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Abstract: In the design optimization of robot arms, the use of simulation technologies for modeling
and optimizing the objective functions is still challenging. The difficulty is not only associated with
the large computational cost of high-fidelity structural simulations but also linked to the reasonable
compromise between the multiple conflicting objectives of robot arms. In this paper we propose
a surrogate-based evolutionary optimization (SBEO) method via a global optimization approach,
which incorporates the response surface method (RSM) and multi-objective evolutionary algorithm
by decomposition (the differential evolution (DE ) variant) (MOEA/D-DE) to tackle the shape design
optimization problem of robot arms for achieving high speed performance. The computer-aided
engineering (CAE) tools such as CAE solvers, computer-aided design (CAD) Inventor, and finite
element method (FEM) ANSYS are first used to produce the design and assess the performance of
the robot arm. The surrogate model constructed on the basis of Box–Behnken design is then used in
the MOEA/D-DE, which includes the process of selection, recombination, and mutation, to optimize
the robot arm. The performance of the optimized robot arm is compared with the baseline one
to validate the correctness and effectiveness of the proposed method. The results obtained for the
adopted example show that the proposed method can not only significantly improve the robot arm
performance and save computational cost but may also be deployed to solve other complex design
optimization problems.

Keywords: surrogate-based evolutionary optimization; response surface method; Box–Behnken
design; multi-objective evolutionary algorithm; robot arm

1. Introduction

Nowadays, facing the megatrend for smart factories of the future, industrial robots play a greatly
important role not only in traditional pick-and-place tasks but also in many of the precision applications
such as assembly, welding, and machining. These robots, in order to satisfy the requirements of new
applications, must be designed to meet high end/performance requirements, i.e., high accuracy and
high efficiency. The design process of an industrial robot arm with high speed performance is still
challenging due to the interconnecting roles of adjacent joints, which may significantly impact the
efficiency and stability of the robot arm. For example, the deformation and residual vibration of the
robot arm will cause its positioning accuracy to decrease, and the robot arm mass and moment of
inertia will affect its dynamic behavior, such as controllability and efficiency; moreover, these factors
generally are in conflict with each other. Therefore, design optimization of robot arms is becoming
increasingly important.
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With the advance of digital twins in smart factories, the use of simulation technologies to address
computation-expensive and multi-objective optimization issues has become an important research
topic. Design optimization is the process of establishing the right combination of product parameters
that satisfy project requirements [1]. Structural optimization can be separated into three main categories:
size, shape, and topology optimization [2]. In a structural design process, a topology optimization is
first performed to obtain an initial sketch of the optimal configuration of the structure; the suggested
configuration is interpreted to draw an engineering design, and this design is then optimized using
detailed sizing and shape optimization methods together with realistic design constraints. These
methods are not only able to optimize the robot arm but can also be extended to the design of the whole
robot system. For the purpose of improving the performance of industrial robots, a number of research
works have been carried out with respect to the related topics in recent years. Some works focused
on the selection criteria of the servo motor and gearbox for optimizing the servo drive system [3,4].
A few reports studied new control algorithms to obtain high speed performance, such as residual
vibration suppression [5]. Certain researchers used the finite element method (FEM) to optimize robot
structure. Roy et al. used the finite element method to design a high-performance robot arm and
reported experimental structural data to support the design of the robot arm [6]. Park and Asada
studied the design optimization of the mechanical structure and control of a two-link robot for which
the weight and inertia of the robot arm were minimized to attain high-speed positioning [7]. Sahu and
Choudhury used the FEM of the ANSYS workbench to optimize the performance of a six-axis industrial
robot via stress, modal, and dynamic behavior analyses [8–10]. Pupăză et al. also used an FEM-based
optimization technique to study the influence of the static and dynamic behaviors on the positioning
accuracy of robots [11]. Chen et al. analyzed the static strength and stiffness of a two-link robot
and then used a topology optimization method to design the structure for quality improvement [12].
In the above studies, it was revealed that CAE together with FEM-based design optimization can
be an important tool for attaining structural performance improvement in real-world engineering
applications. However, for cases with large design space or the requirement of attaining numerous
design samples, the high computational effort of analysis may hinder the implementation of the
conventional FEM-based design optimization methods in the design optimization process. On the
other hand, only a few researchers have studied the multi-objective and computational inefficiency
problems related to the design optimization of industrial robots.

