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Abstract: A core issue of computational pattern mining is the identification of interesting patterns.
When mining music corpora organized into classes of songs, patterns may be of interest because
they are characteristic, describing prevalent properties of classes, or because they are discriminant,
capturing distinctive properties of classes. Existing work in computational music corpus analysis has
focused on discovering discriminant patterns. This paper studies characteristic patterns, investigating
the behavior of different pattern interestingness measures in balancing coverage and discriminability
of classes in top k pattern mining and in individual top ranked patterns. Characteristic pattern mining
is applied to the collection of Native American music by Frances Densmore, and the discovered
patterns are shown to be supported by Densmore’s own analyses.

Keywords: pattern discovery; characteristic pattern; discriminant pattern; music corpus analysis;
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1. Introduction

Advances in music data mining and the creation of annotated music corpora [1–3] have supported
a renewed interest in comparative music analysis [4,5]. Analyses of class-labeled music datasets
have explored a range of data mining paradigms, including descriptive methods such as subgroup
discovery and emerging pattern mining [6–12] and predictive methods such as decision tree and
classification rule induction [13–18]. These studies generally focus on identifying discriminant
properties, which distinguish different classes. Highly discriminant patterns, however, may only
describe a few examples in a class. In fact, emerging pattern mining will discover contrasts between
classes even if patterns are infrequent [19]; applications to music corpora consequently reveal emerging
patterns that sometimes cover only a small proportion of examples in a class [12]. In contrast to
discriminant patterns, characteristic patterns capture properties that are prevalent in a class: ideally, a
characteristic pattern is complete, i.e., it covers all, or almost all, examples of a class [20]; completeness
does not require characteristic patterns to also discriminate between classes. Other methods for
characteristic pattern discovery consider characteristic patterns the more interesting the more specific
they are to a certain class [21,22]. This paper explores characteristic pattern mining for music corpus
analysis and investigates the trade-off between completeness and discriminant power of descriptive
patterns.

Two examples shall illustrate characteristic patterns in music. These examples are based on
analyses by Frances Densmore (1867–1957), one of the most prolific collectors of Native American music.
Through comparative analyses of feature distributions in different tribal repertoires, Densmore sought
to identify common and distinctive properties of these repertoires. The two selected patterns are
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both shared by a majority of songs in a class: among the songs of the Chippewa, 67% end on the
keynote; of Teton Sioux songs, 70% contain one or more rhythmic units. However, when compared
against songs of other tribes (Ute, Mandan, Hidatsa, Papago, Pawnee, and Menominee), only the
first of these patterns shows different distributions in different tribes: “Tribes differ in the location of
the keynote; for example, the Chippewa usually build their melodies above the keynote, while the
Papago more frequently place the melody partly above and partly below the keynote. The percentage
of Chippewa songs ending on the keynote is 67, while the Papago group contains 41 per cent with
this ending” [23] (pp. 19–20). The occurrence of rhythmic units, on the other hand, is prevalent not
only in Sioux music, but also in the songs of other tribes: “The tribes show little difference in this
respect [use of a rhythmic unit], and 72 per cent of the entire group contains one or more rhythmic
units” [23] (p. 20). Thus, both patterns are characteristic for their class (describing a majority of songs
in the class), but the ending on the keynote is more discriminant (describing proportionately fewer
songs in other classes) than the use of rhythmic units (Figure 1). Densmore’s analyses present a
remarkable opportunity to compare, qualitatively, the results of computational pattern mining to
published musicological findings.

other 49% Chippewa 67%

lastNoteReKey:keynote

other 72% Teton Sioux 70%

rhythmicUnits:oneOrMore

Figure 1. Visualization of two example patterns from Densmore’s quantitative analyses. Top: Songs
of the Chippewa ending on the keynote, compared against combined Sioux, Ute, Mandan, Hidatsa,
Pawnee, Papago, and Menominee songs. Bottom: Songs of the Teton Sioux containing one or more
rhythmic units, compared against combined Chippewa, Ute, Mandan, Hidatsa, Pawnee, Papago,
and Menominee songs. The bar charts show the relative frequency of the pattern in the target
class (dark blue) and the background of other classes (light blue).

To separate potentially interesting patterns from trivial results, different pattern interestingness
measures have been proposed [24]. In this paper, we analyze interestingness measures for
characteristic patterns, investigating their ability to balance class coverage and discriminant power of
patterns (Section 2). Top k pattern mining is applied to the Densmore collection of Native American
music (Section 3); the behavior of top k patterns mined with different interestingness measures is
compared, and top ranked example patterns are discussed with reference to observations by Frances
Densmore (Section 4).

