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Abstract: This article presents a model of the geometry of teeth profiles based on the path of contact
definition. The basic principles of the involute and convex–concave teeth profile generation are
described. Due to the more difficult manufacturing of the convex–concave gear profile in comparison
to the involute one, an application example was defined that suppressed this disadvantage, namely a
planetary gearbox with plastic-injection-molded gears commonly used in vehicle back-view mirror
positioners. The contact pressures and the slide ratios of the sun, planet, and ring gears with both teeth
profile variants were observed and the differences between the calculated parameters are discussed.
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1. Introduction

The main contribution of this article is the analysis of the convex–concave teeth flanks used by
a common mechanism broadly used in the automotive industry to show the potential of the small
change of the tooth flank spline to the parameters influencing the service life of the gearbox (contact
pressures, specific slide ratios) and the quality of the teeth contact (contact ratio). The research presents
the results of the performed calculations for small external module and especially the internal gears,
which had not yet been published. The application of the convex–concave gear teeth flanks in the
reduced planetary gearbox design is not yet known.

Smaller size gear arrangements of various plastic materials are becoming widespread due to
their properties, such as wear resistance during dry running, low noise emission, good vibration
damping, low inertia, low production costs, etc. Plastic gearboxes can be suitable for mass production
in terms of production and manufacturing processes, where can be formed with other parts as one
body, and they have outstanding functional features in terms of vibration reduction, low tare weight,
and good corrosion resistance [1]. However, they display temperature-related problems, such as a
rapidly decreasing load, thermal expansion, and the accuracy of formed gear parts. Therefore, the
challenge to overcome is the production of gears with sufficient accuracy and durability such that
they can be used in modern mechatronic applications in the automotive industry, medical equipment,
electronics, and many other industries [2]. The selection of the right production structure is the key
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element in the design process of any production system because the structure used has long-term
consequences for the efficiency, productivity, and operational costs of the designed system [3].

Planetary gears are widely used in aerospace applications, including space manipulators and
satellite antenna propulsion mechanisms [4]. Rotating machine parts, such as shafts, bearings, and
gears, are subject to a deterioration of performance, which if left unattended, may lead to failure
or damage to the entire system [5]. Typical gear faults include chipped teeth, tooth breakages, root
cracks, wear, pitting, and surface damage [6]. These forms of failure can lead to system imbalances and
deterioration of the machining precision [7]. The presence of many faults in transmissions generates
difficulties in their proper diagnosis. Diagnostics of these systems focus on digital signal processing
(DSP) technologies, including the analysis of time (statistical) and frequency (spectral) domains [8].
Many researchers use methods such as Fourier and wavelet transforms [7,9,10], as well as Hilbert
transforms (HTs) [11,12] or neural networks [13], to detect defects and operational parameters in
rotating systems. These methods give quick results, but they do not allow for easy retrieval of
information hidden in noisy or non-stationary time series. The application of recurrence plots analysis
seems to be adequate for obtaining additional information coming from measurements [14]. Therefore,
the identification of faults in gears has become an important subject of extensive research over the past
decade [7,9,10,15]. In addition, the issues of wear mechanisms of mechanical systems of vehicles and
combustion engines, as well as transmissions, are still an important issue. Many researchers show
interest in damage to rotary units, such as turbochargers [16], kinematic pairs of charge exchange
systems in combustion engines [17–19], injection systems [19–23], diesel engine [24–27], and the
reliability of various types of gears [6,7,13,15,28].

The main advantage of the convex–concave gears is the lowering of the contact pressure using teeth
flank meshing and the lowering of the slide ratios compared to involute gears [29]. The research shows
that the scoring resistance of tooth flanks can be significantly raised by using special convex–concave
profiles in plain tooth gears [30].

