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Abstract: We propose a source separation architecture using dilated time-frequency DenseNet for
background music identification of broadcast content. We apply source separation techniques to
the mixed signals of music and speech. For the source separation purpose, we propose a new
architecture to add a time-frequency dilated convolution to the conventional DenseNet in order to
effectively increase the receptive field in the source separation scheme. In addition, we apply different
convolutions to each frequency band of the spectrogram in order to reflect the different frequency
characteristics of the low- and high-frequency bands. To verify the performance of the proposed
architecture, we perform singing-voice separation and music-identification experiments. As a result,
we confirm that the proposed architecture produces the best performance in both experiments because
it uses the dilated convolution to reflect wide contextual information.
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1. Introduction

Background music is a sensitive issue concerning copyright. This issue occurs in a variety of
places such as broadcasting, music stores, online music streaming services and so on. To charge
for copyright, it is important to know what title the background music is and how long it has been
played. It is inaccurate and takes a lot of time and work to manually record the title and the playing
time of background music. In order to solve this problem, automatic music identification and music
section detection techniques are required. In this study, we perform automatic music identification
on broadcast content. Due to the nature of broadcast content, background music is mostly mixed
with speech louder than music. This characteristic results in lowering automatic music-identification
performance. Therefore, we attempt to apply background music separation technique before automatic
music identification.

Music signal separation was conventionally done by the traditional methods used in blind
source separation (BSS) [1] such as independent component analysis (ICA) [2], non-negative matrix
factorization (NMF) [3], and sparse component analysis (SCA) [4]. For monophonic music source
separation, which is the same task as in this paper, NMF showed better performance than ICA
and SCA [1]. However, NMF does not yield good separation performance in real environmental
conditions because the NMF algorithm has inherently linear characteristics [5]. Recently, deep
learning-based music source separation algorithms achieved good performance and outperformed
the NMF algorithm [6–9]. In addition, deep learning-based music source separation algorithms
have the advantage that they do not have the permutation problem [10] because they are trained
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to directly produce the target signal. Grais et al. [6] used the feed-forward neural network (FNN)
architecture in speech source separation task and achieved better performance than NMF. This means
that deep learning is suitable for replacing the conventional algorithms. Nugraha et al. [7] and
Uhlich et al. [8] experimented with music source separation using the FNN architecture, which is the
basic structure in deep learning. They used different datasets, but they showed better performance
compared to NMF. After then, a lot of new neural network architectures were applied to audio source
separation: convolutional neural network (CNN), recurrent neural network (RNN), bidirectional
long-term memory (BLSTM), and so on [11,12].

In the time-frequency spectrogram domain, the time-axis frames are used as input to the RNN or
BLSTM architecture [11,12]. In a previous study [12], music source separation was performed with a
BLSTM architecture. As the layer of BLSTM was stacked up to 3 layers, it showed good performance.
When the number of layers was equal to FNN, BLSTM showed better performance than FNN. Data
augmentation and Wiener filter for eliminating the stationary noise of the estimated target spectrogram
further improved performance. Also, it showed better performance in a multi-channel environment
than single-channel. The best performance in this experiment was obtained by weighted summation
of estimated signals from BLSTM and FNN.

Recently, the CNN-based U-Net [13], stacked hourglass [14], and dense convolutional network
(DenseNet) [15], which showed good performance in the image domain [16–18], were also successfully
applied to audio source separation. The CNN-based U-Net [13] and stacked hourglass network [14]
have an encoder-decoder style structure. Bottleneck features are generated between encoder-decoder
processes. In U-Net, the feature map of each encoder is concatenated with the decoder feature map
of the same resolution. The stacked hourglass network adds the feature map of the encoder to the
decoder feature map of the same resolution via convolution. The connections between these encoders
and decoders are advantageous for the transmission of information and the transmission of gradients.
A stacked hourglass network consists of small network modules with an encoder-decoder structure to
form the whole structure. The desired signal can be estimated between each module, and the loss can
be calculated at each module output for back-propagation. This intermediate supervision improves
the learning speed and network performance.

In the previous methods, the magnitude of the target was estimated in the spectrogram domain
and the output signals were reconstructed by using the phase of the mixture [6–9,11–15]. However, the
reconstructed signal in the time domain is distorted. To compensate for this distortion, Stoller et al. [19]
used an end-to-end Wave-U-Net model in the time domain by modifying the U-Net architecture. Their
structure is different from the U-Net with a similar shape in that it changes from the time-frequency
domain to the time domain and uses 1-dimensional (1d) convolution instead of two-dimensional (2d)
convolution. The end-to-end Wave-U-Net model in the time domain usually has a deeper structure
to achieve good performance and has the disadvantage that it is difficult to converge. Although
Wave-U-Net showed better performance than U-Net, it has lower performance than DenseNet-based
architecture and BLSTM structure in the time-frequency domain [18].

