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Abstract: An agricultural greenhouse is a complex and Multi-Input Multi-Output MIMO system in
which the internal parameters create a favorable microclimate for agricultural production. Temperature
and internal humidity are two parameters that have a major impact on greenhouse yield. The objective
of this study was to propose a simulated dynamic model in a MATLAB/Simulink environment for
experimental validation. Moreover, a fuzzy controller was designed to manage a greenhouse indoor
climate by means of an asynchronous motor for ventilation, heating, humidification, etc. An intelligent
system to control these actuators for an optimal inside climate was implemented in the model. The
dynamic model was validated by comparing the simulation results to experimental measurements.
These results showed the effectiveness of the control strategy in regulating the greenhouse indoor
climate. Finally, a photovoltaic generator was modeled, with the aim of reducing the costs of
agricultural production. It feeds the asynchronous motor with a vector control optimized by fuzzy
logic that drives a variable speed fan.

Keywords: dynamic model; fuzzy controller; photovoltaic generator; MPPT; converter SEPIC;
vector control; MATLAB/Simulink environment

1. Introduction

Due to the enormous increase and instability of oil and derivatives markets, countries are
constantly looking for alternative sources of energy to ensure the independence of their economies
from fluctuations in oil prices. Photovoltaic energy can have undeniable advantages, especially due to
its cleanliness and low cost. In addition, it can be used in various applications such as in agronomy,
where different variables, e.g., temperature and humidity, have to be monitored and controlled. These
include temperature and humidity. A greenhouse is a known solution for protecting plant cover
from diseases and bad weather. A greenhouse is a complex system, the internal climate of which is
influenced by many factors, such as wind speed, solar radiation, external temperature, and humidity.
Two main problems have limited the expansion of greenhouse agricultural production.

Firstly, control over the indoor climate is an important aspect in achieving microclimate comfort for
plant growth. Many research activities have focused on controlling the indoor climate of a greenhouse
with different strategies. Predictive neural control [1] has been developed to optimize the greenhouse
climate, while a fuzzy controller that was developed to describe a dynamic model in MATLAB/Simulink
was described in Reference [2]. In addition, Reference [3] studied several PI control structures that
showed strong stationary performance. In Reference [4], the authors introduced a decentralized
decoupled fuzzy logic controller (FLC), showing its usefulness in comparison to the conventional PID
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method, but they did not take into account the effect of ventilation on temperature. References [5,6]
proposed a neuro-fuzzy controller to identify the optimal conditions for plant production and to improve
control over the indoor climate. Genetic algorithms implemented in a control system for irrigation in a
greenhouse were proposed in References [7,8], while Reference [9] presented a comparative study of
two types of fuzzy multivariate controllers to show their advantages and disadvantages. Reference [10]
developed four control techniques to adjust the air temperature inside a greenhouse to a desired value:
fuzzy logic control (FLC), an adaptive neuro-fuzzy inference system (ANFIS), artificial neural network
control (ANNC), and IP Control. ANFIS [11] and FLC [12] are two of the best known and most used
controllers for nonlinear and complex processes such as greenhouses. Reference [13] presented a fuzzy
controller with a correlation between the parameters. An FLC was used, in this paper, for the dynamic
model of an experimentally validated agricultural greenhouse, with the aim of promoting a suitable
microclimate with appropriate actuators installed into the greenhouse.

Secondly, the use of several controlled actuators, such as a ventilation system, a heating
system, and a humidification/dehumidification system, makes a greenhouse an energy-intensive
consumer. Therefore, it is mandatory to use efficient energy systems in order to reduce operating
costs. Many researchers have studied control strategies for ventilation and heating systems, for
humidification/dehumidification systems, and for the regulation of other agricultural greenhouse
parameters. References [14,15] proposed a ventilation system based on an on–off control, Reference [16]
studied a natural ventilation system for an agricultural greenhouse, Reference [17] presented an
evaluation of the use of various renewable energy sources to heat a greenhouse, and Reference [18]
introduced different fields of application for renewable energy in buildings, in particular in the
agricultural sector. Reference [19] proposed energy reduction measured through low-cost and solar
energy-based sensors. Reference [20] used direct torque control (DTC) to manage the operation of
a motor driving a fan, while [21] discussed the application of a photovoltaic (PV) system to power
a temperature control system in an agricultural greenhouse. These researchers were interested in
the thermodynamic modeling of an agricultural greenhouse. Our paper combines the efficiency and
robustness of control over the microclimate inside an agricultural greenhouse with optimization of the
control strategy of a PV system that powers the internal actuators.