The response surface method (RSM), also known as the surrogate model or approximation model,
can be used to improve the design efficiency. In RSM, a set of sample data (obtained by running the
computer code/simulation) are used to build the surrogate model, which are sufficient to predict the
output at untried points within the design space. Because the predictions obtained from a surrogate
model are generally much more efficient than those from numerical analysis code, the computational
cost associated with each search in RSM is therefore negligible. Surrogate-model-based optimizations
are of particular interest for engineering design when coupled with high-fidelity and expensive analysis
codes, such as computation fluid dynamics (CFD) and computational structural dynamics (CSD) [13].
In many studies, RSM together with design of experiment (DOE) was used to construct the surrogate
models and find the best-fitting solutions [14–17]. Some researchers applied the adaptive RSM to
search for the global optima of complex mechanical systems [18–20]. However, in these cases, they did
not consider the situation of multi-objective functions with conflicting properties [21] which may lead
to being trapped into a local optimum solution during the design optimization process.

In this paper, the shape design optimization of robot arms for high speed performance via the
surrogate-based evolutionary approach is investigated. First, based on the CAD model of a robot arm,
the design variables, constraints, and objective functions of the optimization problem are defined.
Next, a quadratic RSM together with Box–Behnken design (BBD) and FEM is used to construct the
surrogate model. In solving the optimization problem, the multi-objective evolutionary algorithm
by decomposition (DE variant) (MOEA/D-DE) technique which includes evolutionary operators of
selection, recombination, and mutation is employed to address the multiple objective functions with
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conflicting features and search for the Pareto-optimal sets of global optimization. The weighted sum
method is finally used to determine the best candidate among the generated population samples
through fitness checking. The proposed paper is able to make two significant contributions: one is
to provide a surrogate-based evolutionary optimization approach to deploy in the robot arm design
optimization process to obtain higher performance and efficiency, as well as to reduce computational
cost; the other one is to solve the shape design optimization problem of robot arms considering multiple,
conflicting objectives for higher accuracy and controllability simultaneously.

The rest of the paper is organized as follows. The techniques for robot arm analysis and
design, which involve the target performance to be achieved and the framework of the proposed
surrogate-based evolutionary optimization (SBEO) method, are described in Section 2. The procedure
for the optimal shape design of a specific robot arm is given in Section 3. Some optimal-design-related
simulation results, such as Pareto front history, improvement of performance, computational efficiency,
and sensitivity analysis, are given in Section 4. Section 5 presents a discussion on the advantages,
limitations, and future works of the proposed method.

2. Techniques for Robot Arm Analysis and Design

2.1. Architecture of the Industrial Robot

The PMC6VA030 robot, the six-axis vertical articulated industrial manipulator shown in Figure 1,
is fabricated by PMC, Taiwan. The maximum payload and reach of the robot are 30 kg and 1800 mm,
respectively. The architecture of the robot is composed of six revolute joints and six robot arms. Each
robot arm is driven by a joint module which consists of a servo motor, reduction gear, and encoder.
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Figure 1. Robot configuration: (a) Schematic description of the robot architecture; (b) Finite element
analysis FEA model.

2.2. Problem Description of the Robot Arm

The accuracy, controllability, and efficiency are important performance aspects of a high-speed
industrial robot. Due to the robot arms playing roles of interconnection between the adjacent joints,
their characteristics are able to influence the system performance very well. When the power capacities
of the joint modules are fixed, the shape dimensions of the robot arms are able to significantly affect
the robot performance. Therefore, shape design optimization of the robot arms to obtain the minimum
weight, maximum stiffness, and minimum deformation must be accomplished [22]. Figure 2a is a
detailed engineering drawing of the baseline 2nd robot arm which includes all of the shape dimensions
in it. A schematic view of the proposed 2nd robot arm with the chosen design variables is shown in
Figure 2b. The unspecified dimensions on this sketch are all the same as those in Figure 2a and will not
be optimized in this article under real engineering consideration.
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Figure 2. Dimensions of the 2nd robot arm: (a) Dimensions of the baseline design; (b) Design variables
of the proposed model.

2.2.1. Objective Functions

In this paper, the weight (W), moment of inertia (J), and deformation (D) of the 2nd robot arm
were chosen as tri-objective functions. The mathematical model of the multi-objective optimization
problem is as follows [23]:

minimize F(X) = (W(X), J(X), D(X))T (1)

subject to hi(X) = 0 i = 1, 2, . . . , p (2)

gj(X) ≤ 0 j = 1, 2, . . . , q (3)

xL ≤ X ≤ xU X = (x1, x2, . . . , xn)
T (4)

where F(X), h(X), and g(X) are, respectively, the objective functions and the equality and inequality
constraint functions; X ∈ Rn is a vector of n design variables; p and q are the numbers of
constraint functions.

