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Abstract: In this paper, we present scalable multi-precision multiplication implementation and scalable
multi-precision squaring implementation for 32-bit ARM Cortex-M4 microcontrollers. For efficient
computation and scalable functionality, we present optimized Multiplication and ACcumulation
(MAC) techniques for the target microcontrollers. In particular, we present the 64-bit wise MAC
operation with the Unsigned Long Multiply with Accumulate Accumulate (UMAAL) instruction.
The MAC is used to perform column-wise multiplication/squaring (i.e., product-scanning) with
general-purpose registers in an optimal way. Second, the squaring algorithm is further optimized
through an efficient doubling routine together with an optimized product-scanning method. Finally,
the proposed implementations achieved a very small memory footprint and high scalability to cover
algorityms ranging from well-known public key cryptography (i.e., Rivest–Shamir–Adleman (RSA)
and Elliptic Curve Cryptography (ECC)) to post-quantum cryptography (i.e., Supersingular Isogeny
Key Encapsulation (SIKE)). All SIKE round 2 protocols were evaluated with the proposed modular
reduction implementations. The results demonstrate that the scalable implementation can achieve
the smallest code size together with a reasonable performance.

Keywords: multi-precision multiplication; multi-precision squaring; public key cryptography;
ARM Cortex-M4; memory-efficient implementation

1. Introduction

The implementation of cryptographic algorithms on an embedded device is more challenging
than on personal computers due to the limited resources (e.g., low frequency, basic instruction set, and
small RAM and ROM). Thus, cryptographic implementors have to carefully redesign or make specific
optimizations of existing algorithms to fit such scenarios. In general, a lightweight implementation
of a cryptographic algorithm on embedded devices should satisfy the following implementation
requirements [1–3]: achieving high performance, having small code size, and supplying scalability
to an arbitrary length. In recent decades, a number of works have improved the implementations of
public key cryptography on microcontrollers. One of the milestone works was carried out by Gura
et al. [4], who proposed the hybrid-scanning based multiplication. Compact implementations of
Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC) on 8-bit Alf and Vegard’s RISC
processor (AVR) embedded processors, such as TinyECC [5], Relic [6], Networking and Cryptography
library (NaCl) [7], and Montgomery and Twisted Edward (MoTE)-ECC [8] were also investigated.

In very recent years, the Advanced RISC Machine (ARM) company released a low-cost 32-bit
ARM processor, called ARM Cortex-M4, in response to customer requests. The key characteristics of
ARM’s Cortex-M4 are a lower cost with a higher productivity than others. The embedded processor has
a significantly small chip area, low energy consumption, and an optimal code footprint. These advanced
capabilities are able to achieve a high performance at a low price point for various IoT applications, such
as smart metering, motor control, and domestic household appliances. Compared to implementations
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on typical 8-bit processors, the Cortex-M4 achieved much higher performance thanks to its advanced
hardware architecture.

Groot provided a constant-time implementation of X25519 for the ARM Cortex-M4 architecture [9].
In particular, a reduced-radix representation (25-bit or 26-bit) and refined Karatsuba multiplication
are used for optimized implementation. Santis and Sigl implemented the Curve25519 on ARM
Cortex-M4 microcontrollers [10]. The Karatsuba algorithm in a two-level subtractive is utilized for
large integer multiplication. This approach replaces 256-bit wise multiplication into nine 64-bit wise
multiplication. Fujii and Aranha implemented the integer multiplication with an operand-caching
method and Unsigned Long Multiply with Accumulate Accumulate (UMAAL) instruction [11]. This
work fully utilized the UMAAL instructions to achieve a high performance.

In CHES’19, the fastest implementation of Curve25519 is suggested by Haase and Labrique [12].
The hand-optimized operand-scanning method is efficiently implemented on the ARM Cortex-M4
microcontroller. For that reason, the utilization of the register is highly optimized. The first
Supersingular Isogeny Key Encapsulation (SIKE) implementation is suggested by Koppermann
et al. [13]. The product-scanning and Karatsuba methods are utilized to improve the Supersingular
Isogeny Diffie-Hellman key exchange (SIDH). However, the implementation of SIDHp751 requires
18 s to exchange the keys. In [14], they implemented integer multiplication with operand caching (in
UMAAL) and pipeline-friendly programming. The results show that SIKEp434 requires only 1.5 s.

While previous software implementations have focused on improving performance, they have
paid relatively less attention to code size. In practice, most of the flash memory is used for application
programs, and only a small footprint of the flash memory is used for cryptographic implementation.
Many low-end ARM Cortex-M4 boards (e.g., Teensy 3.0, XMC4100, MAX32660, M481, etc.) have only
128–256 KB Flash memory. Furthermore, Internet of Things (IoT) devices must communicate with
other devices with different protocols. For the Public Key Cryptography (PKC) implementation, there
is pre-quantum cryptography and post-quantum cryptography.