The DenseNet-based architecture has recently been shown to perform well in audio source
separation tasks [15,20,21]. Multi-scale multi-band DenseNet (MMDenseNet) [15] and MMDenseNet
combined with LSTM (MMDenseLSTM) [20] are music source separation studies using DenseNet.
Both architectures are based on CNN and are of an encoder-decoder style like the U-Net and stacked
hourglass. The architecture of MMDenseNet was designed to parallel MDenseNet for the low-, high-,
and whole-frequency band of the spectrogram, respectively. The architecture of MMDenseLSTM
closely resembles the structure of MMDenseNet and places the LSTM behind the dense block. Because
DenseNet is based on CNN, it learns pattern for image input, and LSTM learns pattern for time-series
data, it has the advantage of learning different patterns and supplementing each other. MMDenseLSTM
shows better performance than MMDenseNet, which shows the state-of-the-art performance at audio
source separation. Since they are all based on the CNN architecture structured in an encoder-decoder
style through down-sampling and up-sampling, bottleneck features are obtained through encoding.
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This is the reason why designing this structure expands the receptive field, especially in the spectrogram
domain. In neuroscience, the receptive field is the local area of the previous layer output where
neurons are connected. Neurons in the visual cortex exhibit local features in the early visual layer and
more complex patterns in the deep layer [22]. This is an important element of CNN that has inspired
CNN [23].

In our study, we propose a dilated time-frequency DenseNet architecture to expand the receptive
field effectively. We add a time-dilated convolution [24] which is a frame dilation rate of 2 and a
frequency-dilated convolution which is a frequency dilation rate of 2 to the DenseNet. The previous
CNN-based architectures expanded their receptive field with an encoder-decoder style architecture,
but we expanded the receptive field more effectively by adding dilated convolution. The time- and
frequency-dilated convolution systematically aggregate multi-scale contextual information of the time
and frequency axes of the spectrogram. MMDenseNet is designed to place the MDenseNet model
structure in parallel on each band of the spectrogram divided in half. In MMDenseNet structure,
information exchange between models of each band is performed only in the last few layers, which
makes it difficult to share information between each band, resulting in distortion in the output.
Therefore, the proposed architecture applies a different convolution for each frequency band. The
proposed architecture is shown to have the best performance in both separation and identification
tasks compared with the previous architectures: U-Net, Wave-U-Net, MDenseNet, and MMDenseNet.

In the previous work [25] done by ourselves, we studied music detection using convolutional
neural networks with a Mel-scale kernel from broadcast contents. The difference between our previous
work and this work is in the type of task. Whereas the previous work is a classification task for music
detection, this work is a regression task to estimate the music signal itself. To combine the previous
work and this work for the purpose of music identification, the integrated system should be configured
in order of music source separation, music detection, and music identification. In addition, in order to
construct the integrated system, it is necessary to jointly optimize the deep learning architecture of
source separation and music detection using the same training data. This issue will be studied later in
another work.

In Section 2, DenseNet and the baseline architecture, which applies the DenseNet to audio
source separation, are introduced. In Section 3, the overall proposed architecture is described. Two
experiments and results are presented in Section 4. The first experiment is singing voice separation on
the open resource, and the second one is music identification after source separation from our dataset.
Finally, the overview and conclusion are described in Section 5.

2. Baseline

The baseline of our study is MDenseNet. We describe the DenseNet used for MDenseNet and why
it is better than the previous CNN architectures. Next, we will briefly describe the baseline architecture
based on DenseNet.

2.1. DenseNet

DenseNet [18] is a dense block structure consisting of composite functions as shown in Figure 1.
A composite function consists of three consecutive operations: batch normalization (BN) [26], followed
by a rectified linear unit (ReLU) [27], and a 3× 3 convolution (Conv), as shown in Figure 2.
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In a typical deep neural network, the output of `-th layer can be expressed as:

x` = H`(x`−1) (1)

In Equation (1), where x` is the output of the `-th layer, x`−1 is the output of the (` − 1)-th layer,
and it is the input of the `-th layer. H`(·) is a composite function that is a non-linear transformation.