The S-gear tooth flank profile features a concave shape in the lower part of the dedendum such
that the mating gears exhibit the convex–concave contact in the vicinity of the contact start and contact
end. The shape of the tooth surface of the S-gear also provides higher comparative reduced-curvature
radii. Therefore, the contact load is lower [31].

Tests were performed, which led to the confirmation of the assumption that the theoretical tooth
flank geometry of S-gears provides more rolling and less sliding between the matching flanks compared
to involute gears. The convex–concave contact leads to lower contact stress, which in combination
with less sliding, means lower losses due to sliding friction, and consequently, less heat generated [32].

The S-gears were also used by the design of the planocentric gear boxes and devices for large
transmission ratios, primarily applied in automation and mechatronic industry, which decrease
rotational movement and increase torque to the largest possible extent in the smallest available
space [33].

In all applications where the reduction gear must be as small as possible, a planetary gearset is
preferred as it has the additional advantage of the input and output shafts being coaxial. The Wolfrom
gear is suitable for high speed ratios, and has an efficiency that is not optimal but still acceptable. The
version with single-rim satellites has significant design and technological advantages, such as large
kinematic capabilities starting with speed ratios of about 50, but displaying a decreasing efficiency with
a speed ratio increase. A high grade of compactness is achieved due to internal meshing and planet
positioning inside of ring gears. If one-rim planets are used, the manufacturing is greatly simplified,
especially by using the carrier-less arrangement [34].

Polymer material are, among others, largely used for the manufacturing of automotive parts,
electrical and electronic equipment, and equipment in other industries. The most widely used
polymer materials are: polyurethane (PUR), polypropylene (PP), acrylonitrile butadiene styrene
(ABS), polyamides (PA), polycarbonate (PC), polyvinyl chloride (PVC), poly(phenylene oxide) (PPO),
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polyethylene terephthalate (PBT), polyacetal (POM), etc. [35–37]. In addition, polymer composites can
be used for various parts of a vehicle body or, for example, gearbox housings [38–41].

Injection molding is the most extensively used process for manufacturing plastic gears. It has
the capability to produce good-quality, small, nonmetallic gears of various geometries for light-load
and noiseless transmissions. Nylon, acetal, polycarbonate, and polyester types of thermoplastic
materials are commonly processed using injection molding to make gears. Various additives, such
as polytetrafluoroethylene (PTFE), silicon, molybdenum disulfide, and graphite, are also added to
improve the strength, inherent lubricity, heat stability, impact and wear resistance, and other properties
of the thermoplastic materials [1,2,42]. Injection-molded parts, including gears, are manufactured by
melting a specific powdered or pelletized polymer, or a combination thereof, before injection into a die
containing the desired gear geometry of the gear. The full mechanical properties of the polymer and
functionality of the gear is then realized via subsequent cooling, solidification, and ejection from the
die and final trimming, if required [43]. The POM-C and PA66 materials are often used in plastic gear
manufacturing because of the good dynamic friction coefficient values and the price criterion [31]. As
an example of a typical plastic material used for gears, BASF Ultramid A3K (PA66) provides an easy
flowing injection molding grade for fast processing and is commonly used in highly stressed technical
parts, such as bearings and gear wheels.

The convex–concave gearing manufacturing methods and the demands on the gear axes position
precision handicap this type of teeth flank relative to the involute ones. Thus, the calculation of the
selected geometrical parameters and the contact pressure and slide ratios between the teeth flanks
of the involute and convex–concave gearing are described using an example of a reduced planetary
gearbox (Wolfrom stage) with plastic injection molded gears commonly used in vehicle back-view
mirror positioners, which should show the comparison of both teeth flank type parameters with
comparable manufacturing and operation demands.

