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Abstract: Clustering ensemble indicates to an approach in which a number of (usually weak) base
clusterings are performed and their consensus clustering is used as the final clustering. Knowing
democratic decisions are better than dictatorial decisions, it seems clear and simple that ensemble (here,
clustering ensemble) decisions are better than simple model (here, clustering) decisions. But it is not
guaranteed that every ensemble is better than a simple model. An ensemble is considered to be a better
ensemble if their members are valid or high-quality and if they participate according to their qualities
in constructing consensus clustering. In this paper, we propose a clustering ensemble framework that
uses a simple clustering algorithm based on kmedoids clustering algorithm. Our simple clustering
algorithm guarantees that the discovered clusters are valid. From another point, it is also guaranteed
that our clustering ensemble framework uses a mechanism to make use of each discovered cluster
according to its quality. To do this mechanism an auxiliary ensemble named reference set is created
by running several kmeans clustering algorithms.

Keywords: ensemble learning; ensemble clustering; kmedoids clustering; local hypothesis

1. Introduction

Clustering as a task in statistics, pattern detection, data mining, and machine learning is considered
to be very important [1–5]. Its purpose is to assign a set of data points to several groups. Data points
placed in a group must be very similar to each other, while they need to be very different from other
data points located in other groups. Consequently, the purpose of clustering is to group a set of objects
in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each
other than to those in other groups (clusters) and have the maximum difference with other objects
within the other clusters [6]. It is often assumed in the definition of clustering that each data object
must belong to a minimum of one cluster (i.e., the clustering of all data must be done rather than part
of it) and a maximum of one cluster (i.e., clusters must be non-overlapping). Each group is known as
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a cluster and the whole process of finding a set of clusters is known as clustering process. All clusters
together are called a clustering result or abbreviately a clustering. A clustering algorithm is defined as
an algorithm that takes a set of data objects and returns a clustering. Various categorizations have
been proposed for various clustering algorithms, including hierarchical approaches, flat approaches,
density-based approaches, network-based approaches, partially-based approaches, and graph-based
approaches [7].

In consensus-based learning as one of the most important research topics in data mining, pattern
recognition, machine learning, and artificial intelligence, we train several simple (often weak) learners
to learn how to solve a single problem. In this learning method, instead of learning the data directly by
a strong learner (which is usually slow), they try to learn a set of weak learners (which are usually fast)
and combine their results with an agreement function mechanism (like a voting) [8]. In supervised
learning, the evaluation of each simple learner is straightforward because of the existence of labels for
data objects. But, it is not true in non-supervised learning, and consequently it is very difficult to find
a solution without the use of side information to assess the weaknesses and strengths of a clustering
result (or algorithm) on a dataset. Now, there are several methods for ensemble clustering to improve
the strength and quality of clustering task. Each clustering in the ensemble clustering is considered to
be a basic learner.

This study tries to solve all of the aforementioned sub-problems by defining valid local clusters.
In fact, this study calls data around a cluster center in the clustering of kmedoids as valid local data
clusters. In order to generate diverse clustering, a duplicate strategy of producing weak clustering
results (i.e., using kmedoids clustering algorithm as base clustering algorithm) is used on non-appeared
data in previously valid local clusters. Then, an intra-cluster similarity criterion is used to measure
the similarity between the valid local clusters. By forming a weighted graph whose vertices are valid
local clusters, the next step of the proposed algorithm of this study is done. The weight of an edge in
the mentioned graph is the degree of similarity between the two valid local clusters sharing the edge.
In the next step of the algorithm, minimizing the graph cut for partitioning this graph is applied to
a number (which is predetermined) of the final cluster. In the final step, the output of these clusters
and the average credibility and the agreement of the final agreement clusters are maximized. It should
be noted that any other base clusters can also be used as base clusters (for example, the fuzzy c-means
algorithm (FCM) can be used). Also, other conventional consensus function methods can also be used
as an agreement function for combining the basic clustering results.

The second section of this study addresses literature. The proposed method is presented in the
third section. In Section 4, experimental results are presented. In the final section, conclusions and
future works are discussed.

2. Related Works

There are two very important problems in ensemble clustering: (1) How to create an ensemble
of valid and diverse basic clustering results; and (2) how to produce the best consensus clustering
result from an available ensemble. Of course, although each of these two problems has a significant
impact on the other one, but these two are widely known and studied as two completely independent
problems. That is why only one of these two categories has been addressed in research papers and it
has been less seen that both issues are considered together.

The first problem, which is called ensemble generation, tries to generate a set of valid and diverse
basic clustering results. This has been done through a variety of methods. For example, it can be
generated by applying an unstable basic clustering algorithm on a given data set with a change in the
parameters of the algorithm [9–11]. Also, it can be generated by applying different base clustering
algorithms on a given data set [12–14]. Another way that we can create a set of valid and diverse
base clustering results is to apply a basic clustering algorithm on various mappings from the given
dataset [15–23]. In the next step, a set of valid and diverse base clustering results can be created by
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applying a base cluster algorithm on various subsets (which can be generated with-replacement or
without-replacement) from the given data set [24].

Many solutions have been proposed in order to solve the second problem. The first solution is
an approach based on the co-occurrence matrix, in which first we store the number of each pair of
data with the same number of the clusters, which contain them simultaneously, in a matrix called the
co-occurrence matrix. Then, the final clusters agreement is obtained by considering this matrix the
similarity matrix and applying a clustering method (usually a hierarchical clustering method).