The contribution in the present work is the development and optimization of a ventilation system
for a small greenhouse devoted to agricultural production. Energy consumption is reduced by coupling
a PV system to an agricultural greenhouse. This approach provides a good solution to eliminating the
overloading of an electricity grid. Moreover, the efficiency of the actual PV modules is good enough
and can be easily monitored [22,23] if the PV system is equipped with a datalogger that stores the
electrical parameters. Otherwise, in the absence of a datalogger, the correct operation of the PV systems
can be checked by a thermo-camera [24,25] with the support of software that processes the infrared
images [26,27]. The PV system plays the role of an energy source to power an asynchronous motor and
to drive a fan controlled by vector control, which is optimized using a fuzzy logic strategy.

This paper has two parts. The first one (Sections 2–4) discusses the dynamic model of a greenhouse
and the FLC. In particular, the dynamic model is presented in Section 2, and it was experimentally
validated. The FLC, developed in Section 3, manages the inside temperature and humidity to control
a variable speed ventilation system. The simulation results of the dynamic model are discussed in
Section 4. The second part of the paper (Section 5) discusses the PV system and the operation of the
powered electrical devices. Conclusions end the paper.

2. Dynamic Greenhouse Model

2.1. Greenhouse Model

A greenhouse is a system that can favor the growth of plants, because it guarantees suitable
microclimate conditions for fixed cultivation. In fact, a greenhouse is a heat storing system that
converts incident solar radiation into heat gain. This physical process is based on conduction, heat
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storage, and convection. Control over the internal microclimate can be automatized (for example, by
using a fuzzy controller, as in this paper) only if a physical model of the greenhouse is available. This
model must be able to foresee changes in the indoor environmental parameters, which are based on
several boundary conditions. For this reason, this section proposes—and validates experimentally—a
simplified thermal model of a test lab greenhouse. The proposed model of the greenhouse is based
on four layers (Figure 1) that participate in thermodynamic exchanges: the cover, the internal air, the
plants, and the soil. The role of each layer is as follows:

• The main function of the cover is heat retention; usually, the cover is made of polyethylene film
or glass;

• The interior air represents an internal climate that is mainly governed by temperature and humidity;
• The plants play a strategic role in water and heat balance, thanks to the evapotranspiration

process [10];
• The soil influences the absorbance and diffusivity of the thermal radiation [11].
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2.2. Test Lab Greenhouse under Study

The greenhouse under investigation is in the north of Tunisia in the Borj Cedria region (36◦43′10.25”
N) and is a typical model for greenhouses located in the Mediterranean area.

The greenhouse is a small, semi-insulated capel and occupies an area equal to 14.8 m2 (width 3.7
m, length 4 m, ridge height 3 m), with a volume of 36 m3. Therefore, it is a test lab greenhouse. Its
shape, dimensions, and measuring equipment are presented in Reference [28]. The specific design
of the semi-insulated greenhouse maximizes the contribution of solar radiation and reduces the loss
of heat to the ground. The structure has a 0.4-m-thick panel on the side walls and on the ground.
To prevent heat exchange between the soil and the climate inside the greenhouse, a wooden plate
with a thermal conductivity Ct = 0.04

(
Wm−1K−1

)
is used. Therefore, simplified modeling of the test

lab greenhouse neglects heat transfer to the ground. Figures 2–4 show pictures of the greenhouse
under investigation.
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2.3. Heat Balance

The air exchanges between the internal air and the external environment produce losses that affect
the heat and water balance. The internal heat balance is governed by Equation (1) [2,13]:

ρaCav
dtin
dt

= Qshort + Qconv,cond + Qin f iltration
−Qlong + Qheater

−Qventilation, (1)

where ρa is the air density [1.25 Kg·m−3], and Ca is the air heat capacity (1003 J·Kg−1
·
◦C−1).

The shortwave radiation absorbed by the greenhouse is given by

Qshort = αcτcAI, (2)

where αc is the cover absorptivity of the solar radiation, τc is the cover transmittance, A is the surface
area (m2), and I is the solar radiation (Wm−2).

The rate of convection and conduction heat transfer is calculated as

Qconv,cond = UA(Tin−Tout), (3)
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where Tin is the internal temperature, Tout is the outside temperature (K), and U is the heat transfer
coefficient through the greenhouse walls (W·m−2

·K−1).
Infiltration through the greenhouse produces heat loss, which is calculated as

Qin f iltration = ρaCaR
Tin − Tout

3600
, (4)

where R is the number of air changes per hour (m3
·h−1).

