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Featured Application: This work presents a Graphics User Interface that applies two automated
learning models based on machine-procured independent variables to assist ophthalmology
professionals in keratoconus disease diagnosis and classification.

Abstract: This work pursues two objectives: defining a new concept of risk probability associated
with suffering early-stage keratoconus, classifying disease severity according to the RETICS (Thematic
Network for Co-Operative Research in Health) scale. It recruited 169 individuals, 62 healthy and
107 keratoconus diseased, grouped according to the RETICS classification: 44 grade I; 18 grade II;
15 grade III; 15 grade IV; 15 grade V. Different demographic, optical, pachymetric and eometrical
parameters were measured. The collected data were used for training two machine-learning models:
a multivariate logistic regression model for early keratoconus detection and an ordinal logistic
regression model for RETICS grade assessments. The early keratoconus detection model showed
very good sensitivity, specificity and area under ROC curve, with around 95% for training and 85%
for validation. The variables that made the most significant contributions were gender, coma-like,
central thickness, high-order aberrations and temporal thickness. The RETICS grade assessment also
showed high-performance figures, albeit lower, with a global accuracy of 0.698 and a 95% confidence
interval of 0.623–0.766. The most significant variables were CDVA, central thickness and temporal
thickness. The developed web application allows the fast, objective and quantitative assessment of
keratoconus in early diagnosis and RETICS grading terms.

Keywords: Scheimpflug; 3D cornea model; early keratoconus; Corrected Distance Visual Acuity
(CDVA)

1. Introduction

Corneal tomography is a validated technology for evaluating the changes occurring in the
corneal morphology of keratoconus (KC) disease [1], which allows for the control of the geometric
decompensation driven by the asymmetry present while this disease progresses [2,3]. However,
no agreement has been reached about the relative importance of the indices and technologies to be
used to detect which patients may suffer post-surgical corneal iatrogenic ectasia when evaluating
patients’ suitability for refractive surgery [4–10].
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Some studies have evaluated the objective efficiency of different indices for early stages of
this disease in an individualized way. These studies are generally related to values of curvature,
elevation and pachymetry [11], and to patterns based on the combination of indices that come from
the same [12–16] or different technologies [7,9,17–20]. The evaluation of these patterns is based on
subjective analysis [7,21], which is critical to gain a better discrimination capability according to clinical
experience. Nevertheless, there are still significant discrepancies in terms of the relative value of the
results obtained in their evaluation of the risk probability associated with disease development.

In KC, geometric decompensation occurs and causes disease progression [11], which means
increased high-order optical aberrations and high irregular astigmatism values [22], whose
main refractive sign is the impossible complete optical compensation of their ametropia by
spherical-cylindrical lenses. Consequently, corrected visual acuity will diminish compared to
individuals with no corneal pathology [23]. The scientific literature contains many classifications for the
degree of KC severity [24–31]. However in clinical practice, it is difficult to handle the many indices on
which these classifications are based for proper optical-geometrical evaluations of disease progression.
From an optical point of view, patients show a deteriorated spectacle-corrected visual acuity during
disease development, insofar as their visual performance worsens as the degree of KC severity
progresses. Following this criterion, a classification of disease stages has been developed [23,32]: the
so-called RETICS grading. This grading takes into account four geometrical parameters (Internal
Astigmatism, RMS Coma-Like, Q8mm and Pachimetry) and a functional one (Corrected Distance Visual
Acuity (CDVA)) to establish five KC degrees: I to V.

This study develops and validates a Graphics User Interface (GUI) that combines two automatic
learning models based on a set of independent variables with two aims: defining a new concept of
risk probability associated with the development of early-stage KC and classifying disease severity
according to the RETICS (Thematic Network for Co-Operative Research in Health) scale to assist
ophthalmology professionals in disease management.

2. Materials and Methods

2.1. Patients

This research work was conceived as an observational comparative study. It comprised 169 eyes
of 169 subjects divided into two groups. To avoid potential biases, those cases showing any other
ocular comorbidity that could affect the present study parameters, who had undergone any ocular
surgical procedure, or had worn contact lenses in the 4 weeks prior to the topographical evaluation,
were excluded from both groups.

The first group, called the “control” group, comprised 62 healthy eyes of 62 patients (48.4% males,
51.6% females) whose ages ranged from seven to 60. The cases included in the control group were
randomly selected from the refractive surgery candidates, and the data used for this study were
acquired during their pre-surgical appointments, always with the same experienced technician.

The second group was formed by 107 KC candidates (63.2% males, 36.8% females) aged from 15
to 98. They were classified into five subgroups in accordance with the RETICS grading system [32].

The procedure followed for KC group diagnosis and classification was based on state-of-the-art
clinical and topographical evaluations (Figure 1), including uncorrected distance visual acuity (UDVA),
CDVA, manifest refraction (sphere and cylinder), slit-lamp biomicroscopy, Goldmann tonometry,
fundus evaluation and ultrasonic pachymetry [33]. In all cases, pre-surgical evidence for KC was
assessed: asymmetric bowtie pattern with or without skewed axes, localized stromal thickness
reduction, conical protuberance at the apex, Fleischer ring, Vogt striae or anterior stromal scar.
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Figure 1. Methodology proposed for Keratoconus Score Calculator generation.

All the evaluations were made at Vissum Corporation Alicante (a centre affiliated with the Miguel
Hernández University of Elche, Elche, Spain), and now form part of the official “Iberia” database of KC
cases created for the National Network for Clinical Research in Ophthalmology RETICS-OFTARED.
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Patients were adequately informed about the study and agreed to freely participate in it. The study
was also ratified by the hospital’s Ethical Committee for Clinical Research according to the ethical
guidelines in the Declaration of Helsinki (7th revision, October 2013, Fortaleza, Brazil).

2.2. Methods

Each case selected to form part of this research was examined using a Sirius System® tomographer
(Costruzione Strumenti Oftalmici, Florence, Italy), following the specifications of a validated procedure
previously created by our research group, which is clearly explained in former research works [2,34].
This procedure is effective when used for both the diagnosis and characterization of KC [35,36], and
comprises two phases: 3D virtual modeling, followed by a morpho-geometric analysis.

The product of this procedure is a patient-specific 3D custom corneal model, which can be studied
to determine several morpho-geometric parameters that have already been described and used in a
previous study [37]. Of them all, anterior corneal surface area (anterior surface area), posterior corneal
surface area (posterior surface area) and total corneal volume (total volume) were selected to be used,
along with demographic, pachymetry and clinical parameters (Figure 1).