This approach is known as the most traditional method [25–28]. Another approach is a graph
cutting-based approach. In this approach, first, the problem of finding a consensus clustering becomes
a graph partitioning problem. Then, the final clusters are obtained using the partitioning or graph
cutting algorithms [29–32]. Four graph-based ensemble clustering algorithms are known as CSPA,
HGPA, MCLA, and HBGF.

Another approach is the voting approach [16,17,33–35]. For this purpose, first, a re-labeling must
be done. Re-labeling is done in order to align the labels of various clusters to match. Other important
approaches include [36–41]: (1) an approach which considers primary clusters an interface space (or
new data set) and partitions this new space using a basic clustering algorithm such as the expectation
maximization algorithm [37], and (2) an approach which uses evolutionary algorithms to find the
most consistent clustering as consensus clustering [36], the approach of using the kmods clustering
algorithm to find an agreement clustering [40,41] (note that kmods clustering algorithm is equivalent
version of kmeans clustering algorithm for categorical data).

Furthermore, an innovative clustering ensemble framework based on the idea of cluster weighting
was proposed. Using a certainty criterion, the reliability of clusters was first computed. Then, the
clusters with highest reliability values are chosen to make the final ensemble [42]. Bagherinia et al.
have introduced an original fuzzy clustering ensemble framework in which effect of the diversity and
quality of base clusters were studied [43]. In addition to Alizadeh et al. [44,45], a new study claims that
edited NMI (ENMI), which is derived from a subset of total primary spurious clusters, performs better
than NMI for cluster evaluation [46].

Moreover, multiple clusters have been aggregated considering cluster uncertainty by using locally
weighted evidence accumulation and locally weighted graph partitioning approaches, but the proposed
uncertainty measure depends on the cluster size [47].

The ensemble clustering methods are considered to be capable of clustering data of arbitrary
shape. Therefore, one of the methods to discover clusters with arbitrarily shaped clusters is clustering
ensemble. Consequently, we have to compare our method to some of these methods such as: CURE [48]
and CHAMELEON [49,50]. A set of hierarchical clustering algorithms, which aims at extraction of
data clustering with arbitrary-shape clusters, uses sophisticated techniques and involves a number of
parameters. Two examples of these clustering algorithms are CURE [48] and CHAMELEON [49,50].
CURE clustering algorithm takes a number of sampled datasets and partitions them. After that,
a predefined number of distributed sample points are chosen per partition. Then, single link clustering
algorithm is employed to merge similar clusters. Because of the randomness of its sampling, CURE is
an instable clustering algorithm. CHAMELEON clustering algorithm first transforms the dataset into
a k-nearest neighbors graph, and divides it into m smaller subgraphs by graph partitioning methods.
After that, the basic clusters represented by these subgraphs are clustered hierarchically. According to
the experimental results described in document [49], CHAMELEON algorithm has higher accuracy
than CURE algorithm and DBSCAN algorithm.

3. Proposed Ensemble Clustering

This section provides definitions and necessary notations. Then, we define the ensemble clustering
problem. In the next step, the proposed algorithm is presented. Finally, the algorithm is analyzed in
the last step.



Appl. Sci. 2020, 10, 1891 4 of 20

3.1. Notifications and Definitions

Table 1 shows all the symbols used in this study.

Table 1. The used notifications and symbols.

Symbol Description

D A dataset
Di: i-th data object in dataset D
LDi: Real label of the i-th data object in dataset D
Di j j-th feature from i-th data object
|D:1| The size of data set D
|D1:| The number of features in data set D
Φ A set of initial clustering results
Φi i-th clustering result in the ensemble clusteringΦ
Φi

:k k-th cluster in the i-th clustering result of the ensemble clusteringΦ
Φi

jk A Boolean indicating whether jth data point of the given dataset belongs to the k-th cluster in the
i-th clustering result of the ensemble clusteringΦ or not

C The number of the consensus clusters in given dataset
RΦ

i
:k A valid sub-cluster from the cluster Φi

:k

R
Φi

:k
j A Boolean indicating whether jth data point of the given dataset belongs to the valid sub-cluster

of the k-th cluster in the i-th clustering result of the ensemble clusteringΦ or not
γ The neighboring radius parameter of the valid cluster in the proposed algorithm

MΦ:i center point of cluster Φ:i
MΦ:i

w w-th feature from center point of cluster Φ:i
π∗ Consensus clustering result

sim(u, v) Similarity between two clusters u and v
Tq(u, v) q-th hypothetical cluster between two center points of clusters u and v

pq:
(
πi,πj

)
The center of q-th hypothetical cluster between two clusters u and v

B The size of the ensemble clusteringΦ
Ci The number of the clusters in the i-th clustering result Φi

G(Φ) The graph defined on the ensemble clusteringΦ
V(Φ) The nodes of the graph defined on the ensemble clusteringΦ
E(Φ) The edges of the graph defined on the ensemble clusteringΦ
λ A clustering result similar to the real labels

3.1.1. Clustering

A set of C non-overlapping subsets of data set can be called as a clustering result (or abbreviately
a clustering) or a partitioning result (or abbreviately a partitioning), if the subsets union is the entire
data set and the intersection of each pair of subsets is null; any subset of a data set is called a cluster.
A clustering is shown by Φ, a binary matrix, where Φ:i, a vector of size |D:1|, represents the i-th
cluster; and ΦT

i: , a vector of size C, represents which cluster the i-th data point belongs to. Obviously,∑C
j=1Φi j = 1 for any i in {1, 2, . . . , |D:1|}; and

∑|D:1 |

i=1 Φi j > 0 for any j in {1, 2, . . . , C}; and also we have∑|D:1 |

i=1
∑C

j=1Φi j = |D:1|. The center of each cluster Φ:i is a data point shown by MΦ:i , and its j-th feature
is defined as Equation (1) [51].

