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Abstract: The rotordynamics of a helical-geared rotor-bearing system were investigated. A new 

dynamic model for a helical-geared rotor-bearing system, which takes into account three-

dimensional (3-D) motion due to rotating shaft deformation, was proposed. The proposed model 

considers the time-varying effect, which in other models, is considered constant. The system 

equations of motion were obtained by applying Lagrange’s equation, and the dynamic responses 

were computed by the fourth-order Runge–Kutta method. The time-varying dynamic responses of 

the helix angle, transverse pressure angle, gear pair center distance, and total contact ratio were 

investigated. The numerical results show that the time-varying effect is an important factor in gear 

vibration analysis and cannot be neglected when the helical geared rotor-bearing system has a lower 

stiffness. 

Keywords: rotordynamics; finite element; time-varying dynamics; helical gear pair; three-

dimensional (3-D) motion; rotor-bearing system 

 

1. Introduction 

The gear system is one of the most important transmission mechanisms and is commonly used 

in gas turbines, automotives, generators, electrical products, and aerospace applications. The geared 

rotor system is the main source of vibration problems in power transmission systems. Rotor dynamics 

analysis is extremely important in the above-mentioned fields of application involving the design of 

vibrating machinery. Therefore, a more realistic dynamic model of the helical-geared rotor-bearing 

system for prediction of the vibration response is necessary. 

Many researchers have analyzed the dynamics of the gear pair system. Lalanne and Ferraris [1] 

predicted the dynamic behavior of rotors in bending and in torsion. They also discussed the influence 

of bending, and the possible instabilities were determined. Umezawa et al. [2] proposed a simulator 

which solves a differential equation with one degree of freedom in measuring the effects of the 

stiffness around tooth tip meshing, which facilitates deriving a profile of a spur gear that decreases 

vibration. Kahraman and Singh [3] used the harmonic balance method to develop a frequency 

response solution to the gear pair. Kahraman and Singh [4] also explored the nonlinear correlation 

between the radial clearance and the backlash between the spur gear pair in radial rolling bearing. 

They assumed that the gear meshing stiffness is linear and does not change with time. Huang and 

Liu [5] simulated the spur gear teeth action with a variable section Timoshenko beam. They subjected 

the gear pair to dynamic analysis with nonlinear contact stiffness. 

Kahraman [6] developed a linear dynamic model of a helical gear pair which has been used to 

investigate the effects of the helix angle on the free and forced vibrational characteristics of the gear 

pair. Kubur et al. [7] proposed a dynamic model of a multi-shaft helical gear which could enable 

designers to predict the dynamic behavior of the system and provide the most advantageous 
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configuration for optimal dynamic behavior. Zhang et al. [8] developed two-gear dynamic models, 

one with twelve degrees of freedom and the other with a multi-shaft geared rotor system. Bozca [9] 

investigated the helix angle effect on the helical gear-load carrying capacity. Both the overlap contact 

ratio and total contact ratio were calculated by changing the helix angle. 

About forty years ago, a specific numerical calculation procedure, the finite element method 

(FEM), which provides more accurate modeling, was used for analyzing geared rotor-bearing 

systems. Nelson [10] used the Timoshenko beam theory and the finite element method to calculate 

the effect of shear deformation and rotatory inertia. Kahraman et al. [11] developed a finite element 

model of a spur-geared rotor system supported with flexible bearings. The model included the rotary 

inertia of shaft elements, flexibility and damping of bearings, material damping of shafts, and 

stiffness and damping of the gear mesh. However, their model did not consider the effect of the gear 

pair pressure angle. Shiau et al. [12] analyzed the coupled bending and torsional vibrations of geared 

rotors as well as the effect of axial torque on bending vibrations. Choi and Mau [13] employed a 

transfer matrix model to determine the coupled bending–torsional natural frequencies and mode 

shapes of a spur-geared rotor-bearing system. Steady-state responses due to excitation of mass 

imbalance, geometric eccentricity, and gear mesh transmission error were also investigated. Chen 

[14] discussed the dynamic responses of a double-stage geared rotor-bearing system with 

translational motion due to the rotating shaft deformation. The proposed model considers contact 

ratio and pressure angle of the gear pair as time-dependent variables, whereas in other models, they 

are constants. Prabel [15] investigated the application of time integration methods to rotor-stator 

assembly modeled. Both the average acceleration method and the central differences method were 

used to discuss numerical instability. 