The longwave radiation absorbed by the greenhouse is calculated as

Qlong = hoA(1− Γc)
(
Tin − Tsky

)
, (5)

where
h0= 2.8 + (1.2 ∗Vw), (6)

with Vw being the wind speed and Tsky being the sky temperature (as suggested by Swinbank in
Reference [29]), which is calculated as

Tsky = 0, 05(Tout)
1,5. (7)

The heating system provides thermal energy, which is calculated as

Qheater =
NhRh

S
, (8)

with Nh being the number of heaters, and Rh being the capacity of the heating system (Wm−2).
The thermal energy lost from the cooling system is calculated as

Qventilation = CaVr(Tin−Tout), (9)

where Vr is the ventilation rate (m3s−1).

2.4. Water Balance

After the heat balance, the dynamics of the relative humidity inside the greenhouse need to be
modeled. This is based on the following equation [2–22]:

ρa v
dhin
dt

= Qevapotranspiration
−Qin f iltration + Qhum

−Qdehum, (10)

where hin is the inside dynamic humidity calculated over time by a differential equation, while

Qevapotranspiration = VCeVw(pout − pin), (11)

where pin and pout are the inside and outside saturated vapor pressure (Pa), respectively; V is the
volume of the greenhouse; Vw is the wind speed; and Ce is the transfer coefficient of the water vapor in
the air (Kg. (Wm−2).s−1.Pa−1).

Qin f iltration inside the greenhouse is calculated as

Qinf = Vr(Hin −Hout), (12)

where Hin and Hout are the inside and outside relative humidity, respectively.

2.5. Validation of the Proposed Dynamic Model

The proposed system was validated in a MATLAB/Simulink environment using a weather database
of real measurements. This included measurements of solar radiation, wind speed, temperature, and
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relative humidity. This also contained thermal properties of the greenhouse’s response to external
solar radiation. Some details are reported in Section 4.

The results of the theoretical simulations of the temperature and humidity were compared to the
experimental measurements and are reported in Figures 5–7.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 20 
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Figure 5 shows a simulation of the greenhouse temperature over three days: the measured
temperature (green curve) was measured by a sensor (Figure 3), the interior temperature (red curve)
was calculated by a differential equation (Equation (1)), and the outside temperature (blue curve) was
measured by a sensor outside the greenhouse.

The indoor and outdoor humidity are reported in Figure 6: the internal humidity (red curve)
was calculated by a differential equation (Equation (10)), and the external humidity was measured by
a sensor.
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Figure 7 presents a database measuring solar radiation during the investigated period. The solar
radiation data were measured using a sensor placed outside the greenhouse. The northern region of
Tunisia is usually cold, so radiation is not particularly high. In fact, the authors in Reference [28] did
the same measurements in that region (in another period), obtaining a maximum value of 700 W/m2.

3. Fuzzy Logic Controller for the Greenhouse

The studied system is described in Figure 8.
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The operation of the FLC is as follows: a comparison between the temperature (Tin) and the
humidity (Hin) (with their set points) gives the errors ∆T and ∆H for the regulation of the internal
factors of the greenhouse controlled by the actuators (ventilation, heating, etc.). In the next section, the
architecture and design of the fuzzy controller are discussed.

When the actuators are active, the heat flow supplied by the heating system and the air flow of
the ventilation system will be part of the thermodynamic model. Therefore, the temperature and the
humidity inside the greenhouse are governed by Equations (1) and (10), respectively.

3.1. Architecture of the Fuzzy Control Unit

The fuzzy controller is based on a fuzzy inference engine (FIS), which consists of three main
processing subsystems (Figure 9):

• A fuzzification interface that converts linguistics input variables into numerical values;
• A database unit that includes membership functions that need an “interface engine” in the fuzzy

rules; and
• A defuzzification processor that generates crisp control output for specific actuators.
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3.2. Temperature Control

The input state variable of the temperature fuzzy controller is ∆T (see Figure 8), where

∆T = Tsetpoint − Tin ε (NB, NM, Z, PM, PB). (13)
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The membership functions of the input temperature error are reported in Figure 10, where NB is
negative big, NM is negative medium, Z is zero, PM is positive medium, and PB is positive big.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 20 
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Figure 11 reports the membership functions of the output variables, Vr and Hr.
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3.3. Relative Humidity Control

The input state variable of the humidity fuzzy controller is ∆H in Figure 8, where

∆H = Hsetpoint − Hin ε (NB, NM, Z, PM, PB). (14)
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Figure 12. Membership functions of the humidity error.