2. Descriptive Patterns

Descriptive pattern discovery focuses on symbolic data analysis, which extracts comprehensible
and potentially interesting patterns intended for interpretation [25].

2.1. Class Association Patterns

Characteristic patterns describe properties that are common to most examples in a class. Hence,
to place this work in the context of music pattern mining, we are interested in inter-opus patterns
(recurring across multiple music pieces [8]), each of which is associated with a class. Let D be a dataset
organized into classes of examples. Further, let X denote a pattern, interpretable as a Boolean predicate
on examples: the pattern is true for an example if it describes a property of the example [26]. The set of
examples for which a pattern X is true is said to be covered by the pattern. A class association pattern
X ∧ C covers those examples in class C that are described by pattern X.

For music corpus analysis, different pattern representation languages have been employed,
including representation by global features or by sequences of event features [27]. Following
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Densmore’s quantitative analyses of Native American songs, the current study focuses on
global-feature patterns: a global feature is an attribute–value pair a : v describing a song as a
whole, e.g., lastNote : keynote or rhythmicUnits : no. A global feature covers a song if the value v
of attribute a is true for the song. A global-feature pattern is a set of global features, e.g.,
{lastNote : keynote, rhythmicUnits : no}. A global-feature pattern covers a song if all global features
included in the pattern cover the song.

The association X ∧C between a pattern X and a class C can be summarized in a 2× 2 contingency
table (Figure 2). The table shows the pattern’s presence (X) or absence (¬X) in a target class C and the
background of remaining classes ¬C. More specifically, the table cells list the respective support counts:
the support count of pattern X, written n(X), is the number of examples in the dataset that are covered
by pattern X, while the support count of pattern X in class C, written n(X ∧ C), is the number of
examples in class C covered by pattern X. Further, n(C) gives the number of examples in class C, and
N denotes the total number of examples in the dataset. Then, the empirical probability of a pattern X
occurring in the dataset D is defined as P(X) = n(X)/N, and the conditional probability of pattern X
occurring given class C is P(X|C) = n(X ∧ C)/n(C).

C ¬C

X n(X ∧ C) n(X ∧ ¬C) = n(X)− n(X ∧ C) n(X)

¬X n(¬X ∧ C) = n(C)− n(X ∧ C) n(¬X ∧ ¬C) = n(¬X)− n(¬X ∧ C) n(¬X) = N − n(X)

n(C) n(¬C) = N − n(C) N

Figure 2. Contingency table for a class association pattern X ∧ C.

2.2. Pattern Interestingness

From the contingency table for a class association pattern X ∧ C (Figure 2), measures of pattern
interestingness can be computed [24]. Interestingness measures guide the pattern discovery towards
patterns that are of potential interest and should be presented. They can be used during pattern mining
to prune uninteresting pattern candidates or during post-processing to rank or select patterns.

The issue of identifying interesting association patterns has been extensively studied, and a large
number of interestingness measures have been proposed. Tan et al. [28] analyzed 21 interestingness
measures for association analysis; the survey of Geng and Hamilton [24] covered 38 measures;
while Belohlavek et al. [29] studied 61 measures. In this paper, we consider seven interestingness
measures that have been used in characteristic pattern mining; the measures and their definitions are
listed in Table 1.

– Typicality: The measure of typicality evaluates relative pattern frequency in the target class,
i.e., the proportion of examples in class C that are covered by pattern X. The measure was
originally proposed to quantify disjunctive patterns which together completely cover a class [30],
but is here applied to evaluate individual characteristic patterns.

– Utility: The utility measure was proposed in order to rank as more interesting those patterns
which are more specifically related to the target class than to other classes [22]. The measure
returns a positive value when pattern and class cannot be considered statistically independent, i.e.,
when P(X ∧ C) > P(X)× P(C). Utility is weighted by pattern frequency (scaled by a), favoring
more general patterns with higher relative frequency P(X) (for a > 0).

– Novelty: Similarly to utility, novelty (applied to characteristic patterns in [31]) is based on
comparing the joint and individual probabilities of a pattern and a class: it returns a positive
value when the co-occurrence of pattern and class is more frequent, measured by P(X ∧ C),
than expected given the individual probabilities P(X) and P(C). Novelty can be rewritten as
weighted relative accuracy, P(X)× [P(C|X)− P(C)], combining generality of the pattern with
added value of the class probability given the pattern [32].
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– Laplace estimate: The Laplace estimate has been used as an alternative to novelty for assessing
characteristic patterns [31]. The measure quantifies the pattern’s frequency in the target class
relative to its frequency in the complete dataset. The value of the Laplace estimate is maximal if all
examples covered by the pattern are examples of the target class. Due to the constant summands
(1 in the numerator and 2 in the denominator), the measure implicitly penalizes less frequent
patterns with smaller n(X) and n(X ∧ C) [33].