Gears have been widely used in industrial applications over the years, taking into account that 

time-varying variables or time-varying gear mesh stiffness could improve gear system accuracy. 

Ozguven and Houser [16] approximated time-varying mesh stiffness by using a constant mesh 

stiffness with a transmission error excitation. Kim et al. [17] developed a new dynamic model of the 

spur gear pair which considered the pressure angle and contact ratio as time-varying. Saxena et al. 

[18] discussed the effect of the time-varying friction coefficient on the total effective mesh stiffness 

for the spur gear pair and indicated that the gear mesh stiffness changed due to the change in 

direction of the time-varying friction on both sides of the pitch line. A time-varying mesh stiffness 

model of the helical gear pair, including axial tooth torsional stiffness, tooth bending stiffness, and 

gear foundation stiffness, was developed by Wang et al. [19]. In an analysis of the spur gear pair 

dynamics system, Yi et al. [20] considered that both the pressure angle and the backlash change over 

time. 

Although some nonlinear factors have been incorporated into the dynamic analysis of the gear 

system, few studies have considered the time-varying behavior in nonlinear dynamic modeling. 

There have been some studies on the time-varying meshing of the spur gear pair [18] and helical gear 

pair [19], the time-varying dynamic characteristics of the spur gear pair [17,20], and the spur-geared 

rotor-bearing system [14]. However, the dynamic characteristics of a helical-geared rotor-bearing 

system with time-varying effects have not been studied. In general, in nonlinear dynamic model 

analysis of the helical-geared rotor-bearing system, in order to facilitate modeling, previous studies 

have regarded the gear pair center distance, helix angle, and gear contact ratio as constants. In fact, 

when the gear pair has translational motion due to rotating shaft deformation, the center distance of 

the gear pair will change, which will then cause changes in the line of action, helix angle, and contact 

ratio. This study introduces a novel dynamic model for a helical-geared rotor-bearing system with 3-

D (3-dimensional) motion due to rotating shaft deformation, which includes the time-varying 

dynamic characteristics of the helix angle, transverse pressure angle, gear pair center distance, and 

total contact ratio. 

2. Dynamic Model of a Helical-Geared Rotor-Bearing System 

The schematic of a helical-geared rotor-bearing system is shown in Figure 1. Two uniform 

flexible shafts are of lengths L1 and L2. An external torque M is applied to shaft 1, and the gear pair is 



Appl. Sci. 2020, 10, 1542 3 of 14 

mounted on the shafts. The distances from gear to bearing are denoted as 
1dx  and 2.dx  The 

contacting mesh force is represented by the gear mesh stiffness coefficient mk  and damping 

coefficient mc  along the pressure line. Four bearings are modeled as flexible elements with damping 

bic  and stiffness bik . 
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mk
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Bearing 2
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Figure 1. Configuration of the helical-geared rotor-bearing system. 

2.1. Shaft 

A two-noded element [12] was used to develop the model of the shafts presented in this paper. 

Six degrees of freedom ( , , , , ,     and V W U Β Γ α ) are considered at each nodal point of the shaft and 

shown in Figure 2, where V  and W  are lateral displacements, Β  and Γ  are the corresponding 

angular displacements, U  is the axial displacement, and α  is the corresponding angular 

displacement. The kinetic energy of the shaft including the axial and torsional motion is 

 2 2 2 2 2
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2
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1 1
( ) ( ) ( ) ( ) ( ) ( ) ( )
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( )
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[ ] [ ]= + + + + + −
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l

sP s
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 (1) 

where ,  ,  ,  ,  sDρ A I Ω l , and sPI  are the mass density, cross-section area, transverse moment of 

inertia, spin speed, element length, and polar moment of inertia of the shaft, respectively. The rotating 

shafts are modeled as Timoshenko beams and are considered to have shear and gyroscopic effects. 