The multi-objective optimization problem can be expressed as a single equation via weighted
sum and normalization:

minimize Fj(X) = w1 ×
Min W

Wj
+ w2 ×

Min J
Jj

+ w3 ×
Min D

Dj
(5)

where j = 1, 2, 3, . . . ., ps, and ps is the population size. w1, w2, and w3 are weighted factors for
preference criteria.

2.2.2. Design Variables

Several independent geometric parameters of the 2nd robot arm, including shape dimension
initial point Hi, position of inflection point Hm and Vm, radius of opening Rh, and arm thickness Ta,
were chosen as the design variables. The ranges of the design variables in the evolutionary models are
shown in Table 1.

Table 1. Ranges of design variables in the evolutionary model.

Design Variable Model-1 Model-2 Model-3

xiL xiU xiL xiU xiL xiU

Shape Dimension (point A) Hi 100 250 150 200 150 200
Shape Dimension (point C) Hm 400 560 450 550 450 550
Shape Dimension (point C) Vm 100 120 100 120 100 120
Radius of Reduced Hole Rh 40 60 50 60 50 60
Thickness of Robot Arm Ta 100 120 90 110 90 100
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For statistical calculations, Xi is related to xi via the following equation:

Xi =
xi − x0

(xiU − xiL)/2
i = 1, 2, 3 (6)

where Xi is the coded value of a dimensionless design variable which can be easily calculated; xi is the
actual value of a design variable; x0 is the actual value of a design variable at the center point; and xiU

and xiL are the upper and lower bounds of a design variable.

2.2.3. Design Constraints

The above objective functions are subject to design constraints which are related to the geometry
and mechanical behavior of the robot arm.

• The first set of constraints is the limitation of the feasible design region for design variables based
on Table 1.

xiL < xi < xiU (7)

• The second set of constraints considers the relationship between the radius Rc of the circumcircle
and design variables Hi, Hm, and Vm. According to the formulation of the circumcircle, the
coordinates (x, y) of the circumcenter of a triangle and its radius Rc can be obtained as follows.

x =

∣∣∣∣∣∣∣∣∣
H2

i + 1552 155 1
H2

m + V2
m Vm 1

7702 + 1252 125 1

∣∣∣∣∣∣∣∣∣
2×

∣∣∣∣∣∣∣∣∣
Hi 155 1
Hm Vm 1
770 125 1

∣∣∣∣∣∣∣∣∣
mm , y =

∣∣∣∣∣∣∣∣∣
Hi H2

i + 1552 1
Hm H2

m + V2
m 1

770 7702 + 1252 1

∣∣∣∣∣∣∣∣∣
2×

∣∣∣∣∣∣∣∣∣
Hi 155 1
Hm Vm 1
770 125 1

∣∣∣∣∣∣∣∣∣
mm (8)

Rc =

√
(x−Hi)

2 + (y− 155)2 mm (9)

Hence, the constraint involving y should be

g1(x) = Rc − y + 80 < 0 mm. (10)

• One constraint is related to the weight-to-stiffness ratio (W2SR), which is a measure of material
mass efficiency used to provide unit resistance to elastic deformation. An improved W2SR enables
the realization of longer spans without incurring a significant cost penalty, which is expressed in
terms of material usage and deflections due to weight [24]. The W2SR computed from the weight
and stiffness of a robot arm can be expressed as

W2SR = f
(
W, D, Fy

)
=

(W×D)

Fy
(um) (11)

where Fy is the applied force at the distal-end joint.
• Another constraint is related to the weight-to-moment-of-inertia ratio (W2JR), a measure of a

structural property. A higher W2JR will push resonance and anti-resonance peaks to lower
frequencies, shrinking the operating bandwidth of the machine. The measure of W2JR in this
paper is obtained as

W2JR = f(W, J) =
W
J
(m2). (12)

The above two measures of W2SR and W2JR are both “the smaller the better” when the design
optimization of robot arms is targeting higher accuracy and controllability. Two additional constraints
imposed on the objective functions are as follows:

g2(x) = W2SR− 12 < 0, (13)

g3(x) = W2JR− 8 < 0. (14)
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2.3. Performance Analysis Using a CAE Solver

The performance of the robot arm was analyzed using a CAE solver in this paper. The model of
an industrial robot built using Autodesk Inventor 3D CAD software was imported into the ANSYS
MechanicalANSYS Parametric Design Language (APDL )FEM solver in the “*.STP” format. The material
of the robot arm is aluminum 6061 with modulus of elasticity E = 69 GPa, density ρ = 2700 kg/m3, and
Poisson’s ratio ν = 0.3, applied force at the distal-end joint FY = 1300 N, moment MX = 277 Nm, and
MZ = 512 Nm.