– Relative risk: The measure of relative risk has been employed to select among typical patterns
those patterns which are more predictive of the target class [21]. Relative risk assesses the
conditional probability of the class C given the pattern X against the class probability in the case
of the pattern being absent.

– IC++: The IC++ measure [34] not only considers the pattern’s absence in the target class, but
also in the background, with ¬X observed in the target class rather than background suggesting
C to be less plausible. Different from utility and novelty, the IC++ measure, increasing with
higher P(C), is biased towards frequent classes rather than frequent patterns.

– F1 score: As a further measure, we borrow the F1 score from predictive data mining, which is
designed to balance recall P(X|C) and precision P(C|X) by calculating their harmonic mean.
While recall (corresponding to typicality) measures the relative frequency of the pattern in
the target class irrespective of the pattern’s occurrence in other classes, precision quantifies
the proportion of pattern occurrences which are observed in the target class rather than
other classes.

Hence, while typicality only considers the pattern’s frequency in the target class C independently
of its occurrence in the background ¬C, the other measures listed in Table 1 select in various ways
characteristic patterns that are specific to the target class C, relative to their overall distribution. Among
class-specific patterns, the measures of utility, novelty, and Laplace favor more frequent patterns, while
the IC++ measure is biased towards larger classes.

Table 1. Interestingness measures for characteristic patterns.

Measure Definition

typicality P(X|C)

utility P(X)a log P(X∧C)
P(X)×P(C)

novelty P(X ∧ C)− P(X)× P(C)

Laplace estimate n(X∧C)+1
n(X)+2

relative risk P(C|X)
P(C|¬X)

IC++

{
P(C)[1− P(¬X|C)

P(¬X|¬C) ] if 0 ≤ P(¬X|C)
P(¬X|¬C) < 1

0 otherwise

F1 score 2×P(X|C)×P(C|X)
P(X|C)+P(C|X)

2.3. Analysis Criteria

The analysis in this paper focuses on the trade-off between completeness and discriminant power
for different pattern interestingness measures. A pattern X is Γ% complete with respect to a class C if
it covers Γ% of the examples in C, that is completeness is quantified by the pattern’s sensitivity [34,35]:

Γ = P(X|C) (1)
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Note that the definition of the typicality measure for characteristic patterns (Table 1) corresponds to
Equation (1); considering typicality in this study hence provides a benchmark of maximal completeness
for the given datasets. A pattern X is ∆% discriminant for class C if it covers (100−∆)% of the examples
that are not members of class C, that is discriminant power of a pattern with respect to a class is given
by its specificity [34,35]:

∆ = 1− P(X|¬C)

= P(¬X|¬C)
(2)

Equations (1) and (2) quantify completeness and discriminant power of individual patterns.
Descriptive statistics (such as the mean, median, and maximum) can then be calculated to analyze
output sets of patterns.

3. Data

For the current study, two subsets from the Densmore collection of Native American music
were selected (Section 3.1), and Densmore’s own music content features were employed to represent
songs (Section 3.2).

3.1. Datasets

Case Study 1: Tribes Predominantly, Densmore’s comparative analysis “seeks to ascertain in what
respects the music of one tribe (or linguistic family) resembles and differs from another” [23] (p. 19).
The first dataset in the current study is comprised of songs of four tribes, considering all songs
for which Densmore provided music content descriptors: Chippewa (326 songs), Teton Sioux (240),
Pawnee (86), and Papago (167). These tribes are expected to reveal both resemblances and differences
in their music: all four tribes belong to the Plains musical area, historically considered the most typical
style of North American Native music; within the larger style area, however, several sub-areas can
be identified whose styles differ from each other, including the Eastern Woodlands and Great Lakes
(here represented by the Chippewa), the Plains and Northern Prairies (Teton Sioux), and the Southern
Prairies (Pawnee). Included as well is the Pima-Papago style, although more marginal to the area
than other sub-areas [36]. In addition, the four selected tribes represent different linguistic families:
Algonquian (Chippewa), Siouan (Sioux), Caddoan (Pawnee), and Piman (Papago) [23].

Case Study 2: Song types In Densmore’s study of Chippewa music, “the principal tabulated analysis
is made on the basis of the class or use of the song” [37] (p. 1). In addition to the tabular analysis,
the publication provides a narrative description of each song class and a synopsis of resemblances
between classes. Densmore distinguished 11 classes of songs, including one group of unclassified
songs. Of these, we consider in our analysis song types represented by at least 10 songs: Mı̌de’ songs
(92 songs), war songs (87), dream songs (51), love songs (26), and moccasin game songs (14).