The total potential energy of the shaft, including axial, bending, shear, and torsional deflection, is 

expressed as 

   2 2 2 2 2 2

0 0 0 0

1 1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2
[ ] [ ]     = + + + + +   

l l l l

s s sD s s s s sP sU EA U ds EI V W ds κGA V W ds GI α ds  (2) 

where ,  κ E , and G  are the shear factor, Young’s modulus, and shear modulus of the shaft, 

respectively. The equation of motion of the finite shaft element can be derived by substituting kinetic 

energy (1) and strain energy (2) into Lagrange’s equation: 

( )[ ]{ } [ ] [ ] { } [ ]{ } {0}+ + + =s s s s s s sM q ΩG C q K q  (3) 
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where    ,  s sM G , and  sK  are the mass, gyroscopic, and stiffness matrices of the shaft element, 

respectively, and [C ]= [K ]s sγ  where γ  is the proportional damping coefficient. The details of these 

matrices are given in Shiau et al. [12]. 
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Figure 2. Shaft element and coordinate system. 

2.2. Bearing Support 

In the mechanical application of industrial use, the geared rotor system is generally supported 

with journal bearing. In this paper, it is recommended that the thrust bearing resists axial forces in a 

helical-geared rotor system. The four thrust-bearing supports are considered to be isotropic in the 

lateral direction. The potential energy and dissipation function, including the axial displacement 

effect of the thrust bearing support, can be expressed as: 

2 2 2 2 21 1 1 1 1

2 2 2 2 2
= + + + +b b b b b

b yy b zz b xx b θy b θz bU K V K W K U K B K  (4) 

2 2 2 2 21 1 1 1 1

2 2 2 2 2
= + + + +b b b b b

b yy b zz b xx b θy b θz bf C V C W C U C B C  (5) 

The equation of motion of the thrust bearing can be derived by substituting strain energy (4) and 

dissipation function (5) into Lagrange’s equation: 

[ ]{ } [ ]{ } {0}+ =b b b bC q K q  (6) 

where [C ]b  and [ ]bK  are the damping and stiffness matrices of one bearing, and 
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2.3. Disk and Helical Gear Pair 

In this paper, the gear pair is assumed to be two rigid disks. The kinetic energy including the 

axial motion of each disk can be expressed as follows: 

2 2 2 2 2 21 1 1 1
( ) ( ) ( ) ( ) ( ) ( )( ) ( )

2 2 2 2
[ ] [ ]= + + + + + − + ++d d d d d dD s s dP d d d d d dP dT m V W U I B Γ I Ω α B Γ Γ B I Ω α  (10) 

where ,  d dDm I , and dPI  are the mass, transverse mass moment of inertia, and polar mass moment 

of inertia of the disk, respectively. The equation of motion of each disk can be derived as: 

[ ]{ } [ ]{ } [ ]{ } { }+ + =d d d d d d dM q ΩG q K q F  (11) 

where 

 { }
T

q V W U B =d d d d d d dα  (12) 

and [ ]dM  and [ ]dG  are the respective mass and gyroscopic matrices of one gear, and  dF  is the 

force vector due to disk eccentricity. 

Figure 3 describes a helical gear dynamic model with 12 generalized coordinates. 1O  and 2O  

are the gear centers when the rotating shafts have no deformation; 0d  is the initial gear pair center 

distance; 0β  is the initial helix angle of the gear pair. In most previous studies [1~13,15~16], these 

values are regarded as constant when they are time-independent. Generally, the gear centers will 

change with time due to the vibration of the rotating shafts. The gear centers can move to 1C  and 

2C . 1G  and 2G  are the mass centers of the pinion and gear, respectively. Due to the vibrations of 

the rotating shafts, the centers of the gear and pinion would shift, and displacements (

, , , , ,d d d d d dV W U Β Γ α     and ) would change with time. This makes the center distance, helix angle, 

transverse pressure angle, relative position angle, contact ratio, and the relative displacement of the 

gear pair vary with time. In other words, due to the time-varying motions of pinion and gear, the 

gear pair center distance and the helix angle are time-dependent; therefore, the gear pair center 

distance is changed from 0d  to d  and expressed as 

( ) ( ) ( )
2 2 2

2 1 0 2 1 2 1( ) ( ) ( ) ( ) ( ) + ( ) ( )d d d d d dd t V t V t d W t W t U t U t= − + + − −  (13) 

Similarly, the helix angle is changed from 0β  to ( )β t , which is represented as 

1 ( )
( ) tan , ( )

z

πd t
β t β t

p
− 

= 


>0
  

<0
 

if gear has left hand teeth

if gear has right hand teeth

 the     

 the     
 (14) 

where zp  is the lead of the helical gear pair. 1Ω  and 2Ω  are the rotating speeds of the pinion and 

the gear, respectively. The transverse geometrical eccentricities are denoted by 1e  and 2 .e  1η  and 