The output variables are the humidification rate (HuR) and the dehumidification rate (DHuR),
with (HuR and DHuR) ε (Z, M, H) and (Z, M, H) (Z = zero, M = medium, and H = high).

The membership functions of the output variables are shown in Figure 13.
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Figure 13. Membership functions of the output variables: (a) the humidification rate HuR (b) and the
dehumidification rate DHuR.

The membership functions of the outputs HuR and DHuR are calculated in terms of a maximum
value = 50 gH2O/min.

Tables 1 and 2 present a basis for the fuzzy rules for temperature and humidity control. The bold
rows highlight two examples that are useful in explaining the strategy:

• If (∆T is negative big) then (ventilation is high) and (heating is zero); and
• If (∆H is zero) then (humidification is zero) and (dehumidification is zero).
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Table 1. Fuzzy rules for temperature control.

Temperature Error Ventilation Rate Heating Rate

Negative big High Zero
Negative medium Medium Zero

Zero Zero Zero
Positive medium Zero Medium

Positive big Zero High

Table 2. Fuzzy rules for the humidity controller.

Humidity Error Humidification Rate Dehumidification Rate

Negative big Zero High
Negative medium Zero Medium

Zero Zero Zero
Positive medium Medium Zero

Positive big High Zero

4. Simulations and Results

The simulation results of the fuzzy-controlled agricultural greenhouse are presented in Figure 14.
Two different set points were set for the inside temperature: 15 ◦C for the night and 24 ◦C during the
day. These reference values were fixed to guarantee optimal thermal conditions for cultivation (for
tomato plants) in this test lab. Other reference values could be fixed for other cultivations. The same
test for the inside humidity set two reference points: 70% during the day, and 80% during the night.
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For this study, a real database was applied for 3 days, from 5 March 2017 to 7 March 2017, at the
CRTEn Center: the database included solar radiation, temperature, and humidity. The selected period
was characterized by a high variation in wind speed and in global average solar radiation between 0
and 800 W/m2, due to the position of the greenhouse (very close to the sea).

4.1. Temperature

During the night, the inside temperature was low (7 ◦C), as is shown in Figure 14. During the
same period, the heating system was activated, and the heating rate became more intensive (380
W/m2)—see Figure 15a—to maintain the inside temperature around its set point of 15 ◦C (see Figure 14).
Meanwhile, the heating rate was at an average level of 120 W/m2 when the inside temperature was
close to the set point. During the day, the ventilation system started operating to remove hot air and to
push in cooler outside air; thus, the ventilation rate (Figure 15b) became more intensive (50 m3/min) in
order to reduce the indoor air temperature tp around the set point of 24 ◦C.
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4.2. Humidity

The simulation results of the indoor relative humidity (with the control) are reported in Figure 16.
The dehumidification system (Figure 17b) was activated with a maximum value of 15 g H2O/min during
the night in order to remove the water vapor accumulated in the indoor climate of the greenhouse.
This was needed to maintain the inside humidity around its predefined set point of 80%, but this
value could reach more than 97% without the control, as is reported in Figure 6. During the day, the
internal humidity was relatively low (Figure 6) without the control due to the effect of the thermal load
trapped inside the greenhouse (this reduced the air in the contained water). During this period, the
humidification system was activated at a high rate (Figure 17a) to stabilize the humidity level around
the set point of 70%.
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The simulation results showed the effectiveness of the FLC in controlling the indoor parameters
of the agricultural greenhouse. A fuzzy controller was designed to control the inside climate using
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appropriate actuators. The results of the simulation showed the efficiency of the developed FLC
in meeting the requirements of factories in terms of temperature and humidity and in obtaining a
favorable microclimate for the agricultural production of tomato plants.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 20 
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5. Photovoltaic System

5.1. Energy Management Approach

In this part, we present the main contribution of this work, which is represented by the coupling
of photovoltaic energy in the agricultural sector and by efficiency in the control of the parameters of
the agricultural greenhouse.

An agricultural greenhouse requires a lot of energy over the production period in order to promote
optimal control of the inside climate.