Table 2 summarizes the two datasets in terms of their size (number of songs) and partitioning
(number of classes).

Table 2. Datasets, selected from Densmore’s collection of Native American music [37–41].

Case Study Classes # of Songs # of Classes

1 Tribes 819 4
2 Song types 270 5

3.2. Music Content Features

Underlying Densmore’s quantitative analyses are music content features, i.e., attribute–value
pairs, which describe melodic and rhythmic-metric aspects of the music. The selection of attributes
and the partitioning of their values varies across Densmore’s published analyses, ranging—for the
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repertoires considered in this paper—from 237 features (derived from 22 attributes) in the analysis of
Chippewa songs [37] to 137 features (derived from 17 attributes) in the analysis of Papago songs [41].
The current study employs a subset of Densmore’s features. First, attributes that in Densmore’s
analyses were applied to complete datasets rather than individual songs (e.g., average interval size or
distribution between ascending and descending intervals) were ignored. Second, attributes with highly
fragmented values and generally low feature counts (e.g., tempo based on metronome readings) were
discarded. For the remaining attributes, some infrequent values were aggregated and—for cross-tribe
analysis (Case Study 1)—common attributes selected and different partitionings of values mapped
onto the same value ranges. Table 3 summarizes the feature vocabulary for the two case studies, the
comparison of songs by four Plains tribes (Case Study 1) and the comparison of five song types within
Chippewa music (Case Study 2).

Table 3. Music content features based on Densmore’s quantitative analyses.

Attribute Definition # of Values
Case Study 1 Case Study 2

tonality third above keynote 5 3
firstNoteReKey first tone relative to keynote 17 14
lastNoteReKey last tone relative to keynote 7 6
lastNoteReCompass last tone relative to compass of song 4 2
material tone material 16 13
accidentals chromatic alterations of tones 6 3
structure relation between contiguous accented tones 4 3
firstProgression direction of first progression 2 2
firstMetricPos part of measure on which song begins 3 3
firstMeasure rhythm (meter) of first measure 13 10
meterChange change of time (measure-lengths) 3 3
rhythmicUnits rhythmic units 3 3
tempoVoiceAccomp tempo relation voice/rhythmic accompaniment – 4

4. Results

The two datasets described above were mined for class association patterns, employing the seven
interestingness measures introduced in Table 1. In this section, we analyze sets of top k discovered
patterns; in particular, we study how the different interestingness measures trade off completeness
against discriminant power (Section 4.1). The top ranked pattern for each of the interestingness
measures is presented, for the two case studies of comparing Plains tribes and of comparing Chippewa
song types, discussing completeness and discriminant power of the individual patterns in the context
of Densmore’s quantitative analyses of the repertoires (Section 4.2). To reduce the risk of spurious
patterns and to facilitate the interpretation of the mining output, pattern discovery was run with a
minimum support threshold of 3% [42] and a maximum pattern size constraint of four features [43].

4.1. Distribution of Completeness and Discriminant Power for Different Interestingness Measures

Figure 3 shows graphically the variation in completeness and discriminant power over the
top k (k = 30) patterns for each of the studied interestingness measures, in the two case studies of
comparing songs by different Plains tribes and of comparing different song types within Chippewa
music. The box and whisker plots in Figure 3 show for each measure a box around the first and
third quartile, with whiskers from the minimum to maximum completeness or discriminant power.
The plots reveal differences between the interestingness measures in balancing completeness and
discriminant power. At the same time, overall similar behavior of the measures relative to each other
can be observed in both case studies, suggesting that the principal observations can be generalized
across datasets.
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Figure 3. Distribution of completeness and discriminant power for the top 30 patterns mined with
different pattern interestingness measures (minimum association support 3%, maximum pattern size 4).
Numbers in brackets indicate the rank of the maximally complete resp. discriminant pattern.

Unsurprisingly, patterns ranked high by the typicality measure are located high in the
completeness space but predominantly low with respect to discriminant power. In the first case
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study, the comparison of tribes, the maximum completeness (indicated by the highest ranked pattern
according to typicality) is also reached by the IC++ measure where it is found on rank five. In the
second case study, the comparison of Chippewa song types, additionally utility (with higher a), novelty,
and F1 score also include the maximally complete pattern among the top 30 patterns, in the case of
utility (with a = 1) on rank one. For the utility measure, generally, the bias towards more frequent
patterns with higher a favors more complete patterns, while low a leads to more discriminant patterns.