MΦ:i
j =

∑|D:1 |

k=1 ΦkiDkj∑|D:1 |

k=1 Φki

(1)
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3.1.2. A Valid Sub-Cluster from a Cluster

A valid sub-cluster from a cluster Φ:i is shown by RΦ:i and k-th data point belongs to it if RΦ:i
k is

one. The RΦ:i
k is defined according to Equation (2).

RΦ:i
k =

 1

√
|D1: |∑
j=1

∣∣∣∣MΦ:i
j −Dkj

∣∣∣∣2 ≤ γ
0 o.w.

(2)

where γ is a parameter. It should be noted that a sub-cluster can be considered to be a cluster.

3.1.3. Ensemble of Clustering Results

A set of B clustering results from a given data set is called an ensemble clustering and shown by
Φ =

{
Φ1,Φ2, . . . ,ΦB

}
, where Φi represents i-th clustering result in the ensembleΦ. Obviously, Φk as

a clustering has a number of Ck clusters, and therefore, it is a binary matrix of size |D:1| ×Ck. The j-th
cluster of k-th clustering result of the ensembleΦ is shown by Φk

: j. Objective clustering or the best
clustering is shown by Φ∗ including C clusters.

3.1.4. Similarity Between a Pair of Clusters

There are different distance/similarity criteria between the two clusters. In this study, we define

the similarity between the two clusters Φk1
:i and Φk2

: j , which is shown by sim
(
Φk1

:i ,Φk2
: j

)
, and defined as

Equation (3).

sim
(
Φk1

:i ,Φk2
: j

)

=



∣∣∣∣∣∩(Φk1
:i ,Φk2

: j

)∣∣∣∣∣∣∣∣∣∣∪(Φk1
:i ,Φk2

: j

)∣∣∣∣∣ +
∣∣∣∣∣∪9

q=1Tq

(
Φk1

:i ,Φk2
: j

)
−∪

(
Φk1

:i ,Φk2
: j

)∣∣∣∣∣√√√√∑|D1: |
w=1

∣∣∣∣∣∣∣∣MΦ
k1
:i

w −M
Φ

k2
: j

w

∣∣∣∣∣∣∣∣2
i f

√√√
|D1: |∑
w=1

∣∣∣∣∣∣∣MΦ
k1
:i

w −M
Φ

k2
: j

w

∣∣∣∣∣∣∣
2

≤ 4γ

0 o.w.

(3)

where, Tq

(
Φk1

:i ,Φk2
: j

)
is calculated using the Equation (4):

Tq

(
Φk1

:i ,Φk2
: j

)
=

k : {1, 2, . . . , |D:1|}

∣∣∣∣∣∣∣∣
√∑

|D1: |

w=1

∣∣∣∣∣pqw

(
Φk1

:i ,Φk2
: j

)
−Dkw

∣∣∣∣∣2 ≤ γ
 (4)

where, pq:

(
Φk1

:i ,Φk2
: j

)
is a point whose w-th feature is defined as the Equation (5):

pqw

(
Φk1

:i ,Φk2
: j

)
=

(q) ×M
Φ

k1
:i

w + (10− q) ×M
Φ

k2
: j

w

10
(5)

Different Tq for all q ∈ {1, 2, . . . , 9} for two arbitrary clusters (two circles depicted at corners) are
depicted in the top picture in Figure 1. Indeed, each Tq is an assumptive region or an assumptive

cluster or an assumptive circle. The term
∣∣∣∣∣∪9

q=1Tq

(
Φk1

:i ,Φk2
: j

)
−∪

(
Φk1

:i ,Φk2
: j

)∣∣∣∣∣ in Equation (3) is the set of

all data points in the grey (blue in online version) region at the picture presented by Figure 1. The term
pq: is center of the assumptive cluster Tq.
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3.1.5. An Undirected Weighting Graph Corresponding to an Ensemble Clustering

A weighting graph corresponding to an ensemble Φ of clustering results is shown by G(Φ)

and is defined as G(Φ) = (V(Φ), E(Φ)). The vertex set of this graph is also the set of all of
the valid subsets extracted out of all of the clusters in the ensemble members, namely, V(Φ) ={
RΦ

1
:1 , . . . , R

Φ1
:C1 , RΦ

2
:1 , . . . , R

Φ2
:C2 . . .RΦ

B
:1 , . . . , R

ΦB
:CB

}
. In this graph, the weight of each edge between

a pair of the vertices in this graph, or the edge between a pair of the clusters is their similarity and it
can be obtained in accordance with Equation (6).

E
(
vi, v j

)
= sim

(
v j, vi

)
(6)

3.2. Problem Definition

3.2.1. Production of Multiple Base Clustering Results

The set of basic clustering results is generated based on the algorithm presented in Algorithm
1. In this pseudocode, the indices of the whole data set are first stored as T, and then step-by-step,
the modified kmedoids algorithm [52] is applied and the result of the clustering is stored. The ith
clustering result has at least Ci clusters where Ci is a positive random integer number in the interval[
2;
√
|D:1|

]
.