During the day, the temperature of the environment frequently reaches a high value, so the inside
air temperature of the agricultural greenhouse exceeds the predefined set point. Since there is no
internal relative humidity, Figures 15b and 17a show the need for ventilation and humidification during
the day, when solar radiation reaches a high value. The presence of photovoltaic energy provides an
alternative use to avoid burdening the electrical grid; moreover, a solar-powered ventilation system
based on a variable speed fan can be adopted using a vector control optimized by fuzzy logic to manage
the ventilation flow rate in order to obtain robust control.

5.2. System Description

The PV-based ventilation system (Figure 18) is constituted by the following:

• A PV generator, whose maximum power is assured by the maximum power point tracking MPPT
command based on the perturb and observe (P&O) method;
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• A power stage consisting of a continuous-to-continuous converter, called single ended primary
inductor converter “SEPIC”, and an inverter (red block);

• An asynchronous motor that drives the fan; and
• A vector control optimized by fuzzy logic for asynchronous motor speed control (yellow block).
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5.2.1. Parameters of the PV Modules

The PV generator consists of four series-connected modules. Some parameters of the datasheet of
the PV module are shown in Table 3 under standard test conditions (STCs) [30].

Table 3. Parameters of the KANEKA 60.

Electrical Data Value

Nominal output Pmpp (W) 60
Nominal voltage Vmpp (V) 67
Nominal current Impp (A) 0.9

Open-circuit voltage Voc (V) 92
Short-circuit current Isc (A) 1.19

The current–voltage (I-V) and power–voltage (P-V) curves of Figure 19 describe the behavior of
the PV generator under the STCs (G = 1000 W/m2 and the ambient temperature T = 25 ◦C).
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The selection of the maximum power point by the optimized P&O algorithm was studied in a
work that showed the simulation of the control system based on fuzzy logic techniques (Figure 20).
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Figure 20. Simulink model of the perturb and observe (P&O)-optimized fuzzy logic strategy (Figure 18,
green).

5.2.2. SEPIC Converter

The SEPIC converter chosen for this application is similar to a buck–boost converter, but it has the
advantage of noninverted output. SEPIC essentially consists of three capacitors (Cin, Cout, and Cp),
two coupled inductors (L1 and L2), a diode (D1), and a transistor (Q1). The output voltage pins are
highlighted in red in Figure 21.
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In the proposed test lab greenhouse, the converter model DV51-322-2K2 is used, with the following
values of the components:

• Cin = Cout = 440 µF;
• Cp = 10 µF; and
• L1 = L2 = 47 µF.

Moreover, the efficiency varies from 0.78 to 0.91, with the maximum value being valid for
nominal conditions.

5.2.3. DC/AC Inverter

Asynchronous machine speed control systematically includes the use of a static power converter
to vary the speed of the inverter. By means of a well-tuned sequence of opening and closing the
switching cells (using a DC voltage source), the static converter can switch the current in the phases of
the machine in order to obtain a perfectly controllable three-phase current system.
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The inverter is controlled by a pulse width modulation strategy. Figure 22 shows a schematic
diagram of the inverter feeding a three-phase motor, while the technical specifications are reported in

Reference [31]. The three arms of the inverter are controlled by the vector
(
ρA ρB ρC

)T
, with

ρA
ρB
ρC

 =


2 −1 −1
−1 2 −1
−1 −1 2




Pwm1
Pwm2
Pwm3

, (15)

where Pwm1, 2, and 3 represent the control signals’ pulse width modulation (PWM), which is generated
by the command.
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5.3. Vector Control Optimized by Fuzzy Logic

A vector command allows for controlling the motor speed, the electromotive flow, and the torque
of a three-phase AC electric motor. In general, vector control consists of a PI controller that calculates
the speed reference as a function of its nominal speed: this technique is not suitable for the speed
regulation of a motor. Therefore, a fuzzy controller provided by a variable speed fan was developed to
regulate the reference: this control strategy gave robustness to the proposed command. The calculation
of the reference speed (using fuzzy logic based on measurements) is done based on the ventilation rate
of the agricultural greenhouse (due to outdoor climate conditions). The ventilation rate depends on
the fan speed, so the desired speed is the input of the vector control. The fan speed is calculated by the
linear fan law described by the equation [32]