2η  are the transverse eccentricity angles of the transverse plane. The gear mesh force along the 

pressure line can be expressed as: 

( ) ( ) ( ) ( )h m mF t c δ t k t δ t= +  (15) 

The damping coefficient mc  is assumed to be zero. The gear mesh stiffness is accounted for by 

transverse tooth bending stiffness, transverse tooth shear stiffness, transverse tooth radial 

compressive stiffness, transverse gear foundation stiffness, Hertzian contact stiffness, axial tooth 

bending stiffness, axial tooth torsional stiffness, and axial gear foundation stiffness. The gear mesh 

stiffness is assumed as a periodic function of the mesh period. In the mesh situation, there are three 

teeth contacts and two teeth contacts, and the gear mesh stiffness will be different. The details of the 

gear mesh stiffness are shown in Wang et al. [19]. The relative displacement of the gear mesh in a 

direction perpendicular to contact surfaces is represented by ( )δ t  and defined as follows 

1 2 1 2 1 1 2 2

2 1 1 1 2 2 1 1 2 2

( ) [ ( )sin ( ) ( )sin ( ) ( )cos ( ) ( )cos ( ) ( ) ( )]cos ( )

  [ ( )- ( ) ( )sin ( ) ( )sin ( ) ( )cos ( ) ( )cos ( )]sin ( )

d d d d d d

d d d d

δ t V t ψ t V t ψ t W t ψ t W t ψ t R α t R α t β t

U t U t R Β t ψ t R Β t ψ t R Γ t ψ t R Γ t ψ t β t

= − + − + +

+ + + + +
 (16) 
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where 
1R  and 

2R  are the radii of base circles for the pinion and the gear, respectively. ( )ψ t  is the 

angle between the plane of action and the positive y-axis and is defined as: 

( ) ( ),
( )

( ) ( ),

t Φ t
ψ t

t Φ t

 −
= 

− −
 

counterclockwise

clockwise
 (17) 

where ( )t  is the transverse pressure angle of the gear pair and is expressed as: 

( ) ( )

1 1 2

2 2

2 1 0 2 1

( ) cos

( ) ( ) ( ) ( )d d d d

R R
t

V t V t d W t W t

− +
 =

− + + −
 (18) 

( )Φ t  is the relative position angle of the gear pair. It is between the line connecting the center of the 

gear pair and the positive x-axis and is defined as: 

1 2 1

2 1 0

( ) ( )
( ) tan

( ) ( )

d d

d d

W t W t
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V t V t d
− −

=
− +

 (19) 
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Figure 3. Generalized coordinates for the helical gear pair. 

According to the definition of the total contact ratio for a helical gear pair, the time-varying 

motions of the rotating shafts will also lead to changes in the contact ratio. The total contact ratio [9] 

becomes time-varying and can be expressed as: 

2 2 2 2

1 1 2 2 ( )sin ( ) cos ( ) tan ( )
( )

cos ( )
p

t

A R A R d t t b t β t
m t

p t

− + − −  + 
=


 (20) 

where 1A  and 2A  are the radius of the addendum circles for the driving gear and driven gear, and 

tp  and b  are the transverse circular pitch and face width, respectively. 

The corresponding equation of motion of the helical gear pair can be expressed as: 
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1
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where  1dM  and  2dM  are mass matrices of driving and driven gears, and 1[ ]dG  and 2[ ]dG  are 

gyroscopic matrices. 1tN  and 2tN  are the teeth number of driving and driven gears. [ ]hS  is the 

stiffness term due to the gear mesh effect.  dF  is the force vector due to disk eccentricity. 

2.4. System Equation of Motion 

Equations (3), (6), and (21) can be combined for the entire helical-geared rotor-bearing system, 

as follows: 

[ ]{ } ( [ ] [ ]){ } [ ]{ } { }ss ss ss ss ss ss ss ssM q Ω G C q K q F+ + + =  (22) 

where  ssM , [ ]ssG ,  ssC , [ ]ssK ,  ssF , and  ssq  represent the system mass matrix, gyroscopic 

effect matrix, damping matrix, stiffness matrix, force vector, and displacement vector, respectively. 