Algorithm 1 The Diverse Ensemble Generation algorithm

Input: D, B, γ
Output: Φ, Clusters
01. Φ = 0;
02. For i = 1 to B
03. Ci = a positive random integer number in

[
2;
√
|D:1|

]
;

04.
[
Φi

:1,Φi
:2, . . . ,Φi

:Ci
, Ci

]
= FindValidCluster(D, Ci, γ);

05. EndFor
06. Clusters = [C1, C2, . . . , CB]

07. ReturnΦ, Clusters
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Each base clustering result is an output of a base locally reliable clustering algorithm presented in
Algorithm 2. The mentioned method repeats until the number of the objects out of the so-far reliable
clusters is less than C2. The final cluster centers obtained at any time are extracted using a repeated
method to display different sub-sets of data and also ensure that multiple clustering results are used
to describe the entire data. Here, we have to explain why it determines the final conditions. Many
researchers, in the research background [53,54], argued that the maximum number of clusters in a data
set should be less than

√
|D:1|. Thus, as soon as the number of the objects in the dataset which is out of

the so-far reliable clusters is less than C2, we assume that the dataset can be divided no longer into C
clusters. Therefore, the loop ends in that case.

The time complexity of the kmedoids clustering algorithm (a version of the kmeans clustering
algorithm) is O(|D:1|CI), so that I is the number of iterations. It should be noted that the kmeans
or kmedoids clustering algorithm is a poor learner whose function is affected by many factors. For
example, the algorithm is very sensitive to initial cluster centers. So that, selection of different initial
cluster centers often leads to different clustering results. In addition, the kmeans or kmedoids clustering
algorithm has the tendency to find spherical clusters in relatively uniform sizes that are not suitable for
data with other distributions. Therefore, we will try to provide multiple clustering results generated
by the kmedoids clustering algorithm in order to create an ensemble of good clustering results over
the data set, by distributing different data, instead of using a strong clustering algorithm.

Algorithm 2 The FindValidCluster algorithm

Input: D, C, γ
Output: Φ, C
01. Φ = 0; Π = 0;
02. T = {1, . . . , |D:1|};
03. counter = 0;
04. While

(
(|T|) ≥ C2

)
05. [Π:1, Π:2, . . . , Π:C] = KMedoids(DT:,C);
06. For k = 1 to C
07. If (

∑|D:1 |

i=1 Πik ≥ C)
08. counter = counter + 1;
09. Φ:counter = Π:k;
10. Rem =

{
x ∈ {1, . . . , |D:1|}

∣∣∣∣RΠ:k
x = 1

}
;

11. T = T −Rem;
12. EndIf
13. EndFor
14. EndWhile
15. C = counter;
16. ReturnΦ, C;

3.2.2. Time Complexity of Production of Multiple Base Clustering Results

The incremental method is called the kmedoids clustering algorithm, which is called the base
locally reliable clustering algorithm presented in Algorithm 2. The time complexity of the base
locally reliable clustering algorithm presented in Algorithm 2 is O(|D:1|IC), which is in the worst
case O

(
|D:1|

1.5I
)

where I is number of the iterations the kmedoids clustering algorithm needs to
converge. The algorithm of generating the ensemble of clustering results presented in Algorithm 1 is
O
(
|D:1|I

∑B
i=1 C

)
, which is the worst case O

(
|D:1|

1.5IB
)

where B is the number of basic clustering results
generated. The outputs of the algorithm presented in Algorithm 1 have been the clustering setΦ and
also the set of clusters’ numbers in ensemble members.
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3.3. Construction of Clusters’ Relations

Class labels show specific classes in the classification, while cluster labels express only the data
grouping features and are not comparable in cluster analysis in different clustering results. Therefore,
different clustering labels must be aligned in the ensemble clustering. Additionally, since the kmeans
and kmedoids clustering algorithms can only detect spherical and uniform clusters, a number of clusters
in a same clustering result can inherently be a same cluster. Therefore, analysis of the relationship
between clusters through a between-cluster similarity measure is needed.

Now, there are a large number of criteria proposed in the research background [49,55–57] to measure
the similarity among the clusters. For example, in the chain clustering algorithm, the distance between
the closest or farthest data object of the two clusters is used for measuring the cluster separation [56,57].
They are sensitive to noise because of their dependence on a few objects. In the center-based clustering
algorithms, distance between the centers of clusters measures the lack of correlation between the two
clusters. Although this measure is considered to be a computationally efficient and powerful measure
to deal with noise, it cannot reflect the boundary between the two clusters.

The number of common objects created by the two clusters is used to represent their similarity in
cluster grouping algorithms. This measure does not consider the fact that the cluster labels of some
objects may be incorrect in a cluster. Therefore, some of these objects have a significant impact on
the measurement. Additionally, since two clusters of a same clustering do not have any common
objects, measurement cannot be used to measure their similarity. Although there are good practical
implementations of different measures, they are not suitable for ensemble clustering. In the previous
section, the basic clustering generatedΦ with valid local labels are different, which means that the
labels of each cluster are only partially valid. Therefore, measurement of the difference between the
two clusters in our local labels, instead of all the labels, is needed. However, the overlap between the
local spatial spaces of both clusters should be very small because of the basic clustering generation
mechanism. Therefore, we consider an “indirect” overlap between the two clusters in order to measure
their similarity.

Let us assume we have Φ:i and Φ: j as the two clusters, MΦ:i and MΦ: j as their cluster centers,
and consequently, p5:

(
Φ:i,Φ: j

)
as the middle point of the two centers. We assume there is a hidden

dense region between the reliable sections of the clusters pair Φ:i and Φ: j, i.e., RΦ:i and RΦ: j . We
define 9 points pk:

(
Φ:i,Φ: j

)
for k ∈ {1, 2, . . . , 9} at the equal distances on line connecting MΦ:i to MΦ: j .