Deep neural networks have a disadvantage in that they do not learn well when the layer is deep.
To overcome this drawback, ResNet [28] used a skip connection whose input is added to the output of
the same layer as:

x` = H`(x`−1) + x`−1 (2)

The skip connection of ResNet allows the gradient to be propagated directly to the previous layers
during learning, helping to learn well in deeper architectures. However, as the input and output of the
layer are summed, there is a disadvantage that the information in the previous layers becomes weaker.

To overcome the disadvantages of ResNet skip connection above, DenseNet [18] proposes a way
to concatenate the feature maps of all preceding layers. Output x` of the `-th layer is expressed as:

x` = H`([x0, x1, . . . , x`−1]) (3)

where [x0, x1, . . . , x`−1] refers to concatenation of the output feature map of layers 0 to (` − 1). This
concatenation scheme is effective for training because the gradient is propagated directly to the previous
layers and the input is fed forward directly to the following layers. In the feed-forward process, all
of the previous layer outputs are used as input, so that it can compensate that the information of
the previous layer becomes weaker as the layer passes. The number of output feature maps for each
composite function is denoted by growth rate k. In Figure 1, The number of final feature maps of a
dense block can be expressed as m0 + k× L. Here, m0 is the number of feature maps for an input of a
dense block, and L is the number of composite functions. When passing through the layer, feature
maps are increased by k.

Due to the concatenation characteristics of DenseNet, the number of feature maps increases
very much depending on the growth rate, the number of composite functions and dense blocks. To
reduce the number of feature maps, compression blocks are added at the back of the dense block. The
compression block consists of BN-ReLU-1× 1 Conv as Figure 3. If the number of the output feature
maps of the dense block is m, then the number of feature maps created from compression becomes an
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bθmc. Compression rate θ is a value in the range 0 < θ ≤ 1, and when θ = 1, the number of feature
maps for input and output is the same.
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2.2. Multi-Scale DenseNet for Audio Source Separation

In order to apply DenseNet to audio source separation, the MDenseNet [15] changes input to
multi-scale through down-sampling and up-sampling as shown in Figure 4.
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The down-sampling is done by 2 × 2 average pooling. In a classification task, the number of
outputs should be equal to the number of classes and, therefore, the input size should be down-sampled
in order to match this criterion and there is no up-sampling needed [18]. However, in the task of source
separation, the aim is to obtain a mask with the same size as input, therefore, up-sampling stages are
needed as well. An up-sampling process is required to restore the down-sampled feature map to the size
of the input. For up-sampling, transposed convolution [29] of 2× 2 kernel is used. By down-sampling
and up-sampling, it can consider longer context on the time axis and more frequency-range dependency
on the frequency axis. In MDenseNet, the feature map output from the dense block of the encoder is
connected to the feature map of the same size, which is the input of the dense block in the decoder.
Except for the last dense block, the growth rate k and the number of composite functions L are 12 and 4.
The k and L of the last dense block is 4 and 2.

3. Proposed Architecture for Source Separation

In MDenseNet, down-sampling and up-sampling are undertaken to expand the receptive field.
Another way to effectively expand the receptive field is to use dilated convolution [24]. This method
showed good performance in a semantic segmentation task [24]. From this motivation, we propose a
dilated multi-band multi-scale time-frequency DenseNet architecture. The proposed architecture is
shown in Figure 5. Compression rate is 0.25. Down-sampling and up-sampling are undertaken by the
same method as the MDenseNet, and also the growth rate k and the number of composite functions L
are the same as in MDenseNet [15]. The last composite function is to make the number of feature maps
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1, and the last ReLU is to make output values positive because the mask values of the ground truth are
all positive. See Appendix A for more details.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 18 
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3.1. Multi-Band Block

The patterns in the spectrogram are different along with the frequency band. The lower frequency
band tends to contain high energies, tonalities, and long sustained sounds, while the higher frequency
band tends to contain low energies, noise, and rapidly attenuated sound [15]. To reflect these, a
multi-band block with a different convolution filter is applied by dividing the spectrogram frequency
in half, as shown in Figure 6. Conv of the figure is the convolution of 3× 3 kernel. In addition, the entire
spectrogram is convolved to obtain a feature map containing information of the entire spectrogram.
The final output is obtained by concatenating the two half bands and the full band feature maps. Since
we have observed in preliminary experiments that interchanging the order of the feature maps yields
improved performance, we interchange the order of the feature maps for low and high bands in a
multiband block.
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3.2. Dilated Dense Block