During the transition and migration from pre-quantum to post-quantum, IoT devices should
support both PKC algorithms according to the National Institute of Standards and Technology (NIST)
Post-Quantum Cryptography (PQC) committee (i.e., hybrid PKC protocol) [15]. There are also
several security levels (e.g., 128-bit brute-force attack, 192-bit, and 256-bit);, thus a number of PKC
implementations should be considered. In particular, a lightweight PKC implementation can be
achieved by optimized multi-precision multiplication implementation and optimized multi-precision
squaring implementation. These methods are important for the deployment of cryptography for
practical applications.

In Table 1, both multi-precision multiplication implementation and multi-precision squaring
implementation are compared. The fastest performance is achieved by [14]. For the 256-bit ECC
implementation (e.g., NIST P-256 and Curve25519), 772 bytes are required for the multiplication
and squaring implementations. For the finite field operation, modular reduction is also needed,
and it is usually a similar size of multiplication (i.e., 452 bytes) by using Montgomery reduction.
To support SIKEp751, an additional 5,768 bytes are used for multiplication and squaring. Compared
with other approaches, the proposed method is highly memory-efficient, requiring only 584 bytes.
Moreover, the implementation is already parameterized, which supports all ECC, RSA, and SIKE
protocols. By supporting all PKC protocols, the hybrid PKC protocol can be utilized. For this reason,
the memory-efficient implementation can be a practical solution and the proposed method only
satisfies this requirement.
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Table 1. The comparison results of multi-precision multiplication implementation and multi-precision
squaring implementation on 32-bit ARM Cortex-M4 microcontrollers in terms of the code size (in bytes),
scalability, and highest speed. The Elliptic Curve Cryptography (ECC), Rivest–Shamir–Adleman (RSA),
and Supersingular Isogeny Key Encapsulation (SIKE) symbols represent the targeted implementation
with the modular arithmetic implementation (Letters U, L, and P indicate whether the works are
implemented in unrolled, looped, or parameterized).

Methods Code Size Scalability SIKE ECC RSA Speed Record Hybrid Protocol
Multi-Precision Multiplication

Groot † [9] 1284 X
Santis and Sigl † [10] 1264 X

Fujii and Aranha † [11] 622 X
Haase and Labrique [12] 452 X
Koppermann et al. [13] – X

Seo et al. [14] 452 X X (U)
Seo et al. (SIKE) [14] 3,396 X X (U)

This work 260 X X X X X (L,P) X
Multi-precision squaring

Groot † [9] 1168 X
Santis and Sigl † [10] 882 X

Fujii and Aranha † [11] 562 X
Haase and Labrique [12] 324 X

Seo et al. [14] 320 X X (U)
Seo et al. (SIKE) [14] 2372 X X (U)

This work 324 X X X X X (L,P) X

† symbol indicates implementations with fast reduction.

1.1. Comparison of CANS’19

Previous work in CANS’19 [14] successfully evaluated the SIKE round 2 schemes on 32-bit ARM
Cortex-M4 microcontrollers. In order to accelerate the execution timing, modular multiplication, and
squaring operations are optimized for specific parameters of SIKEp434, SIKEp503, and SIKEp751.
Unlike previous works, we proposed scalable modular multiplication and squaring. The proposed
implementation reduces the code size significantly and supports all parameters, including RSA,
ECC, and SIKE, in single code. For the implementation of RSA, the proposed implementation only
supports the RSA parameters, as described in Table 1. For instance, we implemented the SIKE round
2 schemes on 32-bit ARM Cortex-M4 microcontrollers in Section 3. The proposed implementation
obtained the smallest code size and reasonably fast execution timing. Previous work in CANS’19 [14]
requires 44,688 bytes while the proposed implementation requires 28,816 bytes for SIKEp751, which is
a code reduction of 35.5%. Furthermore, we first implemented the SIKEp610 protocol on 32-bit ARM
Cortex-M4 microcontrollers. This result first covers all SIKE protocols.

1.2. Research Contributions

In contrast to most of the previous implementations, which have focused primarily on the
execution time, this study focused on optimizing the memory consumption of multi-precision
multiplication implementation and multi-precision squaring implementation, without reducing the
high performance. In particular, we present a MAC operation. The operation is used for the inner
loop of target multiplication and squaring operations.

The proposed MAC routine fully employs general purpose registers and a 32× 32 + 32 + 32→
64-bit multiplier, also known as Unsigned Long Multiply with Accumulate Accumulate (UMAAL).
Second, the squaring algorithm is further optimized through a dedicated doubling routine. Finally,
the proposed implementations achieved a very small memory footprint and good scalability; thus,
they can be used for RSA, ECC, and SIKE. We implemented all of the second round of SIKE protocols
on 32-bit ARM Cortex-M4 microcontrollers. A reasonable execution timing can be achieved with the
smallest code size.
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The paper is written as follows. In Section 2, previous implementations of multiplication/squaring,
target ARM Cortex-M4 microcontrollers, and SIKE Round 2 candidates are introduced. In Sections 2.4
and 2.5, implementations of the multi-precision multiplication method and multi-precision squaring
method are presented. In Section 3, a case study of SIKE round 2 protocols is given. The proposed
implementations are evaluated in Section 4. Conclusion is given in Section 5.