V = k·w, (16)

where k is a constant and V and w are the required air flow rate (m3/min) and the motor speed in RPMs,
respectively. In the hot season, the temperature exceeds the predefined set point; thus, the ventilation
system operates at a maximum speed to refresh the indoor climate and to lower the temperature
around its set point. When this on–off sequence is iterated several times to regulate the temperature,
the energy consumption is high. The main advantage of this technique is its easy control algorithm,
because only the stator current and voltage are measured in estimating the torque and flux [31]. This
control strategy allows for a reduction in energy consumption. For the ventilation system, the use of
this control is justified in view of its electrical performance, robustness, and simplicity. The structure of
the vector control implemented in the proposed model is represented in Figure 23.
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Figure 24 describes the fuzzy controller (the blue block in Figure 23) that determines the
electromagnetic field torque Cem, using the speed measurement and its reference.
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5.4. Simulations

The entire system in Figure 23 was simulated in a MATLAB/Simulink environment. The ventilation
system was stimulated for a period of two days, with a database of real solar radiation. Motor speed,
PV power, and voltage under the control MPPT, solar radiation, and ventilation rate are shown in
Figure 25.

The simulation results showed that the control strategy’s efficiency and robustness were developed
such that during the day, the solar radiation was relatively high (see Figure 25e), and a constant voltage
of 260 V (see Figure 25a) (provided by the photovoltaic generator) confirmed the efficiency of the
fuzzy MPPT control. This voltage guaranteed a power value of 800 W (Figure 25b) in powering the
asynchronous motor that drives the fan at a variable speed. The inside temperature for periods during
the day exceeded the reference point, and a high ventilation flow rate of 50 m3/min (see Figure 25c)
was necessary to cool the indoor climate. On the other hand, the active fan had a maximum speed of
480 RPM, as shown in Figure 25d, which was controlled by the fuzzy vector control and lowered the
heat accumulation in the indoor climate.

The results obtained showed the speed and performance of the speed control system in different
periods and the usefulness of the developed fuzzy controller in meeting the speed instructions.
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6. Conclusions

This paper presents a control system for an agricultural greenhouse powered by a PV system. The
dynamic model was presented and experimentally validated. The simulations showed an agreement
between the calculated data and the measured data. A fuzzy controller was developed for the smart
control of the indoor temperature and humidity, which increases the indoor air temperature overnight
to 15 ◦C and decreases the temperature during the day to 24 ◦C, keeping a constant value of relative
humidity of 70% during the day and 80% during the night. The electrical feeding of the asynchronous
motor that drives the variable speed fan is guaranteed by a PV system, with the aim of significantly
reducing the use of grid utilities, which results in lower agricultural costs. The power delivered by
the photovoltaic generator is 800 W, which is sufficient for the operation of the engine during the day,
because the engine absorbs 700 W. A fuzzy vector control was designed for the purpose of controlling
the ventilation speed. The simulation results showed the efficiency and the robustness of the fuzzy
controller, which guarantees a maximum ventilation speed of 450 RPM.

Although the proposed model was applied to the cultivation of a specific plant (tomato plants)
(fixed thresholds of temperature and humidity), it can also be easily extended to other typologies
of cultivation. In fact, the values of the geometric and physical parameters of the greenhouse, the
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threshold values of temperature and humidity, the power of both electrical loads and the PV plant, and
the constraints of the FLC can be modified to extend the use of the proposed model to any greenhouse
with other characteristics and other cultivations. Thus, in our opinion, the proposed model can be
useful both for greenhouse designers—during the first design stage—and for researchers who focus on
greenhouse R&D. Indeed, it is worth noting that greenhouses are increasingly taking on a crucial role
in circular economies and in sustainable social and economic development.
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Nomenclature

A Surface of the greenhouse
Ca Specific heat of air
Ce Transfer coefficient of water vapor in the air
Ct Thermal conductivity of the wooden plate
V Volume
Vr Ventilation rate
Hr Heating rate
HuR Humidification rate
DHuR Dehumidification rate
C Cover
ca Canopy
h0 Outside convection
Vw Wind speed
Nh Number of heaters
Rh Capacity of heating
Pa Vapor pressure
U Overall heat transfer
S Soil
Tsky Sky temperature
Inf Infiltration
Greek symbols
α Absorptivity of solar radiations
ρ Reflectivity
τ Transmissivity
Subscripts
RPM Revolution per minute
GPV Photovoltaic generator
Ppv PV power
Vpv PV voltage
FL Fuzzy Logic
MPPT Maximum power-point tracking
P&O Perturb and observe
Tin Temperature inside greenhouse
Tout Temperature outside greenhouse
Dehum Dehumidifying
Hum Humidifying
CRTEn Research and Technology Center of Energy in Borj Cedria, Tunisia
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