The dilated dense block is intended to effectively expand the receptive field. In normal image
tasks, the dilation rate of the dilated convolution changes with the equal ratio. However, spectrograms
have different characteristics from images in that the time and frequency axes change to different
influences. The time axis is affected by the speech rate, and the frequency axis is affected by gender,
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pitch, harmonics, and so on. Therefore, the structure of the dilated block is arranged in parallel
with time-dilated convolution (TDConv), frequency-dilated convolution (FDConv), and standard
convolution, as shown in Figure 7. Also, we experimented with the 2-dilated convolution (2DConv)
to compare with TDConv and FDConv. Figure 8 is the kernels of dilated convolution applied to the
spectrogram: TDConv, FDConv, and 2DConv. The output of each convolution and the input feature
map are concatenated. In the figure, a dilated dense block is represented as the concatenation of a
dilated block and a dense block. If the growth rate of this block is k, then the feature map output is an
integer of (m0 + 3× k + k× L). Each convolution of the dilated block outputs k feature maps, resulting
in the number of feature maps of 3× k. k× L is the number of output feature maps of the dense block.
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3.3. Dropout

Dropout [30] is applied after each convolution layer of the dilated dense block to prevent overfitting.
Dropout is a method of regularization by generating noise to hidden units [30]. If the dropout is
applied incorrectly, it does not converge. When we applied the dropout to dilated dense blocks of
the encoder part, the proposed architecture did not converge. This is because the noise generated by
dropout in dilated dense blocks of the encoder part is intensified through the decoder, which hinders
convergence. Therefore, dropout was only applied to dilated dense blocks of the decoder part. In this
work, the dropout rate was set to 0.2.

3.4. Loss Function

The learned output of the proposed architecture is the mask to be multiplied by the input
spectrogram. The loss function can be expressed by the following equation:

Loss =
∣∣∣∣∣∣Y −X � M̂

∣∣∣∣∣∣
1 (4)

where the input spectrogram is X, the mask estimated in the network is M̂, the ground truth spectrogram
is Y, � represents an element-wise multiplication of the matrix, and ||.||1 is 1-norm which represents the
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sum of the absolute values of each element of the matrix. The estimated mask can be represented by
M̂ = f (X; Θ), and f (X; Θ) is the neural network model applied to the input X with parameters Θ. In
our study, the model parameters Θv and Θa were individually trained for each source, such as vocals
and accompaniment, respectively.

4. Experiments

We first perform a singing voice separation experiment using the open dataset (DSD100 dataset) to
guarantee the reproducibility of the experiment. Then, we perform a music identification experiment
using our own dataset because there is no available open dataset yet for the purpose of music
identification of broadcast content. In the open resource, we evaluate the performance of each block
and compare the performance of the proposed architecture with that of the previous architecture. In the
music identification after source separation, we calculate the separation and identification performance
of the proposed architecture and the previous architectures.

4.1. Singing Voice-Separation Experiment

4.1.1. Dataset

We experimented with the DSD100 dataset made for the 2016 SiSEC [31]. The dataset consists
of development and test sets. Each set has 50 songs and was recorded in a stereo environment with
a sampling rate of 44.1 kHz. Each song has four music sources (bass, drums, other, vocals) and a
mixture of sources. In the singing voice separation task, the mixture signal is separated into vocals and
accompaniment.

Several studies in music source separation or vocal instrument separation mixed the instrument
signals of the different songs to augment data [12,15,20]. In the DSD100 dataset, we also augmented
the training data by mixing the instrument signal of different songs. To balance the other class, the
training data was augmented by mixing other signal of different songs and bass, vocals, and drums
instrument signal of the same song. Since the duration of the signal is different for each type of music,
the signal is adjusted based on the duration of the shortest signal.

4.1.2. Setup

We computed the magnitude X of the mixture spectrogram downsampled at 16 kHz and converted
to monophonic to be used as input to the model. The spectrogram is obtained by short-time Fourier
transform (STFT) with 1024 window size and 75% overlap. In the network, the mask M̂ of the target is
estimated, and the estimated target spectrogram is obtained by element-wise multiplication of X and M̂.
The estimated target signal is restored by taking inverse STFT of the estimated target spectrogram and
then performing overlap-add. The estimated separated signal is up-sampled to 44.1 kHz for evaluation.

4.1.3. Separation Results

The experiment was conducted in 8 steps. The first architecture (“A1”) is MDenseNet, which
is the baseline. The 2nd architecture (“A2”) is MMDenseNet [15]. The 3rd architecture (“A3”)
is MMDenseLSTM [20]. The 4th architecture (“A4”) adds a multi-band block to A1. The 5th
architecture (“A5”) replaces the dense block with a dilated dense block containing TDConv and
standard convolution. The 6th architecture (“A6”) replaces the TDConv of the A5 with FDConv. The
7th architecture (“A7”) replaces the TDConv of the A5 with 2DConv. The 8th architecture (“A8”) is
the proposed architecture which includes both TDConv and FDConv (T-FDConv). We programmed
MDenseNet (“A1”), MMDenseNet (“A2”), and MMDenseLSTM (“A3”) by ourselves to operate on
monophonic signals. A1, A2, and A3 was to compare the performance in the same environment as the
proposed architecture (“A8”).