2. Geometry of the Teeth Flanks

The mathematical model of convex–concave gearing is the base of the geometry model calculation
and it is described in detail in Veres et al. [44]. The deterministic and probabilistic methods used
in the determination of correct mating cylindrical teeth profiles was described in Harman et al. [29].
The determination of the geometric parameters of the gears’ teeth flanks is based on the equations
evaluated using the shape of the path of contact. The general path of contact starting at point A and
ending at the point E of this type of gearing is presented in Figure 1 [45].
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The arcs of the path of contact are circular arcs defined by their radii rAC for the part of the contact
path defined using the arc AC and rCE for the part of the contact path defined by the arc CE. The arc
centers SAC and SCE are set by the coordinates xAC1 and yAC1, and xCE2 and yCE2, respectively. The
points A and E define the end points of the path of contact. The geometric parameters affecting the
relation between the pressure angle at various points of the path of contact α and the angle of the gear
rotation between pressure angles of two arbitrary points φ(α) are shown in Figure 2.
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The dependence of the characteristic teeth flank angles is described in Equation (1):

ϕAC, CE = ±
2rAC, CE

r1

 (αAC, CE − αC) cosαC+

sinαC ln cosαC
cosαAC, CE

. (1)

The signs are defined as positive (+) for the part of the contact path defined by the arc AC and as
negative (−) for the part of the contact path defined by the arc CE.

The parametric equations of the gear tooth flank profiles coordinates obtained by the transformation
of the path of contact coordinates made up of two circular arcs AC and CE, which are defined
according [44] to the alternated equations:

x = ∓2rAC, CE sin(αAC, CE − αC)

cos[αAC, CE + ϕAC, CE(αAC, CE)]+

r1 sinϕAC, CE(αAC, CE)

, (2)

y = ±2rAC, CE sin(αAC, CE − αC)

sin[αAC, CE + ϕAC, CE(αAC, CE)]+

r1 sinϕAC, CE(αAC, CE)

. (3)

The x and y coordinates of the teeth flank curves are defined in the coordination systems with
the origin at the points O1 or O2 for each coordinate system, respectively. The division of the contact
path into parts divided into circular arcs AC and CE requires the division of all geometric and other
gear pair parameters to analogous parts, which is defined according to the corresponding parts of the
contact path curve [45].

The presented geometric model is also usable for the gears with involute flanks by putting the
radii of the gear paths close to infinity. The performed calculations have already led to satisfactory
results using the value of the path of contact arcs radii put into approximately 104 module multiples.
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3. Reduced Planetary Gearbox Parameters

For the purpose of the comparison of selected parameters of planetary gears with involute
and convex–concave gear profiles, a specific type of the gearbox was selected, namely a rear mirror
positioner gearbox designed as a reduced Wolfrom stage (Figure 3). This type of the reduced planetary
stage offers a high-speed reduction in a small built-in space and a satisfactory value for the torque ratio
and gear contact efficiency.
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The kinematic scheme of the gearbox is presented in Figure 4.
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The gearbox had no carrier and had the same teeth number for gears 2 and 4. The axis distances
of the planet gear 2 and ring gear 3, and for the planet gear 4 and the ring gear 5, had to be the same.
Thus, the moduli ratio of the gear pairs 2-3 and 4-5 was defined by the following equation:

m45

m23
=

z3 − z2

z5 − z4
=

51− 18
48− 18

= 1.1. (4)

Due to the defined value of the smaller module m23 = 0.45 mm, the module of the output part of
the stage had to be m45 = 0.5 mm. The teeth number and the moduli of the gearbox gears are defined
in Table 1.
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Table 1. Teeth numbers and moduli of the Wolfrom stage gears.