2. Background

2.1. Multi-Precision Multiplication and Squaring

A straightforward method to execute the large integer multiplication is row-wise multiplication
(i.e., operand-scanning), which consists of a nested loop. One digit of an operand A (i.e., a[i]) of the
inner loop is multiplied with all digits of the second operand B, while the pointer of operand A points
to the next digit of A, in the outer loop. An alternative method is column-wise multiplication [16].
The product-scanning method consists of two inner loops. The first loop performs the lower part of
the result. Afterward, the second loop performs the upper part of the result. An important operation
in each inner loop is called the Multiply–ACcumulate (MAC) operation, which performs a form of
C ← C + a[i]× b[j], where C is three digits of the intermediate results. The intermediate results are
not stored or loaded to/from the memory. Carry propagation is simply achieved by a register-copy
operation. In recent years, many works have improved the product-scanning method by re-ordering
the inner loop and using new instructions [4,17,18].

A squaring operation is a unique case of multi-precision multiplication, where the multiplier and
multiplicand are the identical operand (e.g., A× A). For multi-precision squaring, partial products
of the form (a[i]× a[j] with i 6= j) are doubled based on the fact that a[i]× a[j] = a[j]× a[i], while
a[i]× a[j] appears just once for i = j. Thus, squaring requires less mul instructions or MAC operations
than multiplication. Some previous implementations for squaring have been optimized based on
this symmetric feature on embedded processors. The lazy-doubling method optimizes the doubling
operation by performing the doubling column-wise [19]. Similarly, many works have focused on
developing an optimized doubling method for target microcontrollers [20,21].

2.2. ARM Cortex-M4 Microcontroller

32-bit ARM Cortex-M4 embedded microprocessors are famous low-end microcontrollers.
The processor is selected for benchmark target processor of NIST post-quantum cryptography. Recently,
one benchmark framework (pqm4) has also been implemented on Cortex-M4 [22]. The embedded
microprocessor supports an optimal multiplication instruction (i.e., UMAAL). The instruction is
multiplication-accumulation with two 32-bit values.

2.3. SIKE Round 2

We introduce the SIKE standard and key exchange protocol. For better understanding, we
recommend to refer to [23,24]. The SIKE standard is using a transformation by [25]. This ensures
the supersingular isogeny Public Key Encryption (PKE) protocol [23]. This is Key Encapsulation
Mechanism (KEM), which is secure against the static key vulnerability of the key exchange protocol [26].
The SIKE protocol is a NIST PQC round 2 candidate [27]. SIKE has relatively small public keys
and ciphertext.

2.3.1. Public Parameters

The SIKE is over a prime (p = `eA
A · `

eB
B · f ± 1). For better performance, `A = 2, `B = 3, and f = 1

are fixed. The prime of SIKE is p = 2eA · 3eB − 1. The beginning supersingular elliptic curve E0/Fp2 :
y2 = x3 + x with cardinality equal to (2eA · 3eB)2, along with base points 〈PA, QA〉 = E0[2eA ] and
〈PB, QB〉 = E0[3eB ] are defined as public parameters.



Appl. Sci. 2020, 10, 1539 5 of 16

2.3.2. Key Encapsulation Mechanism

KEM consists of three parts: Alice’s key generation, Bob’s key encapsulation, and Alice’s key
decapsulation. Figure 1 describes the KEM in detail.

Alice Bob
Key generation:
pkA = [EA, φA(PB), φA(QB)]
s ∈R {0, 1}t

Encapsulation:
m ∈R {0, 1}t

r = H1(m ‖ pkA)
pkB(r) = [EB, φB(PA), φB(QA)]
j = j(EBA)
c = (c0, c1) = (pkB(r), H2(j)⊕m)
K = H3(m ‖ c)

(c0,c1)←−−−
Decapsulation:
j = j(EAB)
m′ = c1 ⊕ H2(j)
r′ = H1(m′ ‖ pkA)
If (pkB(r

′) = c0)→ K = H3(m′ ‖ c)
If (pkB(r

′) 6= c0)→ K = H3(s ‖ c)

Figure 1. SIKE mechanism.

Key Generation

Alice chooses an random integer skA ∈ Z/2eAZ and by applying an isogeny φA : E0 → EA
with kernel RA := 〈PA + [skA]QA〉 to the base points {PB, QB}, computes her public key pkA =

[EA, φA(PB), φA(QB)]. Moreover, Alice generates a t-bit (the implementation parameter defines the t
value) random sequence s ∈R {0, 1}t.

Encapsulation

Bob generates a t-bit random message m ∈R {0, 1}t. Afterward, Bob concatenates the message
with her public key pkA. Bob generates an eB-bit hash result r with cSHAKE256 hash function H1 and
input (m ‖ pkA). With r, Bob executes a secret isogeny φB : E0→ EB to base points {PA, QA}. Then,
Bob forms his public key pkB(r) = [EB, φB(PA), φB(QA)]. Bob also performs the common j-invariant
of curve EBA by using another isogeny φ′B : EA→ EBA with Alice’s public key. Finally Bob generates
a ciphertext c = (c0, c1), such that:

c = (c0, c1) = (pkB(r), H2(j(EBA))⊕m),

where H2 is generated with a cSHAKE256 hash function. This generates an arbitrary-length of output
with a defined initialization parameter. Lastly, Bob generates the shared secret K = H3(m ‖ c).
Afterward, Bob sends the ciphertext (c) to Alice.

