result of the cache utilization of these four schemes.
When randomly generating 9996 Interests, we analyze the total amount of cached Data in the network
(represented by lines) and count the number of cache hits (represented by bars). Although [LdC]
caches much less Data than other schemes, [LdC] cache utilization is at least 10% to at most 50% higher.

6. Conclusions

Since NDN utilizes the in-network caches of content, a cache management scheme is an essential
technology of NDN. So far, most cache management schemes cache transmitted content in RsENs.
Because of this, such an approach would make it possible to reduce the amount of network traffic
that is exchanged between core networks. Such an approach assumes that the content’s popularity is
related to how frequently it is requested. However, many reports have shown that the usage rate of
most content shared through the Internet is low. Hence, although content has been cached on nodes,
it can happen that the caches of the content are not used at all. Therefore, existing CMSs for NDN
can waste the cache storage of a node but do not significantly improve network efficiency. Practically,
when we analyze both the Interest/Data traffic flow of NDN and the cache usage rate of each node, we
find that some caches are not utilized at all. Also, we find that Data that is cached in the requestor- side
networks has a lower hit rate than Data that is cached in the provider-side network.

Hence, we propose to consider simultaneously two decision factors, both a content popularity
and the cache hit rate of each node, when NDN selects nodes to cache transmitted Data. Also, to prove
the effectiveness of our proposal, we suggest a simple cache model using our proposal and evaluate
the performance of the model. Since this proposed scheme caches Data on nodes with high cache hit
rates, it enhances the cache-storage efficiency by up to 65% compared with existing cache management
schemes in which the content is cached both in the requestor-side network and in the provider-side
network without degrading the network efficiency. That is, LdC improves the storage overheads of
nodes without degradation of transmission performance.

The main contribution of this work consists of three points: First, we showed that the cache hit
rate of a node is an important factor as much as the popularity of content. When NDN considers these
two factors simultaneously, it can improve the storage overheads of nodes.

Second, when implementing MEC for caching content in edge networks, it is necessary to consider
the case where caches in edge networks are not used at all. Hence, it should be needed to design a
special cache management scheme for requestor-side network domain.

Finally, we suggest a future work which sets the cache lifetime of each node considering these
two factors. CMS generally considers the lifetime of caches. However, most CMSs take a formalized
rule and use a fixed value. Using these two factors, it may be possible to generate a flexible lifetime
of caches.
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