Gear Teeth Number z (-) Module m (mm)

Sun gear 1 15 0.45
Planet gear 2 18 0.45
Ring gear 3 51 0.45

Planet gear 4 18 0.50
Ring gear 5 48 0.50

The overall gearbox ratio was defined as [47]:

i =
i035 − i015

i035 − 1
=

0.9412− (−3.2)
0.9412− 1

= −70.4. (5)

The partial stood gear stage II ratio i035 was defined as:

i035 = +
z5 z2

z4 z3
=

48× 18
18× 51

= 0.9412. (6)

The partial stood gear stage III ratio i015 was defined as:

i015 = −
z5 z2

z4 z1
= −

48× 18
18× 15

= −3.2. (7)

Due to the proper calculation of the torques, the reduced planetary gearbox had to be divided into
two planetary stages, which had an equivalent efficiency to the solved gearbox. For the researched
case, the scheme for the torque calculation considering the gear contact efficiency between the internal
and external gear pair is shown in Figure 5.
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The stood gearbox efficiency were defined by considering the efficiency of the internal gear contact
ηi = 0.99 and the efficiency of the external gear contact ηe = 0.98 according to the equations:

η035 = ηi ηi = 0.99× 0.99 = 0.9801, (8)

η015 = ηe ηi = 0.98× 0.99 = 0.9702. (9)

The torque ratio was defined as [47]:

µ = TB
TA

= −
i035 η035−i015 η015

i035 η035−1 =

−
0.9412×0.9801−(−3.2)×0.9702

0.9412×0.9801−1 =

51.9269

. (10)
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The overall gearbox efficiency was calculated as:

η = −
µ

i
= −

51.9269
−70.4

= 0.7376. (11)

The relative speeds and the torques of the gearbox central elements were calculated using the
relative input speedωA = 1 and the relative input torque TA = 1. The results of the calculation presented
in Table 2 were used for the contact pressures calculation.

Table 2. Relative speeds, torques, and power at the partial elements of the calculated gearbox.

Gearbox Element Relative Speed
ω (-)

Relative Torque
T (-)

Relative Power
P (-)

A 1 1 1
B −0.0142 51.9269 −0.7376
C 0.0000 −52.9269 0.0000
1 1.0000 −1.0000 −1.0000
3 0.0000 52.9269 0.0000
5’ −0.0142 −48.8223 0.6935
5” −0.0142 −3.1046 0.0441
5 −0.0142 −51.9269 0.7376
S1 0.2273 −4.1046 −0.9329
S2 0.2273 4.1046 0.9329

The results show the power division using the equivalent two-stage gearbox scheme: about 94%
of the power flowed from the sun gear 1 across the carriers S2 and S1 to the ring gear 5’, and just about
6% of the power flowed directly to the output ring gear 5” and then together to the output B.

4. Calculation of Planetary Gearbox Gear Pairs Parameters

The gear pairs 1-2, 2-3, and 4-5 were observed to calculate the contact pressures and slide ratios for
the gear teeth with the standard involute geometry, as well as for the convex–concave gear teeth flanks.

4.1. Geometry

The gear stages moduli are defined as m23 = 0.45 mm and m45 = 0.5 mm. The pressure angle at
the contact point C was defined by the value αC = 20◦.

The ratio between the tooth addendum height ha and dedendum height hf of the involute external
gears Re was defined considering the gearing module m as:

Re =
ha

h f
=

1 m
1, 25 m

. (12)

The ratio between the tooth addendum and dedendum height of the internal involute gears Ri
was defined to prevent the interference between the planet teeth and ring gear tip surface as:

Ri =
ha

h f
=

0, 8 m
1, 25 m

. (13)

The geometry of the convex–concave teeth flanks depends on the value of the gear teeth module
m, the number of the gear teeth z, the radii of the contact path arcs rAC and rCE and the pressure angle
at the contact point C defined by the value αC. The convex–concave condition of the tooth flank curve
describes the inequality [44]:

rAC, CE <
zminm

4 cosαC =
15×0.45

4 cos 20◦ = 1.5857 mm
. (14)
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The radii of the contact path arcs in the symmetric arrangement in the selected gear pair were
defined as rAC = rCE = 1.5 mm, which satisfied the Inequality (14).