2.3. Statistical Analysis

The quantitative variables were summarized using mean±standard deviation (SD), median and
interquartile range (25th and 75th percentiles). The Shapiro–Wilk test was employed to assess if
the quantitative variables followed normal distribution. The Student’s t-test was run to compare
the normally distributed variables between two groups, while an ANOVA was used when there
were three groups or more. For the non-normally distributed variables, the Mann–Whitney test
and the Kruskal–Wallis test were, respectively, carried out. Differences in the qualitative variables
among independent groups where compared by the χ2 test. The predictive score model for early
KC detection was defined using multivariate logistic regression with the control and RETICS grade I
groups. Seventeen variables were included in the model: two demographic (age and gender), seven
optical (CDVA, coma-like, Q8mm, spherical-like, RMS total, high-order, astigmatism), five pachymetry
(central thickness, temporal, nasal, superior, inferior) and three morpho-geometric (total volume,
anterior surface area, posterior surface area). Model discriminative efficiency was evaluated by receiver
operating characteristic (ROC) curves, when area under curve (AUC), sensitivity and specificity were
taken as performance indicators. An internal cross-validation procedure was followed using bootstrap
aggregating (bagging) [38]. This procedure works as follows: it first generates a new dataset of equal
size by sampling with replacement from the original dataset. The model is then trained with these data.
Finally, this model is used to make predictions on those cases not used during training. This procedure
is repeated 100 times to obtain a set of quality parameters that can be averaged, and confidence intervals
that can be calculated. On average, 63.2% of the original data were used in all these 100 training steps.
The remaining 36.8% were used for validation. Ordinal multivariate logistic regression was utilized to
determine the RETICS grade with the same predictor variables. In this case, the confusion matrix was
employed to estimate model performance by means of sensitivity, specificity and balanced accuracy
per group. Data were evaluated by R Statistics v3.6.1 (R Foundation for Statistical Computing, Vienna,
Austria) [39].

Packages “tidyr”, “dplyr”, “dlookr” and “smbinning” were used for data loading, exploration and
transformation. Packages “corrplot”, “yarrr” and “FactoMiner” were employed for data visualization.
Packages “pROC”, “ROCR” and “Epi” were utilized for the ROC curve analysis and representation.
Logistic regression models were trained with the “glm” function from the base package. Ordered
logistic regression models were trained with the “polr” function from the MASS package. Confusion
matrices were analyzed by the “caret” package. Optimal sample size calculations were made by the
“rcompanion” and “pmsampsize” packages.

The statistical power analysis was conducted with simulation using the Wald test to estimate the
power for each covariate according to sample size, as described in the literature [40,41].



Appl. Sci. 2020, 10, 1874 5 of 19

A web application was developed using Shiny v1.3.2 (RStudio Inc., Boston, MA, USA) [42] and
the ShinyAuthr v0.0.99 authentication module (Paul Campbell, Paris, France) [43]. This application
was deployed in a private secure institutional network (because patients’ clinical data were used, and
the application was, therefore, accessible only from controlled computers to minimize the security
risks linked to using patients’ data).

Application landing page, shown in Figure 2, is a login form that adds a secured authentication
layer. No registering possibility was included, and new users can only be directly added by the
administrator. After logging in, users view a form with text boxes corresponding to all the model
predictors that are filled by default with sample values from a healthy individual. Users can type in
new values and, after pressing the “get score” button values, they are passed to trained models and
predictions are made (Figures 3–8), including the early detection KC score (known as “keratoscore”),
the RETICS grade prediction and a brief graphical description of the hypothetical cornea, with a
schema indicating the representation of the different parameters.
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In summary, the GUI application was developed using a responsive design, which makes it
accessible from any network-connected device because it does not require any software or driver being
installed, apart from an up-to-date web browser.

3. Results

Sixty-two healthy eyes (36.7%) (control group, Ctrl) and 107 KC eyes (63.3%) (KC group, KC) were
herein considered. Several subgroups were established in the KC group depending on the disease
stage according to the RETICS grading system: grade I (44 eyes, 41.1%), grade II (18 eyes, 16.9%),
grade III (15 eyes, 14.0%), grade IV (15 eyes, 14.0%) and grade Plus-V (15 eyes, 14.0%). The main
demographic information in the control and KC subgroups are displayed and summarized in Table 1.
No significant differences were found in age and gender terms among all the groups.

Table 1. Demographic information for healthy individuals (Ctrl) and the RETICS-classified keratoconus
patients, graded between I and V.

Ctrl I II III IV V p

Number of cases 62 44 18 15 15 15
Age in years (mean ± SD) 37.5 ± 14.4 41.2 ± 16.6 47.4 ± 22.5 40.3 ± 12.6 34.0 ± 14.3 36.3 ± 18.0 0.161

Female/Male 32/30 12/32 6/12 7/8 6/9 4/11 0.146

Table 2 summarizes the descriptive analysis outcomes obtained for all the quantitative variable
analyses in the control vs. RETICS I and the control vs. KC groups. The descriptive analysis indicated
that most variables did not follow normal distribution. Statistically significant p-values were found
for all the variables between the control group (Ctrl) and the RETICS grade I group, except for age
(p = 0.665). When testing for differences within all the groups (Ctrl and RETICS grade I to V), every
p-value was significant, except for age (p = 0.344).

Table 2. Descriptive analysis for the quantitative variables and p-values for normality and differences
between RETICS groups. CDVA: Corrected Distance Visual Acuity; Q: asphericity; RMS, root
mean square

Variables Mean SD Median Range Normality Ctrl vs.
RETICS I

Ctrl–RETICS
I–II–III–IV–V

Demographic

Age 39 16 38 7–98 <0.001 0.665 0.344

Optical

CDVA 0.77 0.32 0.96 0.05–1.20 <0.001 <0.001 <0.001
Coma-like 1.85 2.15 1.01 0.08–13.0 <0.001 <0.001 <0.001

Q8mm −0.63 0.70 −0.45 −2.80–2.82 < 0.001 0.025 <0.001
Spherical-like 0.70 0.93 0.44 0.15–7.20 <0.001 <0.001 <0.001

RMS total 3.22 3.09 2.38 0.33–15.6 <0.001 <0.001 <0.001
High-order 2.02 2.33 1.12 0.24–13.8 <0.001 <0.001 <0.001

Astigmatism 2.31 2.25 1.57 0.04–11.22 <0.001 <0.001 <0.001

Pachymetry

Central thickness 499 62 508 285–633 <0.001 <0.001 <0.001
Temporal 545 50 546 385–645 0.073 <0.001 <0.001

Nasal 579 48 579 451–692 0.835 <0.001 <0.001
Superior 591 50 590 408–695 0.062 <0.001 <0.001
Inferior 559 57 563 332–762 <0.001 <0.001 <0.001
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Table 2. Cont.