We assume whatever the number of objects is larger in all of the valid local spaces, it is more likely
that those clusters are the same. If all of the valid local spaces are dense and the distance between
MΦ:i and MΦ: j is not greater than 4γ, the likelihood that those clusters are the same should be a high
value, as shown in Figure 1. For clusters Φ:i and Φ: j, we examine the following two factors in order
to measure their similarity: (1) The distance between their cluster centers, (2) the possibility of the
existence of a dense region between them. As we know, if the distance between their cluster centers is
smaller, it is more likely that they may be the same cluster. Therefore, we assume that their similarity
must be inversely proportional to this distance. Additionally, we know that, since the kmedoids
clustering algorithm is a linear clustering algorithm, the spaces of both clusters are separated by the
middle line between their cluster centers. If the areas around them contain a few objects, i.e., they are
sparse, they can be clearly identified.

An example has been presented in Figure 2. It is observed that the distance between the centers
of the clusters B and C is not greater than the distance between clusters A and B. But we find that
the boundary between the clusters B and C is clearer than the boundary between the clusters A
and B. Therefore, if the clarity between boundary and clusters is considered, there is more distance
between clusters B and C than clusters A and B. Based on the above analyses, we assume that their
similarity should be proportional to the probability of existence of dense regions between their centers.
So similarity between two clusters is formally measured based on Equation (3).
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Figure 2. (a) An exemplary dataset with three clusters; (b) the assumptive cluster centers of applying
kmedoids on the given dataset; and (c) removing unreliable data points in each cluster. In (a) and (b),
dots mean the representative centers of clusters, and crosses means removed data points or unreliable
data points.

Based on the similarity criterion, we generated a weighted undirected graph (WUG), denoted by
G(Φ) = (V(Φ), E(Φ)), to show the relationship between these clusters. In the mentioned graph
G(Φ), V(Φ) is the set of vertices that represent clusters in the ensembleΦ. Therefore, each vertex
is also seen as a cluster in the ensembleΦ. The E(Φ) is the weights of the edges between vertices,
i.e., clusters.

For a pair of clusters, their similarity is used as the weight of the edge between them, i.e., the
weight is calculated according to Equation (6); and the more similarity between them, the more likely
they show a same cluster. After obtaining the WUG, the problem of determining the cluster relationship
can be transferred to a normal graph partitioning problem [58]. Therefore, a partition of vertices in the
graph G(Φ) is obtained and it is denoted by CC which is of the size

∑B
i=1 Ci ×C. The CC ji = 1 if the

RΦ
p
:q belongs to the ith consensus cluster where

∑p−1
i=1 Ci + q = j. We want to obtain such a partitioning

by minimizing an objective function where vertices are very similar in the same subsets and are very
different from the vertices in other subsets. In order to solve the optimization problem, we apply
a normalized spectral clustering algorithm [59] to obtain a final partition of CC. The vertices in the
same subsets are used to represent a cluster. Therefore, we define a new ensemble with aligned clusters
denoted by Λ based on Equation (7).

Λk
ir =

 1
(

k−1∑
t=1

Ct + j = p
)
f

(
R
Φk

: j

i = 1
)
f

(
CCpr = 1

)
0 o.w.

(7)

The time complexity to make the cluster relationship will be O
(
|D:1|

(∑B
t=1 Ct

)2
)
.
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3.4. Extraction of Consensus Clustering Result

After securing the ensemble of the aligned (or relabeled) clustering results out of the main
ensemble of the clustering results, Λ, where Λk

:: is a matrix of size |D:1| × C for any k ∈ {1, 2, . . . , B},
is now available for the extraction of consensus clustering result. According to the ensemble Λ,
the consensus function can be rewritten according to Equation (8).

π∗i j =

{
1 ∀p ∈ {1, 2, . . . , C} : Λi j ≥ Λip
0 o.w.

(8)

where Λi j =
∑B

k=1 Λk
i j. The complexity of the final cluster generation time is O(|D:1|CB).

3.5. Overall Implementation Complexity

The general complexity of the proposed algorithm is equal to

O
(
|D:1|I

(∑B
t=1 Ct

)
+ |D:1|

(∑B
t=1 Ct

)
+ |D:1|

(∑B
t=1 Ct

)2
+ |D:1|CB

)
. We observe that the time complexity is

linear proportional to the number of objects, and for ensemble learning, the greater number of base
clusters, i.e.,

∑B
t=1 Ct, does not mean the ensemble performance is better. Therefore, we can control

the equation
∑B

t=1 Ct � |D:1|, so that the proposed algorithm is suitable for dealing with large-scale
data sets. However, if there is enough computational resource, we can increase Ct up to |D:1|

0.5

and consequently assuming
∑B

t=1 Ct ≈ |D:1|
0.5, the general complexity of the proposed algorithm is

O
(
|D:1|

1.5I + |D:1|
2
)
. But, if there is not enough computational resource, the complexity of the proposed

algorithm is linear with the data size.

4. Experimental Analysis

In this section, we test the proposed algorithm on four artificial datasets and five real-world
datasets and evaluate its efficacy using (1) external validation criteria and (2) time assessment costs.

4.1. Benchmark Datasets

Experimental evaluations have been performed on nine benchmark datasets. The details of these
datasets are shown in Table 2. The cluster distribution of the artificial 2D datasets has been shown in
Figure 3. The real-world datasets are derived from the UCI datasets’ repository [60].

Table 2. Description of the benchmark datasets; the number of data objects (|D:1|), the number of
attributes (|D1:|), the number of clusters (C).

Dataset |D:1| |D1:| C

Artificial dataset Ring3 (R3) 1500 2 3

Artificial dataset Banana2 (B2) 2000 2 2

Artificial dataset Aggregation7 (A7) 788 2 7

Artificial dataset Imbalance2 (I2) 2250 2 2

UCI dataset Iris (I) 150 4 3

UCI dataset Wine (W) 178 13 3

UCI dataset Breast (B) 569 30 2

UCI dataset Digits (D) 5620 63 10

UCI dataset KDD-CUP99 1,048,576 39 2
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4.2. Evaluation Criteria

Two external criteria have been used to measure the similarity between the output labels predicted
by different clustering algorithms and the correct labels of the benchmark datasets. Let us denote the
clustering similar to the real labels of dataset by λ. It is defined according to Equation (9).