Decapsulation

With the ciphertext (c), Alice performs the common j-invariant of EAB by using her secret isogeny
to EB. Alice executes m′ = c1 ⊕ H2(j(EAB)) and r′ = H1(m ‖ pkA). Lastly, Alice validates Bob’s
public key by performing pkB(r

′) and comparing the value with c0. Alice generates the secret shared
value K = H3(m′ ‖ c) when the public key is correct. Otherwise, Alice generates a random value
K = H3(c ‖ s) to be secure against active attacks.
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In 2019, the candidates for the second round of post-quantum cryptography competition is
selected. The round 2 of SIKE protocol [28] is different from the first version. These changes are
outlined as follows:

• Two new parameter sets for NIST security levels 1 and 3 have been added (i.e., SIKEp434 and
SIKEp610).

• One parameter set (i.e., SIKEp964) has been removed.
• The security categories for parameter sets have been adjusted upward (i.e., the NIST security

levels of SIKEp503 and SIKEp751 are changed to 2 and 5, respectively.).
• The starting curve has been changed.
• A public key compression has been implemented.

2.4. Multi-Precision Multiplication

For both outer and inner loops, the product-scanning method is utilized. In Figure 2, detailed
descriptions are given. The left part is for the outer loop, and the right part is for the inner loop.
One block in the outer loop consists of two word-multiplication, indicated by the dashed boxes and
colors in the right part of Figure 2. At the beginning, two words of operand A (labeled a0 and a1 in
Figure 2) along with two words of B (namely b0 and b1) are loaded from the RAM.

A0 ·B 0

A0 ·B 1

A3 ·B 0

A1 ·B 2

A1 ·B 0

A2 ·B 0

A0 ·B 2

A2 ·B 2

A1 ·B 1

A3 ·B 1

A1 ·B 3

A2 ·B 3

A2 ·B 1

A0 ·B 3

A3 ·B 2

A3 ·B 3

C0C1C2C3C4

Product scanning (outer loop)

accumulator registersC=A×B

C5C6C7

(a) (b)

a0 · b0

a0 · b1

a2 · b1

a0 · b3

a1 · b0

a2 · b0

a0 · b2

a2 · b2

a1 · b1

a3 · b1

a1 · b3

a2 · b3

a3 · b0

a1 · b2

a3 · b2

a3 · b3

r0r1r2r3r4

Product scanning (Inner loop)

Figure 2. The proposed product scanning multiplication. (a) outer loop, an example of 128-bit
multiplication. (b) inner loop, (A0 · B0, A1 · B0, A0 · B1, A2 · B0).

The 64-bit product of a0 and b0 is performed and accumulated to two registers by using the UMAAL
instruction. Afterward, the product of a1 · b0 is performed and the product of the two words is added
into the accumulator registers. The carry values from this operation can be performed without other
side effects. Thereafter, we multiply a0 by b1, and add the resulting 64-bit product of a0 · b1 to registers.
The result of the higher word is stored in a temporal register before accumulation to avoid overflows.

After the last product of the first block (i.e., a0 · b0), we add the products with values in temporary
registers to the three accumulator registers. The carry bit is finally propagated. The execution of the
first block in Figure 2 executes four UMAAL, three SUB, and three ADD instructions, respectively. These
instructions require 10 clock cycles. In Algorithm 1, the source code of the proposed implementation
is given. In lines 1 to 3, the operands are loaded to the registers and the address pointer is corrected.
In lines 4 to 9, the multiplication and accumulation routine is performed. In particular, registers R1
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and R2 are cleared with SUB instructions. In lines 10 to 12, the intermediate results are accumulated to
the registers. The subsequent blocks are executed by following the computation of the first block.

Algorithm 1 Multiply–ACcumulate (MAC) operation for multiplication.

Require: operand pointers R0, R12
Ensure: results {R8, R4, R5, R6, R7}

1: LDM R12!, {R10-R11}
2: LDM R0!, {R2-R3}
3: SUB R0, #16
4: SUB R1, R1, R1
5: UMAAL R8, R1, R10, R2 {Low-Low}

6: UMAAL R4, R1, R11, R2 {High-Low}
7: SUB R2, R2, R2
8: UMAAL R4, R2, R10, R3 {Low-High}
9: UMAAL R5, R1, R11, R3 {High-High}

10: ADD R5, R5, R2 {Low-High}
11: ADC R6, R6, R1 {High-High}
12: ADC R7, R7, R3

In Algorithm 2, full rounds of integer multiplication are given. In line 1, the accumulation buffer is
initialized. The multiplication is divided into two steps, which are lower result (i.e., lines 2–9) and higher
result (i.e., lines 10–18), respectively. The core MAC operation is implemented by following Algorithm 1.

Algorithm 2 64-bit wise scalable product-scanning for multiplication.