3. Validation and Numerical Analysis 

3.1. Dynamic Model Validation 

In order to verify the accuracy of the proposed model, I chose two cases for verification. In case 

1, Kim et al.’s [14] time-varying spur gear pair system was applied to the time-varying validation. 

The material parameters are shown in Table 1. All the responses in this study were computed by the 

fourth-order Runge–Kutta method, and the time step size was selected as 910t − =  sec. As can be 

seen from Figure 4, the time responses obtained from the proposed model are similar to Kim et al.’s 

[17] results. The amplitude and the periodic of the time responses are accurate. In case 2, Zhang et 

al.’s [8] spur-geared rotor-bearing system was applied to validate the correctness of the geared rotor-

bearing model. The spur-geared rotor-bearing system is shown in Figure 5, and Zhang et al.’s [8] 

values for the system parameters are listed in Table 2. Both the results presented here and by Zhang 

et al. [8] of the natural frequencies and corresponding mode shapes are listed in Table 3 for 

comparison. It is shown that the maximum relative error is less than 0.8 percent. This means that the 

results of this study are in good agreement with those of Zhang et al. [8]. 

In summary, the proposed new model is effective for the time-varying spur gear pair and the 

geared rotor-bearing system. 

Table 1. Spur gear pair parameters. 

Parameters Pinion Gear 

Tooth number 20 30 

Base circle radius (mm) 18.8 28.2 

Addendum circle radius (mm) 22 32 

Mass (kg) 0.0784 0.1765 

Mass moment of inertia (kg-m2) 1 10 -5.39  10 -57.01  
Radial damping coefficient (N-sec/m) 5.6 8.4 

Mesh stiffness during one-pair contact (N/m) 10 80.75  
Mesh stiffness during two-pair contact (N/m) 10 81.25  
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Figure 4. Gear mesh deformations from the proposed model. 
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Figure 5. Dynamic model of the spur-geared rotor-bearing system. 

Table 2. Spur-geared rotor system parameters. 

Shaft 

Parameters Driving Shaft Driven Shaft 

Shaft length (mm) 254 254 

Outer diameter (mm) 37 37 

Inner diameter (mm) 0 10 

Modulus of elasticity (Gpa) 207.8 

Density of material (kg/m3) 7806 

Poisson’s ratio 0.3 

Gear 

Parameters Driving Gear Driven Gear 

Tooth number 28 28 

Base circle radius (mm) 44.5 44.5 

Mass (kg) 1.84 1.84 

Mass moment of inertia (kg-m2) 0.0009 0.0009 

Polar mass moment of inertia (kg-m2) 0.0018 0.0018 

Gear mesh stiffness (N/m) 81 10  
Bearing Parameters 

All radial bearing stiffness (N/m) 91 10  
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Table 3. Natural frequencies and corresponding mode shapes. 

Mode No. 
Natural Frequency (rad/s) 

Relative Errors (%) Mode Description 
Present  Ref. [8] 

1 3574 3583 −0.26 coupled lateral-torsional 

2 4225 4237 −0.29 1st lateral, Y-direction, driving shaft 

3 4237 4245 −0.20 coupled lateral-torsional 

4 4250 4246 0.09 1st lateral, Z-direction, driven shaft 

5 15,804 15,816 −0.08 coupled lateral-torsional 

6 20,643 20,796 −0.74 2nd lateral, Y-direction, driving shaft 

7 20,643 20,796 −0.74 2nd lateral, Z-direction, driving shaft 

8 20,978 21,084 −0.50 2nd lateral, Y-direction, driven shaft 

9 20,978 21,084 −0.50 2nd lateral, Z-direction, driven shaft 

10 38,093 38,336 −0.64 3rd lateral, Y-direction, driving shaft 

11 38,143 38,374 −0.60 coupled lateral-torsional 

12 38,235 38,432 −0.51 3rd lateral, Y-direction, driven shaft 

13 38,406 38,614 −0.54 coupled lateral-torsional 

3.2. Time-Varying Effect of the Helical-Geared Rotor-Bearing System 

Although many dynamic models for the helical-geared rotor-bearing system have been 

presented, no researchers have simultaneously considered the time-varying effect due to rotating 

shaft deformation in their dynamic models. In order to simplify the dynamic model of the helical gear 

system, the previous models considered the helix angle, gear pair center distance, and contact ratio 

as constant values. The results that simulate a gear pair system by using constant dynamic 

characteristic values are usually rough and impractical. This section presents the results of time-

varying numerical simulations for a helical-geared rotor-bearing system. This time-varying effect can 

lead to different dynamic characteristics, which in the previous models are usually ignored. The 

driving shaft was subjected to a fixed torque M  = 500 N-m and 1Ω  = 3000 rpm. Other parameter 

values given in Table 4 were used in the calculations for the helical-geared rotor-bearing system. In 