The remaining measures proposed for discovering characteristic patterns seek to increase
discriminant power, frequently at the cost of lower completeness. The Laplace estimate generally
appears to favor highly discriminant patterns, while relative risk shows a larger variance especially
in the first case study, reaching relatively high, but also relatively low completeness values for some
among the top ranked patterns. Novelty, like utility biased towards more frequent patterns, achieves
higher completeness than Laplace and utility (with a = 0) and predominantly higher discriminant
power than IC++ and utility (with higher a). These findings are in line with alternative uses of these
measures: Laplace has proven successful in associative classification using patterns [44]. The measure is
similar to confidence in association rule mining, which was proposed as a measure for discriminant as
opposed to characteristic pattern induction in early work on data mining and knowledge discovery [20].
Novelty, also known as Piatetsky-Shapiro (or PS) and leverage in association rule mining, has been
used for mining differences between groups in combination with a statistical test metric [45] and (as
mentioned above) can be translated into weighted relative accuracy in subgroup discovery, which has
been adapted for contrast set mining [46]. When integrated into rule-based classification, novelty has
been found to yield more general patterns with higher support but lower predictive accuracy than a
rule-based classifier employing the Laplace estimate [47].

4.2. Example Patterns

The following two sections present example patterns discovered in the two case studies on
Densmore’s collection of Native American songs. They serve to illustrate the findings of the previous
section at the level of individual patterns, to assess the pattern discovery against related observations
by Densmore, and to demonstrate characteristic pattern mining for music corpus analysis.

4.2.1. Case Study 1: Tribes

Table 4 lists the class association pattern ranked first by each interestingness measure for
comparing songs of the four tribes Chippewa, Teton Sioux, Pawnee, and Papago. Several
interestingness measures agree on the same top ranked pattern, lastNoteReCompass : above_lowest
for Papago songs: this pattern is ranked first in computational pattern mining using either utility
(with a = 1, pattern A3), novelty (A5), or relative risk (A7), i.e., measures that according to the
findings of Section 4.1 tend to balance completeness and discriminant power to various degrees.
In fact, this pattern is both characteristic (Γ = 0.89) and discriminant (∆ = 0.82)—for example, in
contrast to Sioux songs generally ending on the lowest tone (A8, A4)—and was also highlighted by
Densmore: “The difference between the songs in various tribes is clearly shown [in the ending relative
to the compass]. In the Pawnee songs 78 per cent end on the lowest tone of the compass, while in
the Papago group 90 per cent contain tones lower than the final tone” [40] (p. 15). In combination
with additional features (beginning and ending on the fifth above the keynote with melodic tones
based on a major pentatonic scale, A2), discriminant power increases to 0.99, though at the cost of
decreasing completeness (Γ = 0.16), discovered with utility (a = 0), which tends to favor discriminant
patterns. As for utility (a = 0), the pattern ranked first by the Laplace estimate—another measure
biased towards discriminant patterns—is a more specialized pattern comprising four features: major
tonality, harmonic structure, beginning on the twelfth above the keynote, and ending on the keynote
(A6). Individually, the most discriminant of the features is the beginning on the twelfth (Γ = 0.29,
∆ = 0.93), while the ending on the keynote (Γ = 0.67, ∆ = 0.47) is characteristic but less discriminant
for Chippewa songs when compared against Sioux, Papago, and Pawnee music. Indeed, in her
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analysis of individual features, Densmore commented on the “relatively large proportion” [48] (p. 52)
of Chippewa songs beginning on the twelfth, while in Pawnee music, the “highest percentages of
initial tones are on the tenth, octave, fifth and keynote” [40] (p. 14) and “[n]o Papago songs begin on a
tone higher than the tenth above the keynote” [41] (p. 12). The trade-off between completeness and
discriminant power is also clearly illustrated by the first pattern listed for the class of Teton Sioux
songs, ranked top by typicality (A1): the characteristic pattern meterChange : yes is prevalent in this
group—93% of the Sioux songs contain one or more meter changes—but also found frequently in other
tribal repertoires and thus not discriminant for Teton Sioux music (∆ = 0.16); in fact, the pattern occurs
among associations discovered with typicality also for the other tribes included in the analysis, on
the second rank for Papago (92%), on the eighth rank for Chippewa (83%), and on the 17th rank for
Pawnee (74%). This finding corresponds to Densmore’s analyses, who observed “a change of measure
lengths, as indicated by accented tones, to be a prevailing characteristic of Indian songs” [49] (p. 183).

Table 4. Top-ranked patterns (by interestingness measure) in Case Study 1, with class support count
n(C), pattern support count n(X), association support count n(X ∧ C), interestingness I (according to
the respective interestingness measure), completeness Γ, and discriminant power ∆.