The 2nd robot arm, together with the subsequent arms and distal-end joint, is shown in Figure 3a.
All the subsequent arms are treated as point masses (also known as remote forces) which are used to
transfer the force at the distal-end joint (right side) to the 2nd robot arm. Consequently, a resultant force
FY and two resultant moments MX and MZ are applied to the 2nd robot arm as shown in Figure 3b.
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The FEM mesh of the 2nd robot arm is shown in Figure 4a, and the supporting boundary is placed
at the proximal end (left side) of the robot arm with the harmonic reducer treated as a fixed connection
as shown in Figure 4b. The FEA results are shown in Figure 5.
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2.4. The Proposed SBEO Approach

2.4.1. The Framework and Procedure

In this paper we propose a surrogate-based evolutionary optimization (SBEO) method which
integrates surrogate models with the multi-objective evolutionary algorithm based on decomposition
(MOEA/D-DE). A conceptual sketch is shown in Figure 6. The evolutionary optimization is carried out
in the Python programming language using the “PyGMO” open-source optimization library. Herein,
we will only give a brief introduction, and the reader can refer to [25,26] for more details.

The procedure of the proposed SBEO method is outlined in the following steps:

(1) First, a DOE plan is built based on the Box–Behnken design, and initial sample points are chosen
according to the plan matrix. The objective (performance) functions are then analyzed and
evaluated using the ANSYS solver following the baseline design CAD model of the robot arm.

(2) A quadratic polynomial regression model is defined as the surrogate model for the objective
functions based on the sampled dataset. The model parameters are then solved by inverse matrix
transformation using Python’s numpy library’s “Polynomial.fit” function.

(3) The surrogate model is used to search for the optimal solution of the objective subjected to the
constraint functions in the design space using the MOEA/D-DE algorithm.

(4) The weighted sum method, in which each weighting factor is chosen according to the importance
or preference of each objective, is then used to determine the best candidate among the generated
population samples. These candidates are used to evaluate the fitness with the termination
conditions given in Equations (15)–(17). The reduced design space is thereby found to update the
surrogate model.

(5) Steps 3 and 4 are repeated until one of the termination conditions is satisfied.
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2.4.2. Criteria of Model Renewal and Termination

The first termination condition is about the distance between samples and difference of their
objective responses:

‖xnew − xbest‖/‖xbest‖ ≤ ε1, (15)

‖ynew − ybest‖/‖ybest‖ ≤ ε2. (16)

The second one is about the maximum number of affordable expensive function evaluations:

N ≤ Nmax. (17)

In general, if one of the preceding conditions is reached, the optimization is terminated [27].
According to the main effect analysis of DOE in obtaining the sensitivity of design variables, a

selected reduced design space is used to renew the RS models. When one of the termination criteria
given in Equations (15)–(17) is satisfied, the iterations for model renewing will stop.

3. Shape Design Optimization of the 2nd Robot Arm

3.1. Design Procedure of RSM with BBD

The design procedure of the response surface method in association with Box–Behnken design is
as follows:

(1) Identify the definition and the value of each variable;
(2) Create a Box–Behnken design matrix;
(3) Define a polynomial regression model;
(4) Set up the X-Table in design of experiment (DOE);
(5) Convert X to physical values x = mean of x + X × standard deviation of x (σx);
(6) Assess y using FEA and the CAD model;
(7) Compute the approximations of mean of y and range of y for scaling Y;
(8) Convert y to scaled Y: Y = (y−mean of y)/(range of y/2);
(9) Solve beta coefficients;
(10) Compare model y = [x] × {beta Coefficient} with analytical (“exact”) y for validation.

3.2. Construction of the BBD Matrix

Box–Behnken design is a rotatable second-order design based on three-level incomplete factorial
designs, which can decrease the number of experiments to reduce laboratory work. A detailed description
of the method can be found in [28]. Herein, a three-factor and three-level Box–Behnken design matrix
with 46 runs was chosen as the basic form of the RSM. The Model-3 case is shown in Table 2.

Table 2. Box–Behnken design matrix with data for Model-3.