Variables Mean SD Median Range Normality Ctrl vs.
RETICS I

Ctrl–RETICS
I–II–III–IV–V

Morpho-Geometric

Total volume 24.7 1.9 24.4 19.8–29.1 0.335 <0.001 <0.001
Anterior surface

area 43.35 0.59 43.24 42.49–47.44 <0.001 <0.001 <0.001

Posterior surface
area 44.70 0.93 44.53 43.53–51.14 <0.001 <0.001 <0.001

The multivariate logistic regression model results are summarized in Table 3 with the coefficients
for each variable. The variables that made a statistically significant contribution in the model are
shown below: gender, coma-like, central thickness, high-order and temporal.

Table 3. Summary of the multivariate logistic regression model for the Ctrl vs. RETICS I patients.
CDVA: Corrected Distance Visual Acuity; Q: asphericity; RMS, root mean square

Std. Z p 95% CI

Variables Coefficient Error Value Value OR Lower Upper

Demographic

Age 0.135 0.078 1.727 0.084 1.145 1.021 1.416
Gender 5.267 2.520 2.090 0.037 193.907 4.154 2.14 × 105

Clinical

CDVA −6.345 4.613 −1.376 0.169 0.002 0.001 1.821
Coma-like 4.072 1.917 2.124 0.034 58.687 3.615 1.16 × 104

Q8mm 6.027 4.618 1.305 0.192 414.459 0.070 3.02 × 107

Spherical-like 1.673 1.259 1.329 0.119 5.329 0.671 1.08 × 102

RMS total 2.482 1.591 1.560 0.119 11.969 1.071 8.65 × 102

High-order 5.534 2.484 2.227 0.026 253.143 5.830 3.12 × 105

Astigmatism −1.054 1.218 −0.866 0.387 0.348 0.014 2.963

Pachymetry

Central thickness -0.242 0.116 −2.083 0.037 0.785 0.577 0.941
Temporal 0.028 0.012 2.248 0.025 1.028 1.009 1.064

Nasal 0.007 0.011 0.641 0.522 1.007 0.987 1.034
Superior 0.092 0.058 1.587 0.113 1.096 0.995 1.263
Inferior −0.051 0.034 −1.479 0.139 0.951 0.870 0.995

Morpho-Geometric

Total volume 0.067 0.547 0.124 0.901 1.070 0.349 3.908
Anterior surface area −0.326 0.532 −0.614 0.539 0.722 0.218 2.105
Posterior surface area −1.189 0.779 −1.525 0.127 0.305 0.044 1.199

Constant 135.027 61.595 2.192 0.028 - - -

The ROC curve in Figure 9 shows an optimal cut-off point of 0.475 with a training AUC of 0.990, a
sensitivity of 0.977 and a specificity of 0.919, corresponding to 59 true negative cases, 41 true positive
cases, three false-positive cases and three false-negative cases. The bootstrapped validation values
corresponding to the 95% CI are 0.843 ± 0.058 for AUC, 0.844 ± 0.095 for sensitivity and 0.838 ± 0.081
for specificity.
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The parameters for the multivariate ordinal logistic regression model are summarized in Table 4.
In this case, the variables that made a statistically significant contribution to the model were: CDVA,
central thickness and temporal.

The confusion matrix for the training dataset is shown in Table 5, with an overall accuracy of 0.698
at a 95% CI between 0.623 and 0.766. Sensitivity, specificity and balanced accuracy are also shown for
each group.

Figure 11 depicts power according to the simulated sample size for both models, including only
the variables with maximum power over 0.9 at some point within the range, plus Age and Gender.
The remaining variables and their respective maxima for both the binary logistic regression and
ordinal logistic regression models were Coma-Like Deviation (0.61 and 0.62), Q8mm (0.55 and 0.57),
Spherical-Like Deviation (0.49 and 0.55), Nasal Thickness (0.81 and 0.83), Superior Thickness (0.88 and
0.89), Inferior Thickness (0.72 and 0.77), Volume (0.69 and 0.71), Anterior Surface (0.83 and 0.89) and
Posterior Surface (0.58 and 0.60). For both models, the variables of High-Order Aberration, CDVA,
Central Thickness, Total RMS and Temporal Thickness have power values over 0.80 for the sample
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sizes exceeding 150, and the powers for the ordinal logistic model at small sample sizes (below 100) are
somewhat lower than for the binary logistic regression models.

Table 4. Summary of the ordinal logistic regression model for the Ctrl and RETICS grade I-V patients.
CDVA: Corrected Distance Visual Acuity; Q: asphericity; RMS, root mean square

Std. t p 95% CI

Variables Coefficient Error Value Value OR Lower Upper

Demographic

Age 0.016 0.011 1.475 0.140 1.016 0.995 1.037
Gender −0.073 0.361 −0.203 0.839 0.929 0.458 1.885

Clinical

CDVA −5.495 0.865 −6.355 0.001 0.004 0.001 0.022
Coma-like 0.106 0.348 0.304 0.761 1.111 0.562 2.197

Q8mm 0.184 0.359 0.512 0.609 1.201 0.595 2.423
Spherical-like −0.063 0.250 −0.250 0.803 0.940 0.575 1.535

RMS total −0.422 0.298 1.416 0.157 1.526 0.850 2.737
High-order 0.621 0.345 1.797 0.072 1.860 0.945 3.660

Astigmatism −0.250 0.239 −1.046 0.296 0.779 0.488 1.244

Pachymetry

Central thickness −0.024 0.007 −3.298 0.001 0.977 0.963 0.991
Temporal 0.006 0.002 2.662 0.008 1.006 1.002 1.010

Nasal −0.002 0.003 −0.771 0.441 0.998 0.992 1.004
Superior 0.006 0.007 0.933 0.351 1.006 0.993 1.019
Inferior −0.002 0.005 −0.522 0.601 0.998 0.989 1.007

Morpho-Geometric

Volume 0.071 0.141 0.500 0.617 1.073 0.814 1.414
Anterior area −0.204 0.133 −1.533 0.125 0.816 0.623 1.058
Posterior area 0.046 0.129 0.361 0.718 1.048 0.814 1.348

Intercepts

Ctrl vs. RETICS I −16.769 0.017 −98.428 <0.001 - - -
RETICS I vs. II −13.926 0.396 −35.205 <0.001 - - -

RETICS II vs. III −12.270 0.522 −23.530 <0.001 - - -
RETICS III vs. IV −9.998 0.765 −13.072 <0.001 - - -

RETICS IV vs. V −6.691 1.057 −6.330 <0.001 - - -

Table 5. The ordinal logistic regression confusion matrix showing sensitivity, specificity and balanced
accuracy for each group. The total sum of cells by rows shows the total number of true cases present,
while each column represents how many cases the model classified in that category.