Measure Class (Support) Pattern (Support) n(X ∧ C) I Γ ∆

A1 typicality Teton Sioux (240) meterChange:yes (691) 222 0.93 0.93 0.16

A2 utilitya=0 Papago (167) material:major_pentatonic,
firstNoteReKey:fifth, lastNoteReKey:fifth,
lastNoteReCompass:above_lowest (28)

27 1.55 0.16 0.99

A3 utilitya=1 Papago (167) lastNoteReCompass:above_lowest (269) 149 0.33 0.89 0.82

A4 utilitya=2 Teton Sioux (240) lastNoteReCompass:lowest,
meterChange:yes (456)

195 0.12 0.81 0.56

A5 novelty Papago (167) lastNoteReCompass:above_lowest (269) 149 0.11 0.89 0.82

A6 Laplace Chippewa (326) tonality:major, structure:harmonic,
firstNoteReKey:twelfth,
lastNoteReKey:keynote (59)

56 0.93 0.17 0.99

A7 rel. risk Papago (167) lastNoteReCompass:above_lowest (269) 149 17.54 0.89 0.82

A8 IC++ Teton Sioux (240) lastNoteReCompass:lowest (566) 209 0.19 0.87 0.40

A9 F1 score Papago (167) lastNoteReCompass:above_lowest,
meterChange:yes (226)

139 0.71 0.83 0.87

4.2.2. Case Study 2: Song Types

Table 5 presents example patterns for Case Study 2, comparing different song types in the
Chippewa repertoire. As for Case Study 1 above, the top ranked pattern for each of the studied
interestingness measures was selected. The examples confirm the observations already supported by
the mining results in the first case study: high completeness at the cost of low discriminant power is
achieved by measures such as IC++ (pattern B8) and utility (with a = 2, B4), while the Laplace estimate
yields a top-ranked pattern with high discriminant power but low completeness (B6). In this case,
the pattern ranked highest by utility (with a = 0, B2) shows higher completeness than in Case Study 1,
but still has higher discriminant power than completeness. Similar to Case Study 1, highly discriminant
patterns tend to be more specialized, comprising multiple features. Of these, the pattern ranked first
by relative risk (B7) is the most complete; curiously, exactly this combination of features was also
referenced by Densmore in her description of Chippewa moccasin game songs: “Directness is shown
in the accented beginnings of the songs and their endings on the tonic, but this is contradicted by the
small percentage of songs containing a rhythmic unit” [37] (p. 45). Among the features contributing to
the other pattern for moccasin game songs listed in Table 5 (ranked highest by utility with a = 0, B2),
individually, both the ending on the keynote and the absence of accidentals are highly characteristic
(Γ = 0.93, with ∆ = 0.36 and ∆ = 0.18, respectively), and minor tonality is observed in a majority of
moccasin game songs (Γ = 0.79, ∆ = 0.62), as also pointed out by Densmore: “In the analysis of these
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songs may be noted a large proportion in minor tonality [...]. Eighty-four per cent begin on, and all end
on, either the tonic or dominant. [...] Only one song contains an accidental” [37] (p. 44). In combination,
the features are still shared by 57% of the moccasin game songs, but are also strongly discriminant
for this group of songs when compared against Mı̌de’, war, dream, and love songs. The top ranked
patterns characterizing Mı̌de’ songs allow to directly observe the effect of pattern specialization on
decreasing completeness and increasing discriminant power: an initial downward progression is
found in 91% of Mı̌de’ songs (B8), while 70% of the Mı̌de’ songs begin with a downward progression
and are melodic in structure (B5, B9); the latter pattern is more discriminant of Mı̌de’ songs (∆ = 0.69)
than the former (∆ = 0.36). The specialized pattern for war songs ranked first by the Laplace estimate
(B6) has 100% discriminant power: it is not found at all in the other groups. The general pattern for
love songs ranked highest by typicality (B1) and utility (with a = 1, B3), on the other hand, has 100%
completeness: “The love songs were unaccompanied by any instrument” [37] (p. 41); thus, all love
songs in the analysis corpus were recorded without the drum. In comparison, songs of other types
were usually accompanied by the drum (Mı̌de’, war, dream, and moccasin game songs) or rattle (Mı̌de’
songs) [37,38].

Table 5. Top-ranked patterns (by interestingness measure) in Case Study 2, with class support count
n(C), pattern support count n(X), association support count n(X ∧ C), interestingness I (according to
the respective interestingness measure), completeness Γ, and discriminant power ∆.