4.2. Contact Pressures

The Hertzian contact pressures at the tooth flanks of the pinion-gear contact point were calculated
according the equation [45]:

p = ZE

√
F1

lρred
. (15)

The material coefficient ZE depends on the Young‘s moduli E1, E2 and the Poisson’s ratios µ1, µ2

of the pinion (indexed by 1) and gear (indexed by 2) material according the equation:

ZE =

√√√√ 1

π

(
1−µ2

1
E1

+
1−µ2

2
E2

) . (16)

The gears considered were made from Nylon 6.6 (PA66) with Poisson’s ratios of µ1 = µ2 = 0.42 [48]
and average Young’s moduli of E1 = E2 = 2930 MPa [49].

The contact force was calculated by considering the relative torque values presented in Table 2
using the input torque of TA = 1 Nmm, the number of planet gears in each stage as λ = 3, and using
the corresponding pressure angle α as:

F1 =
T1

λ r1 cosα
. (17)

The contact force values will vary according the input torque according to the particular choice of
the electric motor. The width of every gear flank was set to l = 1.5 mm.

The reduced radius of the teeth flank curvature ρred was calculated according the radii of curvature
of the pinion ρ1 and the gear ρ2 using the equation:

ρred =
ρ1ρ2

ρ1 + ρ2
. (18)

4.3. Specific Sliding Ratios

The specific sliding ratio is a contact severity parameter that is a dimensionless ratio that is
dependent on the tooth geometry and independent of the pitch line velocity. It is positive in addenda,
ranging from zero at the pitch point to +1 at the interference point of the mating gear, and negative in
dedenda, ranging from zero at the pitch point to −∞ at the interference point. Generally, vss1 < 1.0
is recommended, and vss1 < 0.5 is preferred, for good resistance to macro pitting, micro pitting, and
scuffing [50].

The slide ratio is defined according to decomposition of the velocity vector into two directions: a
normal and tangential relative to the surface of contact. The gap between the rolling velocity of the
pinion vr1 and the gear vr2 defines the sliding velocity for the pinion vs1 and the gear vs2, as well as the
specific sliding ratios vss1 and vss2 according the equations [50]:

vss1 =
vs1

vr1
=

vr1 − vr2

vr1
, (19)

vss2 =
vs2

vr2
=

vr2 − vr1

vr2
. (20)

The sliding ratio of the partial gear pairs of the Wolfrom stage were calculated for the relative
pinion speed ωpinion = 1 and the gear teeth numbers defined in Table 1.
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5. Discussion

The geometry of the partial pinion-gear pairs of the Wolfrom stage gearbox are presented in
Figure 6 for the involute teeth flanks and in Figure 7 for the convex–concave teeth flanks.Appl. Sci. 2020, 10, x 9 of 15 
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The pinion center of each presented gear pair (O1, O2, O4) is defined in Figure 6a,b,c, as well
as in Figure 7a,b,c using the coordinates x = 0 and y = 0. The diameters of the addendum and
dedendum circle is the same in both cases. The involute teeth flanks’ path of contact is represented in
Figure 6 by the lines declined by the pressure angle αw = 20◦ passing through the pitch point C. The
convex–concave teeth flanks path of the contact is represented in Figure 7 using circles, whose parts
belong to the path of contact consisting of two circular arcs tangentially connected at the pitch point C.
The pressure angle, which varies along the path of contact, takes on the value αC = 20◦ at the pitch
point C lying on the pinion and gear centers’ link. The points A and E represent the start and end point
of the path of contact.



Appl. Sci. 2020, 10, 1417 10 of 16

The contact Hertzian pressure p at the teeth flanks of the partial pinion-gear pairs depends on the
angle of the pinion rotation φpinion between the pressure angles of two arbitrary points (A–E), which is
shown in Figure 8 for the involute and convex–concave teeth flanks.
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The gear pair contact pressures dropped by the convex–concave teeth flanks are shown in Figure 8
and Table 3, where the values of the contact pressures are described in detail. The points A and E
represent the start and the end of the contact path, the points B and D represent the start and the end of
the single pair teeth engagement (indexed with 1 for the single and 2 for the double pair engagement),
and the point C represents the pitch contact point lying on the gear pair centers’ link. Table 3 also
presents the flank type contact pressure ratio pC-C/pINV between the convex–concave (pC-C) and the
involute (pINV) teeth flanks values.
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Table 3. Contact pressures of the partial gear pairs of the calculated gearbox.