Predicted Value

True Value Ctrl I II III IV V

Ctrl 55 7 0 0 0 0
I 12 26 4 2 0 0
II 2 9 6 3 1 0
III 0 3 3 6 3 0
IV 0 1 0 1 12 1
V 0 0 0 1 1 13

Sensitivity 0.887 0.591 0.333 0.400 0.800 0.867
Specificity 0.869 0.840 0.954 0.955 0.968 0.994

Balanced accuracy 0.878 0.715 0.643 0.677 0.884 0.930
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Graphics User Interface

Figure 3 is a screenshot corresponding to one healthy individual (Ctrl). It includes a 3D image of
a characteristic cornea showing a schematic representation of how different predictors are calculated
based on physical measurements.

Figures 4–8 are five screenshots corresponding to five representatives of the five RETICS grades
I–V. The score rapidly rises when passing from Ctrl to grade I and remains at 100% for the other grades,
which is consistent with the high sensitivity and specificity in the model. Each prediction includes a
3D image of a characteristic cornea from the corresponding RETICS group, along with a schematic
representation of how different predictors are calculated based on physical measurements.

The four examples in Figure 12 indicate the difficulty of detecting early-stage KC. Indeed, some
cases are wrongly classified. We must bear in mind that this early KC detection model was trained
using diagnostics made by ophthalmological professionals as a “gold standard”, and some inevitable
undetermined amount of subjective information was taken for granted. During the fitting process, the
model attempted to find some generalization to bind predictors and prediction with the best possible
performance, but some samples might not match any kind of generalization given by training data’s
subjective nature. Therefore, it is reasonable to expect some lack of accuracy, which does not necessarily
mean failure in the model’s fitting capability. Our model quantitatively confirmed the difficulty of
discerning both control and grade I groups as 17 of 106 cases (16%) and obtained a score between
0.1 and 0.9 which is, therefore, in the aforementioned “halfway” situation, and thus confirmed this
tool’s utility.
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4. Discussion

The range of techniques that allow the characterization and evaluation of the degree of KC severity
vary, but the ultimate trends use machine-learning [44] and neural networks [45].

This study defines two automated learning models based on a set of independent variables
(demographic, optical, pachymetric, morpho-geometric) to characterize the optical-geometrical cornea
structure in different KC phases. More specifically, it considered a probability model of the risk
associated with suffering early-stage KC, as well as another model to classify the degree of KC severity
depending on patients’ visual limitation levels.

This approach offers some very useful advantages. First, it summarizes information that derives
from many parameters of different natures (qualitative or quantitative, measured in distinct units) in a
single number that can be easily read and understood, which minimizes the risk of some key pieces of
information going unnoticed. Otherwise, this risk is fairly high, as common analytical reports usually
contain many printed pages of different parameters, which often include no associated normality
range and must be read in a matter of seconds. Second, it evaluates the combined action of these
different parameters, which could imply a high value in a particular key parameter, clearly indicative
of disease being present, but might be less evident when the increase in many different key parameters
is slight. In this situation, a score can assist health professionals in their decision-making process as it
provides an objective and quantitative scale that takes into account the joint action of a set of diverse
parameters [3].

A multivariate logistic regression model was fitted using healthy (Ctrl) and RETICS grade I
individuals, which always made predictions ranging between 0 and 1 when applied to new data. This
prediction came closer to 0 when input data were similar to those that characterized healthy controls,
and close to 1 if they were similar to grade I KC patients. All those individuals with an intermediate
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score were considered to be more or less halfway between both groups, i.e., they showed some kind of
abnormality vs. healthy controls, which indicates KC-developing patients, but had not yet reached the
cut-off point to be diagnosed as diseased. Therefore, this multivariate logistic regression output could
be considered to be proportionally associated with the probability of suffering KC. A higher model
output indicated a stronger probability. Even though this relationship is not linear, such scores are
frequently used as predicting tools to assess patient status and prognosis in different fields [3,46–48].

For initial KC development, the analyzed model-based studies generally showed a good
discrimination between normal and early KC eyes. However, one of the main challenges faced
by ophthalmologists today is that no consensus has been reached by experts about the characterization
patterns of early corneal ectasia [7,49]. This is mainly the result of the diversity of designations used
to refer to subtler KC manifestations. It is also due to the fact that the wide variety of indices used
for detection are technology-specific, which does not make them easily interchangeable [19,49]. As it
is difficult to directly compare these studies, we resorted to using authors’ own writings to compare
them to our work.

Several studies have reported similar results to ours about models based on Scheimpflug
metrics [5–7,20]. Hwang et al. [7] proposed a first model based on the combination of five metrics (AUC:
0.86, Sensitivity: 83%, Specificity: 83%). Similar results have been obtained by other authors [5,6,20] in
the model development phase and based on the exclusive metrics of the same Scheimpflug technology.
In contrast, our study obtained higher performance values for model development (AUC: 0.95) and
similar ones in the validation phase (AUC: 0.85), and was composed of metrics that are not exclusive to
the same Scheimpflug technology.

Smadja et al. [50] used a machine-learning algorithm based on decision trees to analyze 55
parameters deriving from anterior and posterior corneal measurements. They found that the most
discriminant variables related to posterior surface asymmetry and thickness spatial distribution
achieved 93.6% sensitivity and 97.2% specificity when discriminating between normal and forme fruste
KC. However, some authors [51] considered that including eyes from patients who had already been
diagnosed with KC in one eye was inappropriate because it biases the sample if we contemplate that
the genetic determinants for KC appearing are already present in them.