Table 1 shows the experimental results. Results were measured for vocals and accompaniment by
signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR), and signal-to-artifacts ratio (SAR) [32].
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We used median as statistics. A4 performs better than A1 in vocals and accompaniment, respectively.
A5 yielded higher SDR than A4, A6, and A7 in vocals, while A7 produced higher SDR than A4, A5,
and A6 in accompaniment. This shows that vocals signals have a variety of patterns along the time
axis rather than the frequency axis in the spectrogram, and accompaniment signals have a variety
of patterns simultaneously along the time and the frequency axes in the spectrogram. After we
performed several combinations of experiments with TDConv, FDConv, and 2DConv, we found that
the proposed architecture, including TDConv and FDConv, produces the best results. In vocals, A8
showed significantly higher SDR than A1~A7. In accompaniment, A8 showed significantly higher SDR
than A1, A2, A4~A7, and had the same SDR as A3. As a result, A8 improved 0.12 dB SDR over A3
(MMDenseLSTM) in vocals. The proposed architecture outperforms MMDenseLSTM in vocals.

Table 1. Separation performance (dB) on DSD100 dataset.

Signal Vocals Accompaniment

Architecture

Statistics
SDR SIR SAR SDR SIR SAR

A1 (MDenseNet) 4.93 12.98 6.22 11.48 16.74 13.45
A2 (MMDenseNet) 5.61 13.43 6.57 11.97 16.84 13.96

A3 (MMDenseLSTM) 5.78 13.57 6.87 12.03 16.44 14.22
A4 (A1 + MB) 5.31 13.51 6.30 11.62 16.24 13.38

A5 (A3 + TDConv) 5.51 14.27 6.47 11.73 16.86 13.50
A6 (A3 + FDConv) 5.26 13.50 6.48 11.71 17.82 13.21
A7 (A3 + 2DConv) 5.46 13.82 6.42 11.81 17.67 13.07

A8 (A3 + T-FDConv) 5.90 14.56 6.90 12.03 17.16 13.48

We compared the proposed architecture with the previous methods: Deep non-negative matrix
factorization (DeepNMF), FNN, BLSTM, 4-stacked hourglass network (SH-4stack), MMDenseNet,
and MMDenseLSTM. For DeepNMF [9], FNN [8], SH-4stack [14], and the proposed architecture,
monophonic signals were used for evaluation. On the other hand, stereo signals were used to evaluate
BSLTM [12], MMDenseNet [15], and MMDenseLSTM [20] with data augmentation and multi-channel
Wiener filter (MWF). The performance of MMDenseNet [15] and MMDenseLSTM [20] presented in
Table 2 differs from our experimental results A2 and A3 in Table 1. This difference is because our
experiment used monophonic signals and did not use data augmentation and MWF.

Table 2. Signal-to-distortion ratio (SDR, dB) comparison with other methods.

Method Number of Parameters (×106) Vocals Accompaniment

DeepNMF [9] - 2.75 8.90
FNN [8] - 4.47 11.12

BLSTM [12] 30.03 4.86 11.26
SH-4stack [14] 34.18 5.45 12.14

MMDenseNet [15] 0.33 6.00 12.10
MMDenseLSTM [20] 1.22 6.31 12.73

Our method 0.48 6.25 12.58

To obtain the results of our method in Table 2, we also applied data augmentation techniques
to the A8 architecture for comparing performance with the previous methods. Here, we augmented
training data by using three times the original data. The proposed method has higher SDR than
BLSTM, therefore we can see that CNN-based architectures outperform BLSTM. The proposed method
using DenseNet, which improves information flow between layers or blocks, outperforms a typical
CNN-based SH-4 stack. The proposed method is better than MMDenseNet by effectively expanding
the receptive field. The proposed method shows lower performance than MMDenseLSTM, but it does
not use the Wiener filter and has the advantage of network configuration with very few parameters.
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As a result, the proposed method, which effectively expands the receptive field at DenseNet, showed
the highest performance next to the MMDenseLSTM with 6.25 dB SDR in vocals and 12.58 dB SDR in
accompaniment.