Gear Pair Point of the Path
of Contact

Contact Pressure p [MPa] Flank Type Ratio
pC-C/pINV (-)Involute Teeth

Flanks
Convex–Concave

Teeth Flanks

1-2

A 12.3086 3.6178 0.2939
B2/B1 5.9996/8.4645 3.8418/5.4372 0.6407/0.6423

C 7.9379 7.9379 1.0000
D1/D2 7.9999/5.658 5.2443/3.6961 0.6555/0.6533

E 7.6604 3.4491 0.4502

2-3

A 42.9729 8.7852 0.2044
B2/B1 14.2245/20.0888 9.1338/12.9432 0.6421/0.6443

C 16.9851 16.9851 1.0000
D1/D2 16.2260/11.4516 9.5872/6.7698 0.5909/0.5912

E 8.1294 6.3054 0.7756

4-5

A 41.7424 7.7110 0.1847
B2/B1 12.8809/18.0976 7.9674/11.2820 0.6185/0.6234

C 15.3391 15.3391 1.000
D1/D2 14.7914/10.4142 8.4263/5.9422 0.5697/0.5706

E 7.2949 5.6199 0.7704

The specific sliding ratios vss of the partial pinion-gear pairs that depend on the angle of the pinion
rotation φpinion between the pressure angles of two arbitrary points (A–E) are shown in Figure 9 for the
involute and the convex–concave teeth flanks.
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The gear pair specific sliding ratios of the convex–concave teeth flanks dropped significantly, as
shown in Figure 9 and Table 4, where the values of the slide ratios are described in detail. The points A
and E represent the start and end of the contact path (indexed with 1, 2, and 4 for the pinion and 2, 3,
and 5 for the gear), and point C represents the pitch contact point lying on the gear pair centers’ link.
Table 4 also presents the flank type slide ratio vssC-C/vssINV between the convex–concave (vssC-C) and
the involute (vssINV) teeth flank values.

Table 4. Slide ratios of the partial gear pairs of the calculated gearbox.

Gear Pair
Point of
the Path

of Contact

Slide Ratio vss (-) Flank Type Ratio
vssC-C/vssINV (-)

Involute Teeth Flanks Convex–Concave Teeth
Flanks

Pinion Gear Pinion Gear Pinion Gear

1-2
A −13.4628 0.9308 −1.1526 0.5355 0.0856 0.5752
E 0.8436 −5.3937 0.5079 −1.0323 0.6021 0.1914

2-3
A −5.0521 −0.3770 −0.2891 −0.1869 0.0572 0.4958
E 0.2738 0.8348 0.1575 0.2242 0.5752 0.2686

4-5
A −5.5229 −0.3595 −0.2574 −0.1709 0.0466 0.4752
E 0.2645 0.8467 0.1459 0.2047 0.5518 0.2418

The analysis of the involute gear teeth flank geometry of the observed gearbox led to the reduction
of the tip diameters of the ring gears (Figure 6). The involute gear profile with the standard addendum
and dedendum coefficients was used for the external gear pair 1-2, as well as for the internal gear pairs
2-3 and 4-5.

The contact pressures in the convex–concave gears were significantly lower than for the involute
gears, especially for the gear pairs with internal gearing (Figure 8). The drop of the contact pressure
was most significant for the gear pair 4-5 at the starting point of the path of contact A, where the
pressure value in the convex–concave teeth flanks dropped to 18.47% of the value calculated for the
involute teeth flanks (Table 3). The drop of the contact pressure was accompanied by the drop of the
contact ratio, which had a value close to 1 for the convex–concave teeth flanks. The comparison of the
contact ratio values εα using the involute and convex–concave teeth flanks in the observed gearbox are
presented in Table 5.