In our study, the performance measurements of the early detection model in AUC, specificity
and sensitivity terms indicated very high performance with the training dataset, with all three values
reaching around 0.95, and very few false positives and false negatives. These figures are significantly
lower for the validation procedure, which dropped to about 0.85, but were well over 80% in all cases.
These findings indicate good model-validated performance, but also suggest the presence of some
overfitting. This is otherwise reasonable if we take into account the relatively few training cases
(62 healthy individuals and 44 RETICS grade I patients), which were significantly lower than the
training values.

Other authors have proposed using a multivariate system based on combining two different
technologies. Saad et al. [9] combined two technologies to propose a model based on 54 variables and
six discriminant functions, and reported 93% sensitivity and 92% specificity in the model development
phase. It was validated in a later study with 92% sensitivity and 96% specificity [52]. Other studies
have suggested combining several different technologies [53–55], but the authors defined a more
advanced form of KC when they included patients with manifest inferior steepening [49,56].

The only reference found in the scientific literature with a classification system that uses visual
acuity as a parameter is that by Wisse et al. [3], who established a scoring system that relied on five
parameters (age, quality of vision, uncorrected distance visual acuity, refraction difference, maximum
keratometry difference). However, this score did not classify disease grades, but disease progression.
Consequently, its aim was to determine if crosslinking treatment would be necessary or not.

Our work presents and validates a probability model of the risk associated with suffering KC. Our
research group is unaware of any previous study that combined demographic, optical, pachymetric
and morpho-geometric variables successfully and in real-time to detect early KC.
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Finally regarding the clinical KC development phase, experts’ criteria have converged to diagnose
this disease as the degree of severity of progressing KC [24]. Although there are several classifications
that characterize clinical KC, to the authors’ knowledge, there is no disease severity classifier based
on patients’ visual limitation. Our classifier is based on an ordinary logistic regression model that
combines 17 variables and presents an overall accuracy of 0.698; that is, our model correctly classifies
almost 70% of patients. The performance indicators for ordinal logistic regression are fairly lower,
particularly for the RETICS grade I, II and III patients, with balanced accuracies ranging between
0.623 and 0.766. Grade II patients present the worst accuracy, with nine in every 18 patients being
wrongly classified as grade I. Once again, a small sample size is the most probable explanation for
such behavior, along with its non-homogeneity (controls and grade I patients are much more abundant
that grade II–V patients). It could also indicate that these three groups are not clearly differentiated.
Therefore, all the conclusions drawn from the ordinal logistic regression model must be considered
very carefully. Even when the results are reasonably good, the training process should be repeated
with a bigger and more homogeneous sample. It would also be desirable to validate our results with
other ethnicities and populations.

Another limitation of our study is the proven dependence that clinical metrics has on the technology
employed to measure it [19], which means that our results are only valid for those eyes tested with a
Sirius tomographer (CSO, Florence, Italy).

5. Conclusions

A web application was developed and deployed that combines two machine-learning models to
support ophthalmologic professionals: a multivariate logistic regression model for early KC predictions
and an ordinal logistic regression model to assign diagnosis grades on the RETICS scale. This
application has a responsive design, and it allows any sort of device to be used (computer, tablet or
smartphone). It also incorporates security measurements (authentication layer and accession from
intranet only). The early KC prediction model shows high-performance indicators, even though
some overfitting appears, while the RETICS grading prediction model’s accuracy is remarkably lower,
particularly for grade I, II and III patients. In both cases, repeating the training process with a bigger
sample should be considered. This falls in line with recently published recommendations for sample
size calculations by multivariate prediction models [57] which, for this case, proposes an optimal sample
size of 374 individuals, with a minimum of 125. An optimal figure could not be reached, given our
biobank’s limited database size. Moreover, even though multivariate and ordinal logistic regressions
are state-of-the-art and widely used techniques for modeling biomedical research data, many other
powerful artificial intelligence techniques are available (particularly deep learning techniques), and
their use is strongly advised for improving the quality of results.

Author Contributions: Conceptualization, J.M.B. and F.C.; methodology, J.M.B., F.C. and J.L.A.; validation, J.S.V.
and J.M.B.; analysis, F.C. and J.S.V.; research, J.M.B., F.C. and J.L.A.; resources, J.M.B. and F.C.; data curation, J.S.V.
and J.L.A.; writing and preparing the original draft, J.M.B. and F.C.; writing—reviewing and editing F.C., J.S.V.
and J.L.A.; supervision, J.L.A.; project administration, F.C. and J.L.A.; funding acquisition J.L.A. All authors have
read and agree to the published version of the manuscript.

Funding: This publication has been carried out as part of the Thematic Network for Co-Operative Research
in Health (RETICS), reference number RD16/0008/0012, financed by the Carlos III Health Institute-General
Subdirection of Networks and Cooperative Investigation Centers (R&D&I National Plan 2013-2016), European
Regional Development Funds (FEDER), and the Results Valorization Program financed by the Technical University
of Cartagena (PROVALOR-UPCT).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pinero, D.P. Technologies for Anatomical and Geometric Characterization of the Corneal Structure and Anterior
Segment: A Review; Informa Healthcare: London, UK, 2015; pp. 161–170.



Appl. Sci. 2020, 10, 1874 17 of 19

2. Cavas-Martínez, F.; Bataille, L.; Fernández-Pacheco, D.G.; Cañavate, F.J.F.; Alio, J.L. Keratoconus detection
based on a new corneal volumetric analysis. Sci. Rep. 2017, 7, 15837. [CrossRef] [PubMed]

3. Wisse, R.P.L.; Simons, R.W.P.; van der Vossen, M.J.B.; Muijzer, M.B.; Soeters, N.; Nuijts, R.M.M.A.;
Godefrooij, D.A. Clinical Evaluation and Validation of the Dutch Crosslinking for Keratoconus Score.
JAMA Ophthalmol. 2019, 137, 610–616. [CrossRef] [PubMed]

4. Binder, P.S. Risk factors for ectasia after LASIK. J. Cataract Refract. Surg. 2008, 34, 2010–2011. [CrossRef]
5. Binder, P.S.; Trattler, W.B. Evaluation of a risk factor scoring system for corneal ectasia after LASIK in eyes

with normal topography. J. Refract. Surg. 2010, 26, 241–250. [CrossRef]
6. Chan, C.; Ang, M.; Saad, A.; Chua, D.; Mejia, M.; Lim, L.; Gatinel, D. Validation of an Objective Scoring

System for Forme Fruste Keratoconus Detection and Post-LASIK Ectasia Risk Assessment in Asian Eyes.
Cornea 2015, 34, 996–1004. [CrossRef]