Require: operands (a and b) and len (operand length/word where the word is 64-bit)
Ensure: results (r)

1: accumulation = 0
2: for i = 0 to len− 1 by 1 do
3: for j = 0 to i by 1 do

4: product = a[j]× b[i− j] {Algorithm 1}
5: accumulation = accumulation + product
6: end for
7: r[i] = accumulation mod 264
8: accumulation = accumulation� 64
9: end for

10: for i = len to 2× len− 2 by 1 do
11: for j = i− len + 1 to len− 1 by 1 do

12: product = a[j]× b[i− j] {Algorithm 1}
13: accumulation = accumulation + product
14: end for
15: r[i] = accumulation mod 264
16: accumulation = accumulation� 64
17: end for
18: r[i] = accumulation mod 264

2.5. Multi-Precision Squaring

A novel method for implementing the multi-precision squaring method, called the “doubling
and MAC” method, is proposed. The squaring is implemented by following the structure of the
column-wise method for the “outer algorithm”. For the “inner algorithm”, a combination of the
proposed product-scanning and doubling and MAC method is performed.

The proposed technique optimizes the number of ADD (resp. ADC) instructions through rearranging
the sequence of the UMAAL operation. An example of 256-bit squaring is shown in Figure 3. The left
part describes the outer loop of squaring. It consists of three parts (inside the dashed box), which are
exactly in line with the three loops of squaring. The middle part and the right part show the inner
loop of squaring. The middle part is used to calculate ai · aj for i 6= j, similar to the procedure that we
presented in Section 2.4 for multiplication. The proposed doubling and MAC for the computation of
Ai · Ai is given in following section.
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C0C1C2C3C4

Product scanning (outer loop)

C=A2

C5C6C7

A0 ·A0

A1 ·A1

A2 ·A2

A3 ·A3

A2 ·A3 

A1 ·A3 

A1 ·A2

A0 ·A2

A0 ·A3

A0 ·A1

r0r1r2r3r4

a0 ·a1

accumulator registers

Doubling and MAC (Inner loop)

a0 ·a0

a1 ·a1

accumulator registers

(b)

a0 · a2

a0 · a3

a0 · a5

a1 · a2

a0 · a4

a0 · a6

a1 · a3

a1 · a5

a0 · a6

a1 · a4

a1 · a5

a1 · a6

r0r1r2r3r4

Product scanning (Inner loop)

(a) (c)

a2 ·a3

a2 ·a2

a3 ·a3

Figure 3. The proposed product-scanning squaring. (a) outer loop, an example of 128-bit squaring. (b)
inner loop, product scanning, (A0 · A0, A0 · A2, A0 · A3). (c) inner loop, doubling and MAC, (A0 · A0,
A1 · A1).

In Figure 3, the procedure of doubling and MAC can be split into two blocks as represented by
dashed boxes. Taking the computation of A0 · A0 (marked in red) as an example, the 64-bit operand
A0 can be represented as (a0 and a1), where ai is one word long.

First, we load the intermediate results computed by the middle part of Figure 3 from the memory
to the registers. Afterward, A0 is loaded into two registers which are labeled a0 and a1. We first
perform the multiplication of a0 · a1 and accumulate the 64-bit product to three intermediate result
registers. The accumulated intermediate results are doubled at once. Next, we perform two-word
multiplication (a0 · a0 and a1 · a1) and the results are accumulated to the doubled results. During
accumulation, we catch the carry value and store it in the temporal register.

The carry value is used in the next doubling and MAC routine. In total, the proposed doubling and
MAC method costs 21 clock cycles, including 3 UMAAL, 12 ADD (resp. ADC), 4 MOV and 1 SUB instructions.
The source code can be found in Algorithm 3. In line 2, the operands are loaded to registers (R8, R9).
In line 3, intermediate results are loaded from memory to registers (R2, R3, R4, and R5). In lines 4
and 5, two registers are cleared. In lines 6 to 9, the partial product (ai · aj for i = j) is performed and
accumulated to the intermediate results. In lines 10 to 14, the intermediate results are doubled. In lines
15 to 17, the two-word multiplication (ai · aj for i 6= j) is performed. In lines 18 to 23, the results are
accumulated to the doubled results. During accumulation, the carry value is stored in the R7 register.
In lines 24 to 25, the intermediate results are stored in the memory. Finally, in lines 26 to 27, the loop
count is measured, and the program counter is calculated depending on the loop condition.

In Algorithm 4, full rounds of squaring implementation are given. In lines 1–21, similar to the
integer multiplication, partial products (a[i]× a[j] where i 6= j) are performed by using Algorithm 1.
In lines 22–34, the remaining part (a[i]× a[j] where i = j) is performed with doubling and MAC routine
given in Algorithm 3.
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Algorithm 3 Doubling and MAC implementation with a one-way carry-catcher technique.