λi j =

{
1 LDi: = j
0 o.w.

(9)

where LDi: is the real label of the ith data point.
Given a dataset D and two partitioning results over these objects, namely π∗ (the consensus

clustering result) and λ (the clustering similar to the real labels of dataset), the values between π∗ and
λ can be summed up in a probable table. It is presented in Table 3, so that ni j shows the number of
common data objects in the groups π∗:i and λ: j.

Table 3. Reminder for the default table to compare two partitioning results.

λ

λ:1 λ:2 . . . λ:C bi=
C∑

k=1
nik

π∗

π∗:1 n11 n12 . . . n1C b1

π∗:2 n21 n22 . . . n2C b2

...
...

...
. . .

...
...

π∗:C nC1 nC2 . . . nCC bC

di =
C∑

k=1
nki d1 d2 . . . dC

The adjusted rand index (ARI) is defined based on Equation (10).

ARI(π∗,λ) =

∑
i j

 ni j
2

−
∑i

 bi
2

∑i

 di
2


 n

2



1
2

∑i

 bi
2

+∑
i

 di
2


−

∑i

 bi
2

∑i

 di
2


 n

2



(10)

where the variables are defined in Table 3. Normalized mutual information (NMI) [61] is defined based
on Equation (11).
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NMI(π∗,λ) =
2
∑

i
∑

j ni j log
ni jn
bib j∑

i j b j log bi
n −

∑
j d j log

d j
n

(11)

The more similar the clustering result π∗ (i.e., the consensus clustering result) and the ground
truth clustering (the real labels of dataset), i.e., λ, the more the value of their NMI (and ARI).

4.3. Compared Methods

In order to investigate the performance of the proposed algorithm, we compare it with the
state-of-the-art clustering ensemble algorithms including: (1) Evidence accumulation clustering (EAC)
along with single link clustering algorithm as consensus function (EAC + SL) and (2) average link
clustering algorithm as consensus function (EAC + AL) [9], (3) weighted connection triple (WCT)
along with single link clustering algorithm as consensus function (WCT + SL) and (4) average link
clustering algorithm as consensus function (WCT + AL) [27], (5) weighted triple quality (WTQ) along
with single link clustering algorithm as consensus function (WTQ + SL) and (6) average link clustering
algorithm as consensus function (WTQ + AL) [27], (7) combined similarity measure (CSM) along with
single link clustering algorithm as consensus function (CSM + SL) and (8) average link clustering
algorithm as consensus function (CSM + AL) [27], (9) cluster based similarity partitioning algorithm
(CSPA) [29], (10) hyper-graph partitioning algorithm (HGPA) [29], (11) meta clustering algorithm
(MCLA) [29], (12) selective unweighted voting (SUW) [17], (13) selective weighted voting (SWV) [17],
(14) expectation maximization (EM) [37], and (15) iterative voting consensus (IVC) [40].

In addition, we compared the proposed method with other “strong” base clustering algorithms
including: (1) the normal spectral clustering algorithm (NSC) [59], (2) “density-based spatial clustering
of applications with noise” algorithm (DBSCAN) [62], (3) “clustering by fast search and find of density
peaks” algorithm (CFSFDP) [63]. The purpose of this comparison is to test whether the proposed
method is a “strong” clustering or not.

4.4. Experimental Settings

A number of settings for the different ensemble clustering algorithms are listed in the following
so as to ensure that they are reproducible. The number of clusters in each base clustering result is
randomly set in the proposed ensemble clustering algorithm where the kmedoids clustering algorithm
is also used to produce their basic clustering results. In each of the state-of-the-art clustering algorithms,
the number of clusters per each base clustering result in the ensemble is set according to the method
they used; and the kmeans clustering algorithm is also used to produce their basic clustering results.
The parameter B is always set to 40. For these compared methods, we determine their parameters
based on their authors’ suggestions. The quality of each clustering algorithm is reported as an average
over 50 independent runs. A Gaussian kernel has been employed for the NSC algorithm and a value
in a range greater than or equal to 0.1 and less than or equal to 2 with step size 0.1 is chosen as the
kernel parameter σ2. In these parameters, the best clustering result has been selected for comparison.

DBSCAN and CFSFDP algorithms also require the input parameter ε. We estimated the value of ε
using the average distance between all data points and their average point, denoted by ASE. However, each
of these algorithms may require different values ofε. Therefore, we have evaluated each of these algorithms

with ten different values from the following set
{

ASE
1 , ASE

2 , ASE
3 , ASE

4 , ASE
5 , ASE

6 , ASE
7 , ASE

8 , ASE
9 , ASE

10

}
and the best clustering result is used for comparison.