Figure 6, solid lines show the time-histories of the gear pair helix angle, transverse pressure angle, 

center distance, and total contact ratio. As shown in this figure, the fluctuation magnitudes of the 

helix angle are around 20.079 degrees, of the transverse pressure angle around 20.67 degrees, of the 

gear pair center distance around 52.298 mm, and of the total contact ratio around 2.4476. The dashed 

lines are the values when these dynamic characteristics are assumed to be constant. The difference 

values between the time-varying and constant conditions present the influence of the time-varying 

effect. 

Table 4. Helical-geared rotor-bearing system parameters. 

Shaft 

Parameters Driving Shaft Driven Shaft 

Shaft length (mm) 254 254 

Outer diameter (mm) 37 37 

Inner diameter (mm) 0 0 

Modulus of elasticity (Gpa) 207.8 

Density of material (kg/m3) 7806 

Poisson’s ratio 0.3 

Gear 

Parameters Driving Gear Driven Gear 

Tooth number 28 28 

Base circle radius (mm) 24.4 24.4 

Addendum circle radius (mm) 28.4 28.4 

Mass (kg) 1.84 1.84 
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Mass moment of inertia (kg-m2) 0.0009 0.0009 

Polar mass moment of inertia (kg-m2) 0.0018 0.0018 

Face width (mm) 17.4 17.4 

Pitch diameter (mm) 52.07 52.07 

Initial transverse pressure angle (degree) 20 

Initial helix angle (degree) 20 

Mesh stiffness during two teeth contact (N/m) 81.9 10  
Mesh stiffness during three teeth contact (N/m) 82.4 10  

Bearing Parameters 

All radial bearing stiffness (N/m) 72 10  
All axial bearing stiffness (N/m) 71 10  

 

 (
)

β

 
(a) 

 (
)



 
(b) 

 (
m

m
)

d

 
(c) 

p
m

 
(d) 

Figure 6. Time-varying and constant (a) helix angle, (b) transverse pressure angle, (c) gear pair center 

distance, and (d) total contact ratio. 

3.3. Time-Varying Effect of the Original Helix Angle 

As can be seen in Figure 6, the difference value between the time-varying and the constant 

conditions is around 0.793 degrees for the helix angle, around 0.671 degrees for the transverse 

pressure angle, around 0.2243 mm for the gear pair center distance, and around 0.01696 for the total 

contact ratio. In this section, the difference values between the time-varying and the constant 

conditions under five different original helix angles are discussed. In the real helical gear systems, 

the range of helix angle is about 15–35 degrees. The results of the difference values are listed in Table 

5. With the original helix angle raised, the difference values between the time-varying and the 

constant conditions of the helix angle, the transverse pressure angle, the gear pair center distance, 

and the total contact ratio are enhanced, especially the helix angle and total contact ratio. The time-

varying variables have a greater effect on the higher initial helix angle and lower effect on the lower 

initial helix angle. This demonstrates that the time-varying variables of the higher initial helix angle 

are not negligible. 
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Table 5. The difference values between the time-varying and the constant conditions. 

Initial Helix Angle (Degree) 15 20 25 30 35 

 
The Difference Values between Time-Varying 

and Constant Conditions 

Helix angle 0.061 0.0793 0.0954 0.1092 0.1203 

Transverse pressure angle 0.666 0.671 0.675 0.681 0.686 

Gear pair center distance 0.2218 0.2243 0.2265 0.2295 0.2332 

Total contact ratio 0.0125 0.01696 0.02173 0.02689 0.03264 

3.4. Time-Varying Effect of the Rotating Shaft Material and Outer Diameter 

In order to analyze the time-varying effect with different rotating shaft materials, three cases of 

shaft material are discussed in this section. Case 1 is for steel, case 2 is for copper, and case 3 is for 

aluminum alloys. Table 6 lists the corresponding rotating shaft material parameters. Figure 7 presents 

the time histories for the helix angle, transverse pressure angle, gear pair center distance, and the 

total contact ratio. The difference values between the time-varying values with different rotating shaft 

materials and the constant values can be observed. If the rotating shaft is softer, the difference values 

between the time-varying values and the constant values are enhanced. This indicates that the time-

varying effect has more influence on soft rotating shaft material than on hard rotating shaft material. 