Require: result pointer R11, operand pointer R12,
loop counter R14, carry-catcher R1, R7

Ensure: results {R2, R3, R4, R5, R6}
1: LOOP:
2: LDM R12!, {R8-R9}
3: LDM R11!, {R2-R5}
4: MOV R1, #0
5: MOV R6, #0
6: UMAAL R3, R0, R8, R9 {Low-High}
7: ADD R4, R0 {Low-High}
8: ADC R5, R1
9: ADC R6, R1

10: ADD R2, R2 {Doubling}
11: ADC R3, R3
12: ADC R4, R4
13: ADC R5, R5

14: ADC R6, R6
15: MOV R0, #0
16: UMAAL R2, R1, R8, R8 {Low-Low}
17: UMAAL R4, R0, R9, R9 {High-High}
18: ADD R2, R7

{Carry-Catcher #1}
19: MOV R7, #0
20: ADC R3, R1 {Low-Low}
21: ADC R4, R7
22: ADC R5, R0 {High-High}
23: ADC R7, R6
24: SUB R11, #16
25: STM R11!, {R2-R5}
26: CMP R14, R11
27: BHS LOOP

Algorithm 4 64-bit wise scalable product-scanning for squaring.

Require: operand (a) and len (operand length/word where word is 64-bit)
Ensure: results (r)

1: accumulation = 0
2: for i = 0 to len− 1 by 1 do
3: for j = 0 to i by 1 do
4: if i 6= j then

5: product = a[j]× a[i− j] {Algorithm 1}
6: accumulation = accumulation + product
7: end if
8: end for
9: r[i] = accumulation mod 264

10: accumulation = accumulation� 64
11: end for
12: for i = len to 2× len− 2 by 1 do
13: for j = i− len + 1 to len− 1 by 1 do
14: if i 6= j then

15: product = a[j]× a[i− j] {Algorithm 1}
16: accumulation = accumulation + product
17: end if
18: end for
19: r[i] = accumulation mod 264
20: accumulation = accumulation� 64
21: end for
22: accumulation = 0
23: for i = 0 to 2× len− 1 by 1 do

24: if i/2 = 0 then
25: product = a[i]× a[i] {Algorithm 3}
26: else
27: product = 0
28: end if
29: double = 2× r[i]
30: accumulation = accumulation + double + product
31: r[i] = accumulation mod 264
32: accumulation = accumulation� 64
33: end for
34: r[i] = accumulation mod 264
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3. Scalable Montgomery Reduction for All SIKE Round 2 on Cortex-M4

The parameter sets (SIKEp434, SIKEp503, SIKEp610, and SIKEp751) are selected as the SIKE
round-2 protocol [28,29]. For high performance, the Montgomery reduction method is used [30].
The Montgomery reduction replaces the expensive inversion operation into a relatively cheap operation
(i.e., multiplication). The detailed descriptions for the Montgomery reduction are given in Algorithm 5.

We evaluated the all-SIKE protocols with the proposed multi-precision multiplication operation
and multi-precision squaring operation. For the Montgomery reduction, we used a scalable operand-
scanning method. To support all-SIKE protocols, the internal word size is set to 32-bit wise. We divided
the n-word operand scanning into three steps, including initialization, a middle round, and finalization.
The initialization calculates one partial product first. The intermediate result is stored in the memory,
which is a quotient value. The middle round performs the (n− 1)-word partial products. The result
is accumulated to the intermediate result. Finally, the last word is multiplied and added to the
intermediate results. Detailed descriptions of the SIKEp434 case are given in Figure 4.

Algorithm 5 Montgomery reduction.

Require: Modulus m, Montgomery radix r > m, operand c ∈ [0, m2 − 1], and constant m′ =
−m−1 mod r

Ensure: Montgomery product z = MonRed(c, r) = c · r−1 mod m
1: q← c ·m′ mod r
2: z← (c + q ·m)/r
3: if z ≥ m then z← z−m
4: return z

accumulator registers

(2)

q0 · m6

q0 · m7

q0 · m8

r0r1

Operand scanning (inner loop)

q0 · m9

q0 · m10

q0 · m11

q0 · m12

q0 · m13

q0 ·M

q1 ·M

R

Operand scanning (outer loop)

R=Q×M

(1)

q2 ·M

q3 ·M

q4 ·M

q5 ·M

q6 ·M

q7 ·M

q8 ·M

q9 ·M

q10 ·M

q11 ·M

q12 ·M

q13 ·M

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14

Figure 4. Proposed operand scanning multiplication for Montgomery reduction. Left part: outer loop,
an example of SIKEp434. Right part: inner loop, (q0 ·M).

The modulus (M) of SIKEp434 is multiplied by the quotient in a 32-bit wise (Q; q0–q13). Since
the lower part of the modulus (i.e., m0–m5) is zero, only remaining parts (m6–m13) are multiplied.
During the inner loop, only two registers are used to maintain the intermediate results. The inner
loop of operand scanning is given in Algorithm 6. In line 1, one operand Q is loaded to the register
(R8). In line 2, the intermediate result is loaded to the register (R9). In line 3, the 32-bit wise MAC is
performed. In line 4, the result is stored in the memory.
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Algorithm 6 Inner loop of operand scanning.

Require: operand pointers R1, R4
Ensure: results {R9, R10}

1: LDM R1!, {R8}
2: LDR R9, [R4, #0]
3: UMAAL R9, R10, R7, R8
4: STM R4!, {R9}

In Algorithm 7, 32-bit wise scalable operand-scanning for Montgomery reduction is described.
All operations are performed in 32-bit wise. In particular, the inner loop (i.e., line 4) is performed with
the Algorithm 6.