4.2. Music Identification Experiment

The music identification experiment has the structure shown in Figure 9. The separation model is
trained using mixed music and speech signals as inputs and each original signals as a reference in the
training process. In the test process, the mixed signal is separated into the speech and music signal
by the trained each separation model, and fingerprinting features are extracted from the separated
music signal. The separated speech signal is only used to measure the separation performance. Music
identification is performed in the fingerprinting database using the landmark-based fingerprinting
feature [33] of the separated music signal. We can obtain the identification result, and we can also
calculate the separation performance from the separated signal.
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4.2.1. Dataset

For the music identification experiment, 9118 songs of various countries and genres were collected;
1823 songs were used for the training and 7295 songs were used for the test. Landmark information
was extracted from all sections of 7295. The length of the query signal was 12 s.

The speech data was extracted only in a section where only pure speech exists in 90 h of broadcast
content of various genres. The duration per genre of broadcast content was 30 h each for drama and
entertainment, and 15 h each for documentaries and kids. The extracted speech signals were divided
into 12-s intervals to generate a total of 3646 speech data corresponding to about 12 h; 1823 speech
samples were used for the training and the remaining 1823 speech samples were used for the test. The
speech data was recorded in a stereo format at 44,100 Hz sampling rate.

The music signal of the training data was cut to 12 s in an arbitrary section. The truncated music
signal was mixed with the speech signal to have an arbitrary signal-to-noise ratio (SNR) between –30
and 0 dB to apply the characteristics of the broadcaster where the louder speech signal was mixed. The
music signal of the test data was cut off for 12 s in two arbitrary sections of each song. The truncated
12-s music signal was mixed with the test speech data and tested. In the test, the SNR of 0 dB and −10
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dB were mixed to measure the separation performance according to each SNR. There are 14,590 test
query data for each SNR. The music signal was recorded in a stereo format at a 44,100 Hz sampling rate.

4.2.2. Mixing

In order to create a dataset with an environment similar to broadcast contents, music signals and
speech signals should be mixed to appropriate SNRs. The voice activity detection (VAD) was used to
find the section in which the actual speech exists to blend to the desired SNR. The equation below is
for creating mixed data:

α = 10
β
20 ×

Pavg(xs[vs])

Pavg(xm[vm])
(5)

y = xs + α× xm (6)

where α is a mixing factor with the target SNR β (dB), xs is a speech signal, xm is a music signal, and
Pavg(·) is average power. The vs and vm is an output vector of WebRTC [34] and represents a vector
where actual speech signal and music signal are located, respectively. The y, which is the mixed signal,
can be obtained by linearly adding xm multiplied by α and xs.

4.2.3. Setup

We used mono signals down-sampled at 16 kHz and calculated spectrograms with 1024 window
size and 75% overlap size. The output spectrogram of the separation system was converted and saved
as a waveform, which was used as the input for music identification. For music identification, we
used the open-source landmark-based identification program [35] and we experimented with the
default values set in the program. Wave-U-Net experiments were conducted using the open source
program [36].

4.2.4. Music Identification Results

In order to fairly compare with other methods, we did not use data augmentation or Wiener filter
for the separation system. Table 3 shows the SDR, SIR, and SAR performance of the separated music
and speech signals by each separation architecture.

Table 3. Separation results (dB) on broadcast contents.

Separated Signal Music Speech

SNR 0 dB −10 dB 0 dB −10 dB

Architecture

Statistics
SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

U-Net 6.24 11.51 8.54 3.18 10.72 4.63 5.66 9.10 9.36 13.65 16.97 17.04
Wave-U-Net 6.33 14.19 7.54 2.97 13.15 3.70 6.02 10.32 8.97 14.24 18.70 16.66
MDenseNet 6.98 13.23 8.63 3.84 11.32 5.14 6.57 10.80 9.42 14.45 18.63 17.01

MMDenseNet 7.15 13.43 8.86 4.04 11.48 5.35 6.77 10.92 9.58 14.53 18.74 17.07
MMDenseLSTM 7.40 13.34 9.22 4.13 11.21 5.54 7.68 12.36 10.02 14.98 19.41 17.33

Proposed 7.72 13.74 9.45 4.44 11.72 5.72 7.63 12.29 9.98 15.00 19.39 17.34

In the music separation result, Wave-U-Net performs best in SIR performance. SIR is a
quantification of the degree of interference between speech and music signals, which shows how much
speech signal remains in the separated music signal. Other structures except Wave-U-Net estimate the
spectrogram magnitude of the music and reconstruct the signal using the phase information of the
mixed signal. Using the phase information of the mixed signal causes the SIR to be lowered. To avoid
this interference, Wave-U-Net estimates the signal directly in the time domain. However, in terms of
SDR, MDenseNet, MMDenseNet, MMDenseLSTM, and the proposed architecture using DenseNet
show higher performance than Wave-U-Net. Since SDR is a comprehensive value considering both
SIR and SAR, separation performance is usually compared based on SDR. The proposed architecture
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showed the best separation performance as 7.72 dB SDR at 0 dB SNR and 4.44 dB SDR at −10 dB SNR.
At −10 dB SNR, Wave-U-Net showed lower separation performance than U-Net. Except for this case,
the performance of each architecture showed reasonable results, as can be seen in previous and other
studies [19,37].