Measure Class (Support) Pattern (Support) n(X ∧ C) I Γ ∆

B1 typicality love songs (26) tempoVoiceAccomp:noDrum (65) 26 1.00 1.00 0.81

B2 utilitya=0 game songs (14) tonality:minor, accidentals:none,
firstProgression:upward,
lastNoteReKey:keynote (25)

8 1.82 0.57 0.93

B3 utilitya=1 love songs (26) tempoVoiceAccomp:noDrum (65) 26 0.35 1.00 0.81

B4 utilitya=2 love songs (26) structure:melodic (171) 25 0.17 0.96 0.40

B5 novelty Mı̌de’ songs (92) structure:melodic,
firstProgression:downward (121)

64 0.08 0.70 0.69

B6 Laplace war songs (87) structure:mixed,
lastNoteReKey:keynote,
lastNoteReCompass:lowest,
rhythmicUnits:one (12)

12 0.93 0.14 1.00

B7 rel. risk game songs (14) lastNoteReKey:keynote,
firstMetricPos:accented,
rhythmicUnits:no (37)

10 15.74 0.71 0.89

B8 IC++ Mı̌de’ songs (92) firstProgression:downward (198) 84 0.26 0.91 0.36

B9 F1 score Mı̌de’ songs (92) structure:melodic,
firstProgression:downward (121)

64 0.60 0.70 0.69

5. Discussion and Conclusions

A central issue in pattern discovery research is the challenge of separating interesting patterns
from trivial results. Patterns that are characteristic of a class, covering most examples in the class, may
not be discriminant. On the other hand, highly discriminant patterns may have low coverage, may
be sensitive to noise, and may be prone to overfit a few examples in the data [50]. In this paper, we
studied, for a range of pattern interestingness measures and on real musicological data, the trade-off
between completeness and discriminant power in mining characteristic patterns. The empirical
findings confirm the considerations underlying different choices of measure: the typicality measure,
used to discover characteristic patterns that cover all or most examples in a class [20,30], achieves high
completeness without controlling for discriminant power. The IC++ measure was motivated by the
view that those characteristic patterns are most interesting that also discriminate a target class from
background classes [34]; consequently, class association patterns ranked high by the IC++ measure are
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generally more discriminant than patterns ranked high by typicality, while still retaining relatively high
completeness. Similarly, novelty has been selected as an interestingness measure to discover patterns
that are frequent in the target class but infrequent in the background, thus trading off sensitivity and
specificity of the pattern [31]. Other measures, such as relative risk, suggested to prune patterns that are
frequent in a class but not predictive of the class [21], tend to more strongly favor discriminant patterns
at the cost of decreasing completeness. The results reported in this paper were also found to align
with alternative uses of certain measures in contrast pattern mining (e.g., novelty) or pattern-based
classification (e.g., Laplace estimate).

Characteristic pattern discovery was applied to the Densmore collection of Native American music.
In her publications, Densmore herself included quantitative analyses of collected songs organized into
classes such as tribal repertoires or song types, which together with her narrative descriptions provide
a valuable reference for assessing the results of the computational analysis. Without explicitly referring
to characteristic and discriminant patterns (and thus not providing a ground truth for quantitatively
evaluating computational pattern discovery), Densmore’s findings include patterns that are prevalent
in a group of songs, and thus can be considered characteristic patterns, and patterns that distinguish
one group of songs from others, and hence can be considered discriminant patterns. Revisiting the
two Densmore examples introduced at the beginning of the paper, while both patterns—the ending on
the keynote in Chippewa songs and the occurrence of one or more rhythmic units in Sioux songs—are
similarly prevalent in the respective groups (Γ = 0.67 and Γ = 0.70, respectively), the ending on the
keynote in the Chippewa songs is more discriminant (∆ = 0.53) than the use of rhythmic units in the
Sioux songs (∆ = 0.28). This analysis of completeness and discriminant power of the two example
patterns can be related to Densmore’s observation that tribes differed in the location of the keynote
(with Chippewa songs exhibiting a comparatively high proportion of songs ending on the keynote), but
showed little difference in the use of rhythmic units. When computational pattern discovery is applied
to two subsets of Densmore’s collection—comparing songs of four Plains tribes and comparing five
song types within Chippewa music—the top-ranked patterns can in many cases be shown to match the
corresponding observations in Densmore’s comments on these repertoires. Thus, the interestingness
measures for characteristic pattern mining explored in this paper indeed reveal patterns that appear of
interest in comparative music corpus analysis.