Table 5. Contact ratios of the partial gear pairs of the calculated gearbox.

Gear Pair
Contact Ratio εα (-)

Involute Teeth Flanks Convex–Concave Teeth Flanks

1-2 1.5055 1.1567
2-3 1.6893 1.1251
4-5 1.7017 1.1025

Past research has shown the preferable sliding behavior of the convex–concave-shaped tooth
flanks relative to the involute ones. The calculations were made just for the external gear pairs [51].

The most important features of polymeric S-gears, which were expected, were the lower sliding
due to the relatively larger contact lengths of dedendum–addendum of a gear pair (and consequently
lower friction and contact temperature); the convex–concave contact zones in the vicinity of meshing
start and end; and the higher reduced radii of curvature, particularly in the meshing start and end
zones [31].

The specific sliding ratio values of the calculated convex–concave teeth flanks were lower than
the involute ones, as seen in the comparison in Figure 9. The gear pairs with involute teeth flanks
showed a high value for the specific slide ratio due to high contact ratio. The lower contact ratio of
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the convex–concave teeth led to better behavior of the teeth flanks in terms of the wear and scoring
resistance. The biggest drop of the specific slide ratio was also observed for the gear pair 4-5 at the
starting point of the path of contact A, where the specific slide ratio value in the convex–concave teeth
flanks of the pinion dropped to 4.66% of the value calculated for the involute teeth flanks (Table 4).

6. Conclusions

The article presents a possible method for modelling the involute and convex–concave gear teeth
flanks based on the path of contact curves. Due to possibility of the comparison of various teeth flank
shapes in terms of the selected parameters of the observed gearbox, a mathematical model of the
gear teeth flanks geometry was built. The model was developed for the involute gear pairs with no
correction and the convex–concave gear pairs with the path of contact consisting of two circular arcs.

Multiple variations of the convex–concave teeth flank parameters (module, addendum/dedendum
height coefficients, path of contact radii, pressure angle in the pitch point C, Young moduli, and
Poisson’s coefficients of the gear pair) allow for further research of their influence on the observed
parameters of the gear pairs (contact pressures, specific sliding ratios, scoring resistance, etc.).

The presented parametric calculation model can be used as the pre-prototype solver of partial
modifications of the involute and convex–concave gears, as well as the source of gear CAD (Computer
Aided Design) model preparation for the STL (Standard Triangle Language) model building or FEM
(Finite Elements Method) analyses.

The lower contact pressures and favorable sliding behavior of the convex–concave gear flanks
against the involute ones led to the idea to use this type of teeth flank in the applications where the
plastic involute gears are widely used at present. The micro-gearboxes with the gears molded from
plastics allow for the utilization of lower contact pressures and favorable progress of the specific sliding
with low manufacturing costs. The prototype of such a gearbox could also be built with the rapid
prototyping technology methods using various commonly used plastic gear materials (PA6, PA66,
POM, etc.) for tests according to the influence of the gear geometry parameter changes to the gearbox
lifetime. The lower accuracy of the manufacturing process and its influence on the gears’ behavior is
also an interesting problem for further research.
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41. Pieniak, D.; Wit-Rusieck, A.M.; Krzyżak, A.; Gil, L.; Krzysiak, Z. Adhesion tests of varnish coatings used on
the surface of carbon fiber reinforced polimer compositions. Przemysł Chem. 2019, 98, 1619–1622.