Algorithm 7 32-bit wise scalable operand-scanning for Montgomery reduction.

Require: modulus m, constant m′, and len (operand length/word where the word is 32-bit)
Ensure: results (r)

1: for i = 0 to len− 1 by 1 do

2: prod = 0

3: q = r[0]×m′ mod 232

4: prod = m[0]× q {Algorithm 5}
5: prod+ = r[0]
6: prod = prod� 32
7: for j = 1 to len− 1 by 1 do

8: prod+ = m[j]× q
9: prod+ = r[0]

10: r[j− 1] = prod
11: prod = prod� 32
12: end for
13: prod+ = r[j]
14: r[j− 1] = prod
15: r[j] = r[j + 1] + prod� 32
16: end for

4. Performance Evaluation and Comparison

4.1. Evaluation of Modular Arithmetic

The 32-bit ARM Cortex-M4 processor is evaluated with the STM32F4 Discovery board. The board
supports 1 MB of Flash and 192 KB of RAM. Table 2 compares the proposed implementation with other
works in terms of the execution timing. The work by Seo et al. focused on high speed optimizations
with the operand caching method and the sliding block doubling method. The proposed 256-bit
multiplication and squaring operations are slower than those proposed by Seo et al. by 67% and 72%,
respectively, and the 768-bit multiplication and squaring operations are slower than Seo et al. by 57%
and 56%, respectively.

The performance is reasonable as the 32-bit ARM Cortex-M4 microcontrollers support 168 MHz,
which means that Curve25519 and SIKEp434 can be still performed within seconds. In terms of
code size, our implementation only requires 584 bytes (260 bytes for multiplication and 324 bytes for
squaring, respectively). This requires 75% and 10% of the code size used by Seo et al., which directly
saves 0.2–5 KB of code size for PKC implementations.

In terms of long integer multiplication, previous works did not explore the implementations.
This means that previous implementations cannot cover RSA implementations. For this reason,
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we evaluated the proposed implementations and compared the results to the estimated results by Seo
et al. For the RSA3072 encryption, the 3072-bit multiplication and squaring implementations based on
Seo et al. require about 54 KB and 38 KB, respectively. Furthermore, the fast RSA3072 decryption based
on the Chinese-Remainder Theorem (CRT) needs 1536-bit multiplication and squaring implementations
(13 KB for multiplication and 9 KB for squaring). For this reason, the unrolled RSA implementation
cannot be used due to the code size. On the other hand, the proposed method still maintains a small
code size (260 bytes for multiplication and 324 bytes for squaring). The results show that our method
only provides all PKC options (i.e., ECC, RSA, and SIKE) on ARM Cortex-M4 microcontrollers.

It is also interesting to compare parameterized implementations on other low-cost platforms
(e.g., 8-bit AVR processors). Compared with previous parameterized implementations over the AVR
processor [1], our implementation has several distinguishing features. In terms of the MAC algorithm,
we introduced an optimized MAC method, which is specialized for the new UMAAL multiplier of target
processor. The one-way carry-catcher method for integrated doubling and MAC operations introduces
further optimizations of memory access.

Table 2. The comparison results of the code size (bytes) and execution time (clock cycles) of different
multi-precision multiplication implementations and multi-precision squaring implementations for
operands ranging from 256 to 3072 bits.

Approach Code Size 256 512 768 1536 3072

Public Key Cryptography ECC SIKE SIKE RSA RSA

Multi-Precision Multiplication

Groot † [9] 1284 631 – – – –
Santis and Sigl † [10] 1264 546 – – – –

Fujii and Aranha † [11] 622 239 – – – –
Haase and Labrique [12] 452 212 – – – –
Koppermann et al. [13] – – – 4,319 – –

Seo et al. [14] 452 196 – – – –
Seo et al. (SIKE) [14] 3,396 – – 1556 – –

This work 260 608 1816 3696 13,369 50,857

Multi-precision squaring

Groot † [9] 1168 563 – – – –
Santis and Sigl † [10] 882 362 – – – –

Fujii and Aranha † [11] 562 218 – – – –
Haase and Labrique [12] 324 141 – – – –

Seo et al. [14] 320 136 – – – –
Seo et al. (SIKE) [14] 2372 – – 1054 – –

This work 324 493 1285 2397 7654 26,806
† Including fast reduction.

4.2. Evaluation of SIKE

Table 3 compares the execution time and ROM of the SIKE round 2 protocols with other works.
A 32-bit ARM Cortex-M4 processor is evaluated with the STM32F4 Discovery board. The board
supports 1 MB of Flash and 192 KB of RAM. For the fair benchmark test of SIKE, the well-known pqm4
library is uploaded to the board and the actual system clock cycles are obtained. This is a well-known
benchmark framework for post-quantum cryptography.