4.5. Experimental Results

4.5.1. Comparison with the State of the Art Ensemble Methods

Different consensus functions have been first used to extract the final clustering result out of the
output ensemble of the Algorithm 1. As it is clear, the clustering results in the output ensemble of
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the Algorithm 1 are not complete; therefore, to apply EAC on the output ensemble of the Algorithm
1, edited EAC (EEAC) is needed [64,65]. CSPA, HGPA, and MCLA are also applied on the output
ensemble of the Algorithm 1. EM has been also used to extract the final clustering result out of the
output ensemble of the Algorithm 1. Therefore, seven methods including PC + EEAC + SL, PC +

EEAC + AL, PC + CSPA, PC + HGPA, PC + MCLA, PC + EM, and the proposed mechanism presented
in Section 3.4 have been used as different consensus functions to extract the final clustering result out
of the output ensemble of the Algorithm 1. Here, PC stands for the proposed base clustering presented
in Algorithm 1. Experimental results of different ensemble clustering methods on different datasets in
terms of ARI and NMI have been presented respectively in Figures 4 and 5. The last seven bars stand
for performances of the seven mentioned methods. All these results have been summarized in last
seven rows of Table 4. The proposed consensus function presented in Section 3.4 is the best method
and the PC + EEAC + SL consensus function is the second. According to Table 4, the PC + EEAC +

AL and PC + MCLA consensus functions are the third and fourth methods. Therefore, the proposed
mechanism presented in Section 3.4 is considered to be our main consensus function.
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Figure 4. Experimental results of applying different consensus functions considering the output
ensemble of the Algorithm 1 on different datasets in terms of (a) adjusted rand index (ARI) and (b) rank
of adjusted rand index (ARI Rank).
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Figure 5. Experimental results of applying different consensus functions considering the output
ensemble of the Algorithm 1 on different datasets in terms of (a) normalized mutual information (NMI)
and (b) rank of normalized mutual information (NMI Rank).

Based on the ARI and NMI criteria, the comparison of the performances of different ensemble
clustering algorithms on the artificial and real-world benchmark datasets is shown respectively in
Figures 4 and 5, and they are summarized in Table 4. As shown in Figures 4 and 5, we observe that the
proposed ensemble clustering algorithm has a high clustering accuracy in the benchmark synthetic
and real-world datasets compared to other existing ensemble clustering algorithms. According to the
experimental results, the proposed ensemble clustering algorithm can detect different clusters in an
effective way and increase the performance of the state-of-the-art ensemble clustering algorithms.

Also, as shown in Table 4, the efficiency of the proposed ensemble clustering algorithm is
significantly better than other ensemble clustering algorithms in the artificial datasets. However,
accuracy improvement of the proposed ensemble clustering algorithm in the real-world datasets is
marginally better than other ensemble clustering algorithms. The main reason for this is that the
complexity of the real-world datasets is larger than the complexity of the artificial datasets. Considering
the performance of each method on different datasets to be a variable, a Friedman test is performed.
It is proved (with a p-value about 0.006) that there is a significant difference between our variables. It is
shown through the post-hoc analysis that the difference is mostly because of the difference between
PC+MCLA and the proposed method with a p-value of about 0.047. Therefore, the difference between
the proposed method performance and the performance of the most effective method aside from the
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proposed method, i.e., PC+MCLA, contributing mostly in Friedman test p-value (i.e., 0.006), is with
a p-value equal to 0.047 which is still considered to be significant.

Table 4. The summery of the results presented in Figure 5. The column L-D-W indicates the number of
datasets on which the proposed method Loses to-Draws with-Wins against a rival validated by paired
t-test [66] with the confidence level of 95%.

ARI NMI

Average ± STD L-D-W Average ± STD L-D-W

EAC+SL 66.87 ± 3.39 0-2-6 64.43 ± 2.43 1-0-7
EAC+AL 68.19 ± 2.65 0-2-6 60.97 ± 2.75 0-2-6
WCT+SL 60.11 ± 3.23 0-1-7 55.78 ± 2.69 1-1-6
WCT+AL 67.58 ± 3.13 0-1-7 60.72 ± 2.32 0-1-7
WTQ+SL 65.87 ± 2.89 0-1-7 62.28 ± 3.03 0-1-7
WTQ+AL 67.88 ± 2.58 1-1-6 61.02 ± 2.94 1-2-5
CSM+AL 58.67 ± 3.68 1-0-7 48.90 ± 2.72 1-0-7
CSM+SL 68.21 ± 2.48 1-0-7 60.99 ± 2.71 1-1-6

CSPA 59.97 ± 2.55 1-0-7 54.55 ± 2.43 0-0-8
HGPA 24.24 ± 2.36 0-0-8 20.29 ± 2.26 0-0-8
MCLA 66.21 ± 3.29 0-2-6 58.26 ± 2.54 0-1-7

SUV 48.82 ± 3.08 1-0-7 40.93 ± 2.31 1-1-6
SWV 52.76 ± 2.83 1-0-7 47.43 ± 3.25 1-1-6
EM 57.42 ± 2.89 0-0-8 52.48 ± 2.97 0-0-8
IVC 58.48 ± 3.02 0-0-8 53.52 ± 2.37 0-0-8

PC+EEAC+SL 85.01 ± 3.31 1-1-6 80.82 ± 2.40 1-2-5
PC+EEAC+AL 89.51 ± 2.07 1-0-7 83.29 ± 1.42 1-2-5

PC+CSPA 84.63 ± 2.75 0-1-7 78.02 ± 2.76 0-0-8
PC+HGPA 55.77 ± 2.98 0-0-8 55.26 ± 3.52 0-0-8
PC+MCLA 91.42 ± 2.09 1-0-7 83.03 ± 2.25 1-2-5

PC+EM 86.37 ± 2.44 1-1-6 79.80 ± 2.35 0-0-8
Proposed 93.86 ± 1.37 89.58 ± 2.15

4.5.2. Comparison with Strong Clustering Algorithms

The results of the proposed ensemble clustering algorithm compared with four “strong” clustering
algorithms on the different benchmark datasets are depicted in Figure 6. In Figure 6, the last two
columns indicate the mean and standard deviation of the clustering validity of each algorithm on
the different datasets. We observe that the clustering validity of the proposed ensemble clustering
algorithm is superior or close to the best results of the other four algorithms. According to the results of
these experiments, the proposed algorithm can compete with “strong” clustering algorithms; therefore,
it approves that “a number of weak clusters equal to a strong clustering”.