The pattern evaluation strategies considered in the current study attempt to balance completeness
and discriminant power in a single interestingness measure. This can make measure values difficult to
interpret. Indeed, an application of subgroup discovery to music, using novelty, additionally presented
other measures (including sensitivity, corresponding to typicality) to facilitate the interpretation of
results [6]. Rather than a single integrated measure, multiple measures could be evaluated during the
pattern mining. For example, employing frequency and significance constraints, Ali et al. [21] applied
a χ2 test of association in addition to a support threshold in order to ensure that the relation between a
characteristic pattern and a class was statistically significant. Brijs et al. [35] set thresholds for minimum
coverage in the target class (constraining sensitivity or completeness) and maximum coverage in the
background (constraining specificity or discriminant power), though at the level of pattern sets rather
than individual patterns. The explicit use of multiple measures potentially gives additional control
over the trade-off between completeness and discriminant power and may enhance the interpretation
of pattern interestingness results, but requires the specification of one or more measure thresholds.

The challenge of selecting interestingness measures has attracted considerable attention in data
mining research, and several principles to characterize the behavior of measures under different
conditions have been proposed [24,28,29,51]. The choice of a measure will always depend on the
specific analysis interest in the task at hand [52]. The case studies in this paper provide examples
in comparative music corpus analysis, studying class-labeled music data. As Densmore’s analyses
demonstrate, both characteristic patterns, which describe prevalent properties of classes of songs,
and discriminant patterns, which capture contrasting properties that distinguish one class from other
classes, can be of interest. In the first case, interestingness measures such as typicality, IC++, or utility
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(with higher a) will yield patterns with a bias towards completeness; on the other hand, measures
such as relative risk, the Laplace estimate, and utility (with a = 0) will predominantly prioritize
discriminant but potentially infrequent patterns. If both characteristic and discriminant patterns are
studied or for an initial exploration of a dataset before specifying further analysis questions, measures
such as novelty or F1 score, which balance completeness and discriminant power, may present a
suitable compromise. Besides quantitative criteria such as completeness and discriminant power, other
principles may be considered, e.g., intelligibility of a measure [52]. Attempts have thus been made
to develop multi-criteria decision aids for selecting interestingness measures [52]. Ultimately, the
choice of interestingness measure in a specific task is a subjective decision and may even be adapted in
iterative data analysis; empirical studies comparing computational measures and human assessment
of pattern interestingness have observed considerable differences for different human analysts or
datasets [53].

Class-labeled datasets have been, and continue to be, prominent in music data mining.
Most existing research has focused on identifying discriminant patterns, which alone do not provide
an exhaustive picture of the data. The current study complements previous work by systematically
investigating interestingness measures for characteristic patterns and illustrating their implications in
a detailed discussion of discovered patterns.
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32. Lavrač, N.; Flach, P.; Zupan, B. Rule evaluation measures: A unifying view. In Proceedings of the
9th International Workshop on Inductive Logic Programming (ILP-99), Bled, Slovenia, 24–27 June 1999;
pp. 174–185.

33. Fürnkranz, J. Separate-and-conquer rule learning. Artif. Intell. Rev. 1999, 13, 3–54. [CrossRef]

http://dx.doi.org/10.1080/09298215.2017.1353637
http://dx.doi.org/10.1016/j.patrec.2004.10.016
http://dx.doi.org/10.1080/09298215.2014.881888
http://dx.doi.org/10.1145/1132960.1132963
http://dx.doi.org/10.1016/S0306-4379(03)00072-3
http://dx.doi.org/10.1109/69.204089
http://dx.doi.org/10.1023/A:1006524209794


Appl. Sci. 2020, 10, 1991 14 of 14

34. Kamber, M.; Shinghal, R. Evaluating the interestingness of characteristic rules. In Proceedings of the 2nd
International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA,
2–4 August 1996; pp. 263–266.

35. Brijs, T.; Vanhoof, K.; Wets, G. Reducing redundancy in characteristic rule discovery by using integer
programming techniques. Intell. Data Anal. 2000, 4, 229–240. [CrossRef]

36. Nettl, B. North American Indian musical styles. J. Am. Folk. 1954, 67, 44–56, 297–307, 351–368. [CrossRef]
37. Densmore, F. Chippewa Music II; Bulletin 53; Smithsonian Institution, Bureau of American Ethnology:

Washington, DC, USA, 1913.
38. Densmore, F. Chippewa Music; Bulletin 45; Smithsonian Institution, Bureau of American Ethnology:

Washington, DC, USA, 1910.
39. Densmore, F. Teton Sioux Music; Bulletin 61; Smithsonian Institution, Bureau of American Ethnology:

Washington, DC, USA, 1918.
40. Densmore, F. Pawnee Music; Bulletin 93; Smithsonian Institution, Bureau of American Ethnology:

Washington, DC, USA, 1929.
41. Densmore, F. Papago Music; Bulletin 90; Smithsonian Institution, Bureau of American Ethnology:

Washington, DC, USA, 1929.
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