Previous works by Seo et al. mainly focused on the speed optimization [14], while the proposed
implementation targets the minimum code size. The previous SIKEp434 implementation achieved
252× 106 clock cycles, while the proposed SIKEp434 implementation achieved 469× 106 clock cycles.
The execution timing is translated into throughput. As we evaluated the performance at 168 MHz,
the full key exchange of SIKEp434 is performed within 2.79 s on low-end microcontrollers, which is
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reasonably fast. By considering the speed and size trade-off, the performance of the SIKEp434 protocol
is 46% (252× 106 cc vs. 469× 106 cc) slower than that achieved in the previous work, but we reduced
the code size by 13% in this case (33,528 bytes vs. 29,176 bytes). The enhancement of execution timing
is similar for SIKEp751, but the difference in code size between the speed version and the size version
in greater. The previous SIKEp751 implementation requires 44,688 bytes, while the proposed SIKEp751
implementation requires 28,816 bytes.

Table 3. Comparison of SIKE round 2 schemes on ARM Cortex-M4 microcontrollers. Timings are
measured in clock cycles. Code size is reported in terms of bytes. Throughput is reported in terms of
seconds per operation at 168 MHz.

Implementation Language
Timings [cc] Timings [cc × 106] Throughput ROM

Optimization
Fp mul Fp sqr KeyGen Encaps Decaps Total [secs/op] [bytes]

SIKEp434
Seo et al. [14] ASM 1110 981 74 122 130 252 1.50 33,528 Speed
This work ASM 3147 2693 139 227 242 469 2.79 29,176 Size

SIKEp503
Seo et al. [14] ASM 1333 1139 104 172 183 355 2.11 37,912 Speed
This work ASM 3888 3280 197 326 346 672 4.00 30,488 Size

SIKEp610
This work ASM 5651 4639 340 631 634 1265 7.53 27,432 Size

SIKEp751
Seo et al. [14] ASM 2744 2242 282 455 491 946 5.63 44,688 Speed
This work ASM 7693 6228 587 953 1022 1975 11.76 28,816 Size

We also first implemented the SIKEp610 protocols on ARM Cortex-M4 processors, and the execution
timing and code size achieved reasonable results. The other strength of scalable implementation is definitely
scalability. The SIKE implementations share the majority of operations except special parameters and
finite field operations. All SIKE implementations, including SIKEp434, SIKEp503, SIKEp610, and SIKEp751
with scalable multiplication and squaring may require around 40 KB. However, all SIKE implementations
with speed optimized multiplication and squaring may require around 100 KB.

The system requirements in terms of speed (i.e., throughput), resources (i.e., code size), and energy
consumption are determined by the architectural choices for a given application. Table 4 compares
the practicality of implementations for public key cryptography. Previous works only focused on
the speed optimization for one targeted PKC protocol. However, real world applications require
multiple cryptography implementations to communicate with heterogeneous systems with multiple
PKC schemes and security levels. Furthermore, for modular arithmetic of RSA implementations, speed
optimized implementation requires a huge code size (See Table 1).

Table 4. Comparison of practical implementations.

Public Key Cryptography ECC All ECC SIKE All SIKE RSA All RSA

Groot † [9]
√

–
√

– – –
Santis and Sigl † [10]

√
–

√
– – –

Fujii and Aranha † [11]
√

–
√

– – –
Haase and Labrique [12]

√
–

√
– – –

Koppermann et al. [13]
√

–
√

– – –
Seo et al. [14]

√
–

√
– – –

This work
√ √ √ √ √ √

† Including fast reduction.

On the other hand, the proposed modular arithmetic implementation supports all RSA, ECC,
and SIKE with the smallest code size (e.g., 584 bytes) and reasonable execution timing. In terms of
the energy consumption, the proposed method actually consumes more energy than speed optimized
implementation due to the high latency (i.e., long execution timing or long working time), which



Appl. Sci. 2020, 10, 1539 14 of 16

consumes high energy [31–33]. However, the proposed method is a suitable solution when considering
the reasonable code size in real-world implementations. The importance of energy consumption for
PKC is relatively lower than block cipher as PKC only needs one time before the secure communication
as a secure key exchange (i.e., Diffie-Hellman). For this reason, the energy consumption metric of PKC
implementation is of relatively lower priority than the code size in a real-world setting.

5. Conclusions

In this paper, we presented scalable implementations of multi-precision multiplication, squaring,
and the Montgomery algorithm on the 32-bit ARM Cortex-M4. The implementation emphasizes
reducing code size and providing scalability with practically fast speed. We proposed several novel
techniques to further boost the implementations on low-cost 32-bit ARM processors, including MAC
as well as doubling and MAC techniques. Our implementation on the 32-bit ARM platform highlights
the practical benefits of the proposed methods. The multiplication and squaring implementations
on the ARM Cortex-M4 require execution times of 608 and 493 clock cycles for 256-bit, and 50,857
and 26,806 clock cycles for 3072-bit, respectively. Even though our implementation is slower than
the unrolled implementation, it only requires 10% of the memory footprint for the SIKEp751 case.
Furthermore, the proposed multiplication and squaring require only 584 bytes for code size, which is
perfectly suitable for the PKC (e.g., RSA, ECC, and SIKE) implementations on low-cost processors.
The proposed implementations are fully parameterized and are based on a constant-time solution.
An operand of any length can be supported with a single implementation. We also evaluated the
all-SIKE round 2 protocols on the target microcontrollers. The results show that a reasonable execution
timing can be achieved with a very small code size.
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