In the speech separation result, we can see that unlike music, the SIR performance of Wave-U-Net
is lower than that of DenseNet-based separation architectures. the speech signal separation is
less affected by the phase of the mixed signal than the music signal separation. We can see
that the separation performance of MMDenseLSTM and the proposed architecture is similar and
is better than other architectures. However, in music identification, the proposed architecture
outperformed MMDenseLSTM.

Table 4 shows the accuracy of music identification. The performance of the Mix is the lower
boundary, and the performance of the Oracle is the upper boundary. The performance of the Oracle is not
100% because of the distortion caused by the down-sampling. U-Net showed the lowest identification
performance, and the proposed architecture showed the best performance in identification with 71.91%
identification accuracy at 0 dB SNR and 48.03% identification accuracy at −10 dB SNR. However, some
results did not correlate with SDR performance. MMDenseNet had higher separation performance
than Wave-U-Net and MDenseNet, but lower identification performance.

Figure 10 shows the music identification results and the fingerprinting features at the spectrogram
for the query signal of each separation system. Fingerprinting features appear up to 5512 Hz by the
setting of the identification system. These figures show that MDenseNet and MMDenseNet are poorly
identified despite high SDR. In Result 1 of the figure, the separated signal by MMDenseNet with the
second-highest SDR fails to be identified. However, the proposed architecture with the same SDR
performance as MMDenseNet is successfully identified. In Result 2 of the figure, identification is
successful although MDenseNet produces lower SDR than MMDenseNet. In contrast, MMDenseNet
has the highest SDR but fails to be identified.
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Table 4. Music identification accuracy (%).

Architecture

SNR
0 dB −10 dB

Mix 43.38 4.59
U-Net 42.33 19.38

Wave-U-Net 54.77 26.89
MDenseNet 52.57 28.44

MMDenseNet 49.66 26.67
MMDenseLSTM 67.94 44.96

Proposed 71.91 48.03
Oracle 95.92
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At the spectrogram in Figure 10, we can see discontinuous horizontal lines in MDenseNet and
MMDenseNet. There is a discontinuous horizontal line at the 6500 Hz frequency of the MDenseNet
spectrogram. This distortion is not frequent, and the discontinuous horizontal line appears at 6500 Hz
in MMDenseNet. In addition, MMDenseNet notices an additional discontinuous horizontal line in the
middle (4000 Hz) of the spectrogram. Placing an excessive number of parameters in each frequency
band in parallel, such as MMDenseNet, is not effective for increasing the receptive field and introduces
distortion on the spectrogram. This distortion of the spectrogram has a small effect on SDR but is an
obstacle to extract for fingerprinting features in music identification. Designing to apply convolution to
each band of the spectrogram like the multi-band block of the proposed structure can prevent distortion
and effectively increase the receptive field. In the spectrogram of the proposed architecture, we can see
that no distortion occurs. Even with these discontinuous horizontal lines, the separation performance
of MMDenseNet is higher than that of MDenseNet because the SDR is sensitive to the low-frequency
band of the spectrogram. Additional experiments in this regard are covered in the next subsection.

The high identification performance of Wave-U-Net is expected to be related to the receptive field.
A large receptive field of the network is advantageous for maintaining the peak points of the estimated
spectrogram. Wave-U-Net has 12 down-sampling processes in the signal domain. The proposed
architecture that effectively increases the receptive field by dilated convolution and down-sampling
shows the best performance in identification as well as high SDR.