The same issues as Figure 7 under three different outer diameters of the shaft are obtained and 

shown in Figure 8. From Figure 8, it can be seen that the difference values between the time-varying 

values of these dynamic characteristics and the constant values are reduced with the outer diameter 

of the shaft enhanced. It may be noted that the time-varying effect has a more important effect on the 

thinner shaft. 

Table 6. Corresponding rotating shaft material parameters. 

 Steel Copper Aluminum Alloys 

Modulus of elasticity (Gpa) 207.8 115 73 

Density of material (kg/m3) 7806 8900 2800 

Poisson’s ratio  0.3 0.35 0.33 
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Figure 7. Time-varying and constant (a) helix angle, (b) transverse pressure angle, (c) gear pair center 

distance, and (d) total contact ratio under different rotating shafts. 
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Figure 8. Time-varying and constant (a) helix angle, (b) transverse pressure angle, (c) gear pair center 

distance, and (d) total contact ratio under different outer diameters of the shaft. 

3.5. Time-Varying Effect of the Bearing Stiffness 

In order to analyze the bearing stiffness, three cases of bearing stiffness are discussed in this 

section. Case 1 is for bearing stiffness kxx = kyy = kzz = 71 10  N/m, and cases 2 and 3 are kxx = kyy = kzz = 
7 85 10 ,  1 10   N/m, respectively. Figure 9 shows the time-varying dynamic responses for the helix 

angle, transverse pressure angle, gear pair center distance, and total contact ratio. If the bearing 

stiffness is increased, the difference values between the time-varying values and the constant values 

are enhanced. The bearing stiffness is closely linked with the difference values between the time-

varying values and the constant values of these dynamic characteristics. This means that the time-

varying variables have a significant influence on the ordinary bearing stiffness, but have a small effect 

on the large bearing stiffness, especially for the total contact ratio. 

As seen in Figures 7~9, it is interesting that the results of the dynamic characteristics of the 

helical-geared rotor-bearing system with time-varying variables are very different from those which 

are considered as constant when the rotating shaft is sufficiently soft, thinner, or the bearing stiffness 

is sufficiently small. This implies that the time-varying effect has a significant influence on the gear 

vibration analysis and cannot be ignored. 
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Figure 9. Time-varying and constant (a) helix angle, (b) transverse pressure angle, (c) gear pair center 

distance, and (d) total contact ratio under different degrees of the bearing stiffness. 

4. Conclusions 

The proposed new model takes into account the time-varying helix angle, the transverse 

pressure angle, the gear pair center distance, and the contact ratio. The model consists of finite 

element shafts with a helical gear pair and thrust bearing. The Lagrange method was used to derive 

the equations of the motion of the system, which were solved by the numerical integration method. 

Compared with the results of other researchers, the time-varying verifications of the spur gear pair, 

the natural frequencies, and corresponding mode shapes of the geared rotor-bearing system obtained 

by the present approach are very consistent. The time-varying helical-geared rotor-bearing system 

dynamic characteristics with 3-D motion due to rotating shaft deformation were examined. Some 

advantages of the proposed model are summarized as follows: 

(1) This research proposed a new nonlinear dynamic model that has a time-varying helix angle, 

transverse pressure angle, gear pair center distance, and contact ratio. These time-varying 

variables provide more realistic numerical simulation values than previous models in which 

these aspects are considered as constant. 

(2) The time-varying variables for the higher initial helix angle are not negligible. 

(3) The time-varying variables have more influence on soft or thinner rotating shaft material and 

less influence on hard or thicker rotating shaft material. Similarly, the time-varying variables 

have a stronger influence on the common bearing stiffness and a weaker effect on the large 

bearing stiffness. Thus, it can be concluded that, in the case of a sufficiently soft rotating shaft or 

bearing, the numerical simulation results will be very different from the actual results when the 

time-varying effect is not considered. 

(4) The time-varying effect has a significant influence on the gear vibration analysis of the helical-

geared rotor-bearing system and cannot be ignored. The results of this research present some 

useful information for gear vibration analysis. 
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