7. Hwang, E.S.; Perez-Straziota, C.E.; Kim, S.W.; Santhiago, M.R.; Randleman, J.B. Distinguishing Highly
Asymmetric Keratoconus Eyes Using Combined Scheimpflug and Spectral-Domain OCT Analysis.
Ophthalmology 2018, 125, 1862–1871. [CrossRef]

8. Randleman, J.B.; Woodward, M.; Lynn, M.J.; Stulting, R.D. Risk assessment for ectasia after corneal refractive
surgery. Ophthalmology 2008, 115, 37–50. [CrossRef]

9. Saad, A.; Gatinel, D. Topographic and tomographic properties of forme fruste keratoconus corneas. Investig.
Ophthalmol. Vis. Sci. 2010, 51, 5546–5555. [CrossRef]

10. Seiler, T.; Quurke, A.W. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J. Cataract
Refract. Surg. 1998, 24, 1007–1009. [CrossRef]

11. Cavas-Martinez, F.; De la Cruz Sanchez, E.; Nieto Martinez, J.; Fernandez Canavate, F.J.;
Fernandez-Pacheco, D.G. Corneal topography in keratoconus: State of the art. Eye Vis. 2016, 3, 5.
[CrossRef] [PubMed]

12. Awad, E.A.; Abou Samra, W.A.; Torky, M.A.; El-Kannishy, A.M. Objective and subjective diagnostic
parameters in the fellow eye of unilateral keratoconus. BMC Ophthalmol. 2017, 17, 186. [CrossRef] [PubMed]

13. Bae, G.H.; Kim, J.R.; Kim, C.H.; Lim, D.H.; Chung, E.S.; Chung, T.Y. Corneal topographic and tomographic
analysis of fellow eyes in unilateral keratoconus patients using Pentacam. Am. J. Ophthalmol. 2014, 157,
103–109. [CrossRef] [PubMed]

14. De Sanctis, U.; Loiacono, C.; Richiardi, L.; Turco, D.; Mutani, B.; Grignolo, F.M. Sensitivity and specificity of
posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus.
Ophthalmology 2008, 115, 1534–1539. [CrossRef]

15. Li, Y.; Chamberlain, W.; Tan, O.; Brass, R.; Weiss, J.L.; Huang, D. Subclinical keratoconus detection by pattern
analysis of corneal and epithelial thickness maps with optical coherence tomography. J. Cataract Refract. Surg.
2016, 42, 284–295. [CrossRef] [PubMed]

16. Reddy, J.C.; Rapuano, C.J.; Cater, J.R.; Suri, K.; Nagra, P.K.; Hammersmith, K.M. Comparative evaluation
of dual Scheimpflug imaging parameters in keratoconus, early keratoconus, and normal eyes. J. Cataract
Refract. Surg. 2014, 40, 582–592. [CrossRef]

17. Randleman, J.B.; Lynn, M.J.; Perez-Straziota, C.E.; Weissman, H.M.; Kim, S.W. Comparison of central and
peripheral corneal thickness measurements with scanning-slit, Scheimpflug and Fourier-domain ocular
coherence tomography. Br. J. Ophthalmol. 2015, 99, 1176–1181. [CrossRef]

18. Reinstein, D.Z.; Archer, T.J.; Urs, R.; Gobbe, M.; RoyChoudhury, A.; Silverman, R.H. Detection of Keratoconus
in Clinically and Algorithmically Topographically Normal Fellow Eyes Using Epithelial Thickness Analysis.
J. Refract. Surg. 2015, 31, 736–744. [CrossRef]

19. Savini, G.; Carbonelli, M.; Sbreglia, A.; Barboni, P.; Deluigi, G.; Hoffer, K.J. Comparison of anterior segment
measurements by 3 Scheimpflug tomographers and 1 Placido corneal topographer. J. Cataract Refract. Surg.
2011, 37, 1679–1685. [CrossRef]

20. Shajari, M.; Jaffary, I.; Herrmann, K.; Grunwald, C.; Steinwender, G.; Mayer, W.J.; Kohnen, T. Early
tomographic changes in the eyes of patients with keratoconus. J. Refract. Surg. 2018, 34, 254–259. [CrossRef]

21. Li, X.; Rabinowitz, Y.S.; Rasheed, K.; Yang, H. Longitudinal study of the normal eyes in unilateral keratoconus
patients. Ophthalmology 2004, 111, 440–446. [CrossRef]

22. Ferdi, A.C.; Nguyen, V.; Gore, D.M.; Allan, B.D.; Rozema, J.J.; Watson, S.L. Keratoconus Natural Progression:
A Systematic Review and Meta-analysis of 11 529 Eyes. Ophthalmology 2019, 126, 935–945. [CrossRef]
[PubMed]

http://dx.doi.org/10.1038/s41598-017-16145-3
http://www.ncbi.nlm.nih.gov/pubmed/29158547
http://dx.doi.org/10.1001/jamaophthalmol.2019.0415
http://www.ncbi.nlm.nih.gov/pubmed/30920597
http://dx.doi.org/10.1016/j.jcrs.2008.08.035
http://dx.doi.org/10.3928/1081597X-20100212-02
http://dx.doi.org/10.1097/ICO.0000000000000529
http://dx.doi.org/10.1016/j.ophtha.2018.06.020
http://dx.doi.org/10.1016/j.ophtha.2007.03.073
http://dx.doi.org/10.1167/iovs.10-5369
http://dx.doi.org/10.1016/S0886-3350(98)80057-6
http://dx.doi.org/10.1186/s40662-016-0036-8
http://www.ncbi.nlm.nih.gov/pubmed/26904709
http://dx.doi.org/10.1186/s12886-017-0584-2
http://www.ncbi.nlm.nih.gov/pubmed/28985735
http://dx.doi.org/10.1016/j.ajo.2013.08.014
http://www.ncbi.nlm.nih.gov/pubmed/24452012
http://dx.doi.org/10.1016/j.ophtha.2008.02.020
http://dx.doi.org/10.1016/j.jcrs.2015.09.021
http://www.ncbi.nlm.nih.gov/pubmed/27026454
http://dx.doi.org/10.1016/j.jcrs.2013.08.061
http://dx.doi.org/10.1136/bjophthalmol-2014-306340
http://dx.doi.org/10.3928/1081597X-20151021-02
http://dx.doi.org/10.1016/j.jcrs.2011.03.055
http://dx.doi.org/10.3928/1081597X-20180124-01
http://dx.doi.org/10.1016/j.ophtha.2003.06.020
http://dx.doi.org/10.1016/j.ophtha.2019.02.029
http://www.ncbi.nlm.nih.gov/pubmed/30858022