Run
Coded Variables Uncoded (Real) Variables Response (FEM)

X1 X2 X3 X4 X5 Hi(x1) Hm(x2) HV(x3) Rh(x4) Ta(x5) W(y1) J(y2) D(y3)

1 −1 −1 0 0 0 150 450 110 55 95 37.8640 7.4954 0.03921
2 −1 1 0 0 0 150 550 110 55 95 38.3861 7.6226 0.03809
3 1 −1 0 0 0 200 450 110 55 95 38.4216 7.4789 0.03700
4 1 1 0 0 0 200 550 110 55 95 39.2435 7.6958 0.03555
5 0 0 −1 −1 0 175 500 100 50 95 37.0219 7.1141 0.04079
6 0 0 −1 1 0 175 500 100 60 95 36.0889 7.0655 0.04287
7 0 0 1 −1 0 175 500 120 50 95 41.1573 8.1635 0.03313
8 0 0 1 1 0 175 500 120 60 95 40.2243 8.1149 0.03449
9 0 −1 0 0 −1 175 450 110 55 90 35.3401 6.8625 0.04671

10 0 −1 0 0 1 175 450 110 55 100 41.6777 8.2743 0.03387
11 0 1 0 0 −1 175 550 110 55 90 35.9760 7.0237 0.04520
12 0 1 0 0 1 175 550 110 55 100 42.3765 8.4515 0.03272
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Table 2. Cont.

Run
Coded Variables Uncoded (Real) Variables Response (FEM)

X1 X2 X3 X4 X5 Hi(x1) Hm(x2) HV(x3) Rh(x4) Ta(x5) W(y1) J(y2) D(y3)

13 −1 0 −1 0 0 150 500 100 55 95 36.1010 7.0679 0.04390
14 −1 0 1 0 0 150 500 120 55 95 40.4444 8.1267 0.03446
15 1 0 −1 0 0 200 500 100 55 95 37.0302 7.1134 0.04001
16 1 0 1 0 0 200 500 120 55 95 40.9697 8.1538 0.03308
17 0 0 0 −1 −1 175 500 110 50 90 36.2567 7.0050 0.04481
18 0 0 0 −1 1 175 500 110 50 100 42.6410 8.4286 0.03238
19 0 0 0 1 −1 175 500 110 60 90 35.3237 6.9565 0.04663
20 0 0 0 1 1 175 500 110 60 100 41.7079 8.3801 0.03383
21 0 −1 −1 0 0 175 450 100 55 95 36.0959 6.9702 0.04304
22 0 −1 1 0 0 175 450 120 55 95 40.2101 8.0121 0.03441
23 0 1 −1 0 0 175 550 100 55 95 36.6138 7.1004 0.04158
24 0 1 1 0 0 175 550 120 55 95 41.0175 8.2187 0.03330
25 −1 0 0 −1 0 150 500 110 50 95 38.7225 7.6191 0.03744
26 −1 0 0 1 0 150 500 110 60 95 37.7895 7.5705 0.03960
27 1 0 0 −1 0 200 500 110 50 95 39.4499 7.6557 0.03535
28 1 0 0 1 0 200 500 110 60 95 38.5168 7.6072 0.03673
29 0 0 −1 0 −1 175 500 100 55 90 33.8264 6.4804 0.05110
30 0 0 −1 0 1 175 500 100 55 100 40.0143 7.8544 0.03724
31 0 0 1 0 −1 175 500 120 55 90 37.7877 7.4856 0.04164
32 0 0 1 0 1 175 500 120 55 100 44.3674 8.9590 0.03004
33 −1 0 0 0 −1 150 500 110 55 90 35.4554 6.9641 0.04696
34 −1 0 0 0 1 150 500 110 55 100 41.8044 8.3859 0.03422
35 1 0 0 0 −1 200 500 110 55 90 36.1521 6.9992 0.04450
36 1 0 0 0 1 200 500 110 55 100 42.5701 8.4245 0.03202
37 0 −1 0 −1 0 175 450 110 50 95 38.6021 7.5130 0.03721
38 0 −1 0 1 0 175 450 110 60 95 37.6691 7.4644 0.03895
39 0 1 0 −1 0 175 550 110 50 95 39.2660 7.6813 0.03599
40 0 1 0 1 0 175 550 110 60 95 38.3329 7.6328 0.03761
41 0 0 0 0 0 175 500 110 55 95 38.6488 7.6147 0.03700
42 0 0 0 0 0 175 500 110 55 95 38.6488 7.6147 0.03700
43 0 0 0 0 0 175 500 110 55 95 38.6488 7.6147 0.03700
44 0 0 0 0 0 175 500 110 55 95 38.6488 7.6147 0.03700
45 0 0 0 0 0 175 500 110 55 95 38.6488 7.6147 0.03700
46 0 0 0 0 0 175 500 110 55 95 38.6488 7.6147 0.03700

3.3. Formulation of the RS Regression Model

The response surface method is used to construct a suitable approximation of the true functional
relationship between a dependent variable (the response) and a vector of independent variables.
The response is generally evaluated experimentally or analyzed using numerical simulation [29].