Parameter analysis: How to set the parameter γ is considered to be an important issue for the
proposed ensemble clustering algorithm. The selection of this parameter regulates the number of
basic clusters produced through each base clustering result. The number of base clusters generated
by the proposed ensemble clustering algorithm increases exponentially with decreasing γ. However,
the accuracy of clustering task does not increase with decreasing γ, therefore the value of γ must
increase to a certain extent. According to the empirical results, if the number of basic clusters in
a clustering result is very large or small, it can be considered to be a bad clustering. Therefore, the value
γ is selected in such a way that the number of clusters in each clustering result is less than

√
|D:1| and

more than
√
|D:1 |

2 .
Time Analysis: In the end, the efficiency of the proposed ensemble clustering algorithm is

evaluated on the KDD-CUP99 dataset. The γ is set to 0.14. The proposed ensemble clustering algorithm
is implemented on Matlab 2018. The runtime of the proposed ensemble clustering algorithm in terms
of different numbers of objects are shown in Table 5. We observe that the number of the basic clusters
in the base clustering results increases with increasing the number of objects.
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Table 5. The computational cost of the proposed ensemble clustering algorithm in terms of the number
of data points.

|X|
∑B

i=1ci Time (in Sec.)

10K 91 11.23
20K 213 51.29
30K 225 80.11
40K 232 114.06
50K 233 138.91
60K 242 178.71
70K 245 197.62
80K 353 331.02
90K 461 516.96
100K 472 576.58
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4.5.3. Final Decisive Experimental Results

In this subsection, a set of six real-world datasets has been employed to evaluate the efficacy of the
proposed method in comparison with some recently published papers. Three of these six datasets are
the same Wine, Iris, and Breast datasets presented in Table 2. To make our final conclusion fairer and
more general, three additional datasets, whose details are presented in Table 6, are used as benchmark
in this subsection.

Table 6. Description of the benchmark datasets; the number of data objects (|D:1|), the number of
attributes (|D1:|), the number of clusters (C).

Source Dataset |D:1| |D1:| C

UCI dataset Glass (Gl) 214 9 6
UCI dataset Galaxy (Ga) 323 4 7
UCI dataset Yeast (Y) 1484 8 10

Based on the NMI criterion, the comparison of the performances of different ensemble clustering
algorithms on the real-world benchmark datasets is shown in Table 7. According to the experimental
results, the proposed ensemble clustering algorithm can detect different clusters in an effective way
and increase the performance of the state-of-the-art ensemble clustering algorithms.

Table 7. The NMI between the consensus partitioning results, produced by different ensemble clustering
methods, and the ground truth labels validated by paired t-test [66] with 95% level of confidence.

Dataset NumberEvaluation
Measure B I Gl Ga Y W

T-Test Results Wins
Against-Draws with-Loses to

NMI [9] +
ItoU 95.73− 82.89− 41.38− 21.71− 34.45− 91.83± 5-1-0

MAX [44]
+ ItoU 96.39± 83.21− 42.63− 20.57− 33.89− 91.29− 5-1-0

APMM
[45] + ItoU 95.16− 82.10− 41.98− 24.01− 34.12− 91.78± 5-1-0

ENMI [46]
+ ItoU 96.51± 84.66− 42.65− 24.84− 35.58− 92.27+ 4-1-1

Proposed 97.28 86.05 44.79 29.44 38.20 92.13

5. Conclusions and Future Works

The kmedoids clustering algorithm, as a fundamental clustering algorithm, has been widely
considered to be a low-computational one. However, it is also considered to be a weak clustering
method, because its performances are affected by many factors, such as unsuitable selection of the
initial cluster centers and dissimilar distribution of data. This study is carried out aiming to propose
a new ensemble clustering algorithm using multiple kmedoids clustering algorithms. The proposed
ensemble clustering method has the advantages of the kmedoids clustering algorithm, including its
high speed. Meanwhile, it does not have its major weaknesses, i.e., the inability to detect non-spherical
and non-uniform clusters. Indeed, the new ensemble clustering algorithm can improve stability and
quality of kmedoids clustering algorithm and prove ”aggregating several weak clustering results is
better than or equal to a strong clustering result.” This study tries to solve all of the ensemble clustering
problems by defining valid local clusters. In fact, this study calls data around a cluster center in the
clustering of kmedoids as valid local data clusters. In order to generate a diverse clustering result,
a strategy of sequential application of a weak clustering algorithm (i.e., using kmedoids clustering
algorithm as base clustering algorithm) is used on non-appeared data in previously valid local
clusters. Empirical analysis compares the proposed ensemble clustering algorithm with several existing
ensemble clustering algorithms and three strong fundamental clustering algorithms running on a set
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of artificial and real-world benchmark datasets. According to the empirical results, the performance of
the proposed ensemble clustering algorithm is much more effective than the state-of-the-art ensemble
clustering methods. In addition, we examined the efficiency of the proposed ensemble clustering
algorithm, which is even suitable for dealing with large-scale datasets. This method works because it
concentrates on finding local structures in valid small-cluster and then merging them. It also benefits
from instability of kmedoids clustering algorithm to make a diverse ensemble. The main limitation
of the paper is its usage of base kmedoids clustering algorithm. It seems that other base kmedoids
clustering algorithms such as fuzzy cmeans clustering algorithm can be a better alternative and it will
be discussed in future work.
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