4.2.5. Signal-to-Distortion Ratio (SDR) Comparison of Distortion in the Spectrogram Frequency Band

We experimented to see how the frequency band distortion of the spectrogram affects SDR. As
shown in Figure 11, the spectrogram of music signals was divided into four bands (D1~D4) and
multiplied by the weight for each band to distort it. The music signal without distortion is called D0.
We added the distorted music spectrogram to the speech spectrogram and restored it to the signal.
Finally, the SDR was calculated using the distorted mixture signal and the reference signals with 16
kHz sampling rate. In addition, the identification experiment was performed using the distorted mixed
signal. The fingerprinting database was extracted at 16 kHz sampling rate from 7295 songs. We used
the distortion weight α as 0.3. The 1000 samples mixed with 0 dB SNR were tested.
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Table 5 shows the SDR and identification results of the distorted mixed signal. The mean SDR
of the undistorted signal D0 matches the mixed SNR and shows the best identification accuracy. D1
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shows the lowest SDR value. On the other hand, D1 shows better identification accuracy than D2~D4.
D2~D4 show higher SDR performance than D1, but lower identification accuracy than D1.

Table 5. SDR and identification result according to frequency band distortion.

Distortion Mean SDR (dB) Identification Accuracy (%)

D0 −0.01 48.9
D1 −8.53 42.9
D2 −0.30 40.9
D3 −0.10 40.6
D4 −0.05 40.9

Since the SDR of separation performance is calculated based on the correlation of signal domain,
it is sensitive to the low-frequency band with high energy values. A high SDR performance can be
obtained by accurately estimating the low-frequency portion of the spectrogram. However, since
speech signal has higher energy in the low-frequency band than music signal, maintaining the peak
points of the high-frequency band at the music signal is important to music identification. For this
reason, the identification performance is lower even with high SDR.

5. Conclusions

In this study, we proposed source separation using dilated time-frequency DenseNet for music
identification in broadcast content. The background music of broadcast content is frequently mixed
with speech, and further the volume of music signal is less than the volume of the speech signal in
most cases. In this case, music identification is not easy, and hence background music separation is
required before music identification.

In previous studies, source separation using deep learning was studied extensively and showed a
good performance. We add a time-frequency dilated convolution and apply different convolutions to
each frequency band of the spectrogram to effectively increase the receptive field in the CNN-based
DenseNet architecture. We conducted a music-identification experiment by separating the music signal
from mixture signals into the proposed architecture and the previous architecture.

The results of music identification did not correlate with the separation performance. Wave-U-Net,
MDenseNet, and MMDenseNet results of the music identification experiments were in contrast to the
separation performance. The separation performance of SDR was affected by the low-frequency region
of the spectrogram. The music identification module extracted the fingerprinting feature using the
peak points of the spectrogram. Accordingly, if only the peak points of the separated signal are well
preserved, the identification is likely to succeed. Despite the different characteristics in performance,
the proposed architecture showed the best performance in identification as well as in separation.
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Appendix A

Table A1 shows the proposed architecture in detail. In the table, f × t of the multi-band block
is the kernel size of convolution, and N is the number of output feature maps. In the dilated dense
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block, k is the growth rate, L is the number of composite layers, ε is the dropout rate, and θ is the
compression rate.

Table A1. Details of the proposed architecture.

Layers Parameter Output Size

Multi-band 1 ( f × t, N) 3×3, 27 512×128×27
Dilated Dense 1 (k, L, ε) 12, 4, 0 512×128×111
Compression (θ) 0.25 512×128×27
Down-sampling 2×2 average pooling 256×64×27
Dilated Dense 2 (k, L, ε) 12, 4, 0 256×64×111
Compression (θ) 0.25 256×64×27
Down-sampling 2×2 average pooling 128×32×27
Dilated Dense 3 (k, L, ε) 12, 4, 0 128×32×111
Compression (θ) 0.25 128×32×27
Down-sampling 2×2 average pooling 64×16×27
Dilated Dense 4 (k, L, ε) 12, 4, 0 64×16×111
Compression (θ) 0.25 64×16×27
Up-sampling 2×2 transposed convolution 128×32×27
Concatenate Dilated Dense 3 128×32×54
Dilated Dense 5 (k, L, ε) 12, 4, 0.2 128×32×138
Compression (θ) 0.25 128×32×34
Up-sampling 2×2 transposed convolution 256×64×34
Concatenate Dilated Dense 2 256×64×61
Dilated Dense 6 (k, L, ε) 12, 4, 0.2 256×64×145
Compression (θ) 0.25 256×64×36
Up-sampling 2×2 transposed convolution 512×128×36
Concatenate Dilated Dense 1 512×128×63
Dilated Dense 7 (k, L, ε) 12, 4, 0.2 512×128×147
Compression (θ) 0.25 512×128×36
Dilated Dense 8 (k, L, ε) 4, 2, 0.2 512×128×44
Compression (θ) 0.25 512×128×11
Multi-band 2 ( f × t, N) 3×3, 9 512×128×9
BN-ReLU - (same)
Conv ( f × t, N) 3×3, 1 512×128×1
ReLU - (same)
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