Appl. Sci. 2020, 10, 1874 18 of 19

23. Alio, J.L.; Pinero, D.P.; Aleson, A.; Teus, M.A.; Barraquer, R.I.; Murta, J.; Maldonado, M.J.; Castro de Luna, G.;
Gutierrez, R.; Villa, C.; et al. Keratoconus-integrated characterization considering anterior corneal aberrations,
internal astigmatism, and corneal biomechanics. J. Cataract Refract. Surg. 2011, 37, 552–568. [CrossRef]

24. Martinez-Abad, A.; Pinero, D.P. New perspectives on the detection and progression of keratoconus. J.
Cataract Refract. Surg. 2017, 43, 1213–1227. [CrossRef]

25. Romero-Jimenez, M.; Santodomingo-Rubido, J.; Wolffsohn, J.S. Keratoconus: A review. Cont. Lens Anterior
Eye 2010, 33, 157–166. [CrossRef]

26. Belin, M.W.; Duncan, J.K. Keratoconus: The ABCD Grading System. Klin. Mon. Augenheilkd. 2016, 233,
701–707. [CrossRef] [PubMed]

27. Alio, J.L.; Shabayek, M.H. Corneal higher order aberrations: A method to grade keratoconus. J. Refract. Surg.
2006, 22, 539–545. [CrossRef] [PubMed]

28. Smadja, D. Topographic and tomographic indices for detecting keratoconus and subclinical keratoconus: A
systematic review. Int. J. Keratoconus Ect. Corneal Dis. 2013, 2, 60. [CrossRef]

29. McMahon, T.T.; Szczotka-Flynn, L.; Barr, J.T.; Anderson, R.J.; Slaughter, M.E.; Lass, J.H.; Iyengar, S.K. A new
method for grading the severity of keratoconus: The Keratoconus Severity Score (KSS). Cornea 2006, 25,
794–800. [CrossRef] [PubMed]

30. Kanellopoulos, A.J.; Asimellis, G. Revisiting keratoconus diagnosis and progression classification based on
evaluation of corneal asymmetry indices, derived from scheimpflug imaging in keratoconic and suspect
cases. Clin. Ophthalmol. 2013, 7, 1539–1548. [CrossRef]

31. Krumeich, J.H.; Daniel, J.; Knülle, A. Live-epikeratophakia for keratoconus. J. Cataract Refract. Surg. 1998, 24,
456–463. [CrossRef]

32. Vega-Estrada, A.; Alio, J.L.; Brenner, L.F.; Javaloy, J.; Plaza Puche, A.B.; Barraquer, R.I.; Teus, M.A.; Murta, J.;
Henriques, J.; Uceda-Montanes, A. Outcome analysis of intracorneal ring segments for the treatment of
keratoconus based on visual, refractive, and aberrometric impairment. Am. J. Ophthalmol. 2013, 155,
575–584.e571. [CrossRef] [PubMed]

33. Huseynli, S.; Salgado-Borges, J.; Alio, J.L. Comparative evaluation of Scheimpflug tomography parameters
between thin non-keratoconic, subclinical keratoconic, and mild keratoconic corneas. Eur. J. Ophthalmol.
2018, 28, 521–534. [CrossRef] [PubMed]

34. Cavas-Martinez, F.; Fernandez-Pacheco, D.G.; De la Cruz-Sanchez, E.; Nieto Martinez, J.; Fernandez
Canavate, F.J.; Vega-Estrada, A.; Plaza-Puche, A.B.; Alio, J.L. Geometrical custom modeling of human cornea
in vivo and its use for the diagnosis of corneal ectasia. PLoS ONE 2014, 9, e110249. [CrossRef] [PubMed]

35. Cavas-Martínez, F.; Fernández-Pacheco, D.; Cañavate, F.; Velázquez-Blázquez, J.; Bolarín, J.; Alió, J. Study
of Morpho-Geometric Variables to Improve the Diagnosis in Keratoconus with Mild Visual Limitation.
Symmetry 2018, 10, 306. [CrossRef]

36. Cavas-Martinez, F.; Fernandez-Pacheco, D.G.; Cañavate, F.J.F.; Velázquez-Blázquez, J.S.; Bolarin, J.M.;
Tiveron, M.; Alio, J.L. Detección del queratocono temprano mediante modelado 3D personalizado y análisis
de sus parámetros geométricos. DYNA Ing. Ind. 2019, 2, 175–181.

37. Cavas-Martínez, F.; Fernández-Pacheco, D.G.; Parras, D.; Cañavate, F.J.F.; Bataille, L.; Alió, J. Study and
characterization of morphogeometric parameters to assist diagnosis of keratoconus. Biomed. Eng. Online
2018, 17, 161. [CrossRef]

38. Efron, B.; Tibshirani, R. Improvements on cross-validation: The 632+ bootstrap method. J. Am. Stat. Assoc.
1997, 92, 548–560.

39. R Core Team. R: A Language and Environment for Statistical Computing. Available online: https:
//www.R-project.org/ (accessed on 6 January 2020).

40. Aberson, C.L. Applied Power Analysis for the Behavioral Sciences, 2nd ed.; Taylor & Francis: Abingdon, UK,
2019.

41. Demidenko, E. Sample size determination for logistic regression revisited. Stat. Med. 2007, 26, 3385–3397.
[CrossRef]

42. Chang, W.; Cheng, J.; Allaire, J.; Xie, Y.; Jonathan, M. Shiny: Web Application Framework for R. R Package
Version 1.3.2. Available online: https://CRAN.R-project.org/package=shiny (accessed on 6 January 2020).