42. Jiang, R.; Liu, T.; Xu, Z.; Park, C.B.; Zhao, L. Improving the Continuous Microcellular Extrusion Foaming
Ability with Supercritical CO2 of Thermoplastic Polyether Ester Elastomer through In-Situ Fibrillation of
Polytetrafluoroethylene. Polymers 2019, 11, 1983. [CrossRef] [PubMed]

43. Gupta, K.; Jain, N.; Laubscher, R. Advanced Gear Manufacturing and Finishing; Academic Press: Cambridge,
MA, USA, 2017.

44. Veres, M.; Bosansky, M.; Gadus, J. Theory of Convex-Concave and Plane Cylindrical Gearing; Slovak University
of Technology: Bratislava, Slovak, 2006.

45. Brumercik, F.; Lukac, M.; Majchrak, M.; Krzysiak, Z.; Krzywonos, L. Teeth geometry and contact pressure
calculation of external cycloidal gears. Sci. J. Sil. Univ. Technol. Ser. Transp. 2018, 101, 27–35. [CrossRef]

46. Wikimedia Commons. Available online: https://commons.wikimedia.org/wiki/File:Rearview_Mirror_
Epicyclic_Gears.jpg (accessed on 1 June 2019).

47. Looman, J. Zahnradgetriebe. Grundlagen, Konstruktionen, Anwendungen in Fahrzeugen; Springer:
Berlin/Heidelberg, Germany, 1996.

48. Polymer Science. Typical Poisson’s Ratios of Polymers at Room Temperature. Available online: https:
//polymerdatabase.com/polymer%20physics/Poisson%20Table.html (accessed on 1 June 2019).

49. MatWeb. Overview of Materials for Nylon 6, Cast. Available online: http://matweb.com/search/DataSheet.
aspx?MatGUID=8d78f3cfcb6f49d595896ce6ce6a2ef1 (accessed on 1 June 2019).

http://dx.doi.org/10.3390/e21050441
http://dx.doi.org/10.1007/978-3-319-60399-5_12
http://dx.doi.org/10.1299/jamdsm.2017jamdsm0083
http://dx.doi.org/10.3390/ma13010212
http://dx.doi.org/10.3390/ma13010028
http://dx.doi.org/10.1016/j.compstruct.2017.02.015
http://dx.doi.org/10.1016/j.compstruct.2018.05.018
http://dx.doi.org/10.3390/polym11121983
http://www.ncbi.nlm.nih.gov/pubmed/31810168
http://dx.doi.org/10.20858/sjsutst.2018.101.3
https://commons.wikimedia.org/wiki/File:Rearview_Mirror_Epicyclic_Gears.jpg
https://commons.wikimedia.org/wiki/File:Rearview_Mirror_Epicyclic_Gears.jpg
https://polymerdatabase.com/polymer%20physics/Poisson%20Table.html
https://polymerdatabase.com/polymer%20physics/Poisson%20Table.html
http://matweb.com/search/DataSheet.aspx?MatGUID=8d78f3cfcb6f49d595896ce6ce6a2ef1
http://matweb.com/search/DataSheet.aspx?MatGUID=8d78f3cfcb6f49d595896ce6ce6a2ef1


Appl. Sci. 2020, 10, 1417 16 of 16

50. Erichello, R. Gear Sliding. In Encyclopedia of Tribology; Wang, Q.J., Chung, Y.-W., Eds.; Springer: Boston, MA,
USA, 2013. [CrossRef]

51. Orokocky, R.; Bosansky, M.; Veres, M. The influence of geometrical parameter to sliding speed in K-K gears.
In Proceedings of the 44th Conference of the Departments of Machine Elements and Mechanisms, Prague,
Czech Republic, 9–10 September 2003; pp. 240–243.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-0-387-92897-5_569
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Geometry of the Teeth Flanks 
	Reduced Planetary Gearbox Parameters 
	Calculation of Planetary Gearbox Gear Pairs Parameters 
	Geometry 
	Contact Pressures 
	Specific Sliding Ratios 

	Discussion 
	Conclusions 
	References