43. Campbell, P. Shinyauthr: Shiny Authentication Modules. R Package Version 0.0.99. Available online:
https://rdrr.io/github/PaulC91/shinyauthr/ (accessed on 6 January 2020).

http://dx.doi.org/10.1016/j.jcrs.2010.10.046
http://dx.doi.org/10.1016/j.jcrs.2017.07.021
http://dx.doi.org/10.1016/j.clae.2010.04.006
http://dx.doi.org/10.1055/s-0042-100626
http://www.ncbi.nlm.nih.gov/pubmed/26789119
http://dx.doi.org/10.3928/1081-597X-20060601-05
http://www.ncbi.nlm.nih.gov/pubmed/16805116
http://dx.doi.org/10.5005/jp-journals-10025-1052
http://dx.doi.org/10.1097/01.ico.0000226359.26678.d1
http://www.ncbi.nlm.nih.gov/pubmed/17068456
http://dx.doi.org/10.2147/OPTH.S44741
http://dx.doi.org/10.1016/S0886-3350(98)80284-8
http://dx.doi.org/10.1016/j.ajo.2012.08.020
http://www.ncbi.nlm.nih.gov/pubmed/23218702
http://dx.doi.org/10.1177/1120672118760146
http://www.ncbi.nlm.nih.gov/pubmed/29566542
http://dx.doi.org/10.1371/journal.pone.0110249
http://www.ncbi.nlm.nih.gov/pubmed/25329896
http://dx.doi.org/10.3390/sym10080306
http://dx.doi.org/10.1186/s12938-018-0564-7
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.1002/sim.2771
https://CRAN.R-project.org/package=shiny
https://rdrr.io/github/PaulC91/shinyauthr/


Appl. Sci. 2020, 10, 1874 19 of 19

44. Yousefi, S.; Yousefi, E.; Takahashi, H.; Hayashi, T.; Tampo, H.; Inoda, S.; Arai, Y.; Asbell, P. Keratoconus
severity identification using unsupervised machine learning. PLoS ONE 2018, 13, e0205998. [CrossRef]

45. Lavric, A.; Valentin, P. KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural
Networks. Comput. Intell. Neurosci. 2019, 2019, 9. [CrossRef]

46. Larrosa, J.M.; Moreno-Montañés, J.; Martinez-de-la-Casa, J.M.; Polo, V.; Velázquez-Villoria, Á.; Berrozpe, C.;
García-Granero, M. A Diagnostic Calculator for Detecting Glaucoma on the Basis of Retinal Nerve Fiber Layer,
Optic Disc, and Retinal Ganglion Cell Analysis by Optical Coherence TomographyDiagnostic Calculator of
OCT for Detecting Glaucoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6788–6795. [CrossRef]

47. Moreno-Montañés, J.; García-Nieva, A.; Osio, I.A.; Guarnieri, A.; Morilla-Grasa, A.; García-Granero, M.;
Antón, A. Evaluation of RETICs Glaucoma Diagnostic Calculators in Preperimetric Glaucoma. Transl. Vis.
Sci. Technol. 2018, 7, 13. [CrossRef] [PubMed]

48. Schmidl, D.; Garhöfer, G.; Schmetterer, L. A New Scoring System for Progressive Keratoconus. JAMA
Ophthalmol. 2019, 137, 617. [CrossRef] [PubMed]

49. Lin, S.R.; Ladas, J.G.; Bahadur, G.G.; Al-Hashimi, S.; Pineda, R. A Review of Machine Learning Techniques for
Keratoconus Detection and Refractive Surgery Screening. Semin. Ophthalmol. 2019, 34, 317–326. [CrossRef]
[PubMed]

50. Smadja, D.; Touboul, D.; Cohen, A.; Doveh, E.; Santhiago, M.R.; Mello, G.R.; Krueger, R.R.; Colin, J. Detection
of subclinical keratoconus using an automated decision tree classification. Am. J. Ophthalmol. 2013, 156,
237–246. [CrossRef] [PubMed]

51. Klyce, S.D. Chasing the suspect: Keratoconus. Br. J. Ophthalmol. 2009, 93, 845–847. [CrossRef] [PubMed]
52. Saad, A.; Gatinel, D. Validation of a new scoring system for the detection of early forme of keratoconus. Age

2012, 37, 37–38. [CrossRef]
53. Qin, B.; Chen, S.; Brass, R.; Li, Y.; Tang, M.; Zhang, X.; Wang, X.; Wang, Q.; Huang, D. Keratoconus diagnosis

with optical coherence tomography-based pachymetric scoring system. J. Cataract Refract. Surg. 2013, 39,
1864–1871. [CrossRef]

54. Rabinowitz, Y.S.; Li, X.; Canedo, A.L.; Ambrosio, R., Jr.; Bykhovskaya, Y. Optical coherence tomography
combined with videokeratography to differentiate mild keratoconus subtypes. J. Refract. Surg. 2014, 30,
80–87. [CrossRef]

55. Silverman, R.H.; Urs, R.; RoyChoudhury, A.; Archer, T.J.; Gobbe, M.; Reinstein, D.Z. Combined tomography
and epithelial thickness mapping for diagnosis of keratoconus. Eur. J. Ophthalmol. 2017, 27, 129–134.
[CrossRef]

56. Arbelaez, M.C.; Versaci, F.; Vestri, G.; Barboni, P.; Savini, G. Use of a support vector machine for keratoconus
and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology 2012, 119,
2231–2238. [CrossRef] [PubMed]

57. Riley, R.D.; Snell, K.I.; Ensor, J.; Burke, D.L.; Harrell, F.E., Jr.; Moons, K.G.; Collins, G.S. Minimum sample
size for developing a multivariable prediction model: PART II - binary and time-to-event outcomes. Stat.
Med. 2019, 38, 1276–1296. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1371/journal.pone.0205998
http://dx.doi.org/10.1155/2019/8162567
http://dx.doi.org/10.1167/iovs.15-17176
http://dx.doi.org/10.1167/tvst.7.6.13
http://www.ncbi.nlm.nih.gov/pubmed/30519498
http://dx.doi.org/10.1001/jamaophthalmol.2019.0431
http://www.ncbi.nlm.nih.gov/pubmed/30920589
http://dx.doi.org/10.1080/08820538.2019.1620812
http://www.ncbi.nlm.nih.gov/pubmed/31304857
http://dx.doi.org/10.1016/j.ajo.2013.03.034
http://www.ncbi.nlm.nih.gov/pubmed/23746611
http://dx.doi.org/10.1136/bjo.2008.147371
http://www.ncbi.nlm.nih.gov/pubmed/19553507
http://dx.doi.org/10.5005/jp-journals-10025-1019
http://dx.doi.org/10.1016/j.jcrs.2013.05.048
http://dx.doi.org/10.3928/1081597X-20140120-02
http://dx.doi.org/10.5301/ejo.5000850
http://dx.doi.org/10.1016/j.ophtha.2012.06.005
http://www.ncbi.nlm.nih.gov/pubmed/22892148
http://dx.doi.org/10.1002/sim.7992
http://www.ncbi.nlm.nih.gov/pubmed/30357870
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Patients 
	Methods 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