A quadratic regressive equation was chosen to be the model of the robot arm, as shown below:

Y = β0 +
n∑

i=1

βixi +
n−1∑
i=1

n∑
j=i+1

βi jxix j +
n∑

i=1

βiix2
i + ε (18)

where Y is the response or performance function, xi, xj are the decision variables, βo is the offset term,
βi represents the linear term, βii denotes the quadratic term, βij denotes the interactive term, and ε is
the statistical error. The relationship between the coded and real variables is described in Equation
(8). The values of β are obtained from Equation (19) using inverse matrix transformation by Python’s
numpy library’s “Polynomial.fit” function as below:

β =
(
XT
∗X

)−1
∗XT

∗Y. (19)

3.4. Calculation of the Coefficients of the RS Model

The coefficients of different surrogate models obtained via Equation (18) and the real variables
obtained by the transformation of the coded variables are shown in Table 3.
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Table 3. The coefficients of RS models and real variables.

Coded Variables Model-1 Model-2 Model-3

Model Coefficients YW YJ YD YW YJ YD YW YJ YD

Beta 0 Const. 0.02734 0.02496 −0.15331 −0.00590 −0.00610 −0.15458 −0.01057 −0.01064 −0.01826
Beta 1 x1 0.11596 0.00428 −0.37509 0.04264 0.00331 −0.10549 0.06862 0.01394 −0.11655
Beta 2 x2 0.09879 0.11059 −0.18021 0.03929 0.03783 −0.05495 0.06323 0.06838 −0.06151
Beta 3 x3 0.25687 0.28164 −0.46145 0.24607 0.27069 −0.32638 0.39591 0.42706 −0.39148
Beta 4 x4 −0.08976 −0.02008 0.14201 −0.05228 −0.01179 0.06951 −0.08852 −0.01959 0.08057
Beta 5 x5 0.74737 0.72229 −0.56288 0.75449 0.72972 −0.79298 0.60527 0.57397 −0.60071
Beta 6 x1

2 −0.01362 −0.00941 0.10906 −0.00099 0.00532 0.01938 −0.00159 −0.00037 0.01376
Beta 7 x2

2 0.06079 0.08144 −0.07636 0.00885 0.03363 −0.00680 0.01422 0.01810 −0.00774
Beta 8 x3

2 −0.03279 −0.00272 0.17937 −0.01193 −0.00233 0.05312 −0.01916 −0.00370 0.05953
Beta 9 x4

2 0.00000 0.00000 −0.08645 0.00000 0.00000 −0.01540 0.00000 0.00000 −0.01861
Beta 10 x5

2 0.01099 0.00108 0.04749 0.00410 0.00088 0.01302 0.00327 0.00070 0.00623
Beta 11 x1x2 −0.05798 −0.06420 0.11599 −0.01896 −0.01527 0.03603 −0.03051 −0.03286 0.03191
Beta 12 x1x3 0.00505 0.00647 0.05851 0.00853 0.00978 0.00752 0.01373 0.01541 0.00848
Beta 13 x1x4 0.00000 0.00000 −0.00978 0.00000 −0.00003 −0.00237 0.00000 0.00000 −0.00287
Beta 14 x1x5 0.00865 0.00949 0.02232 0.00373 0.00408 0.01182 0.00298 0.00322 0.00833
Beta 15 x2x3 0.00033 0.00181 0.07972 −0.00051 −0.00123 0.03799 −0.00081 0.00096 0.06871
Beta 16 x2x4 0.00000 0.00000 −0.02389 0.00000 0.00000 −0.01404 0.00000 0.00000 −0.01702
Beta 17 x2x5 0.02283 0.02510 0.05574 0.02318 0.02548 −0.01720 0.01858 0.02005 0.05375
Beta 18 x3x4 −0.00816 −0.00108 0.03197 −0.00234 −0.00238 0.01659 −0.00398 −0.00095 0.01111
Beta 19 x3x5 0.00000 0.00000 −0.02829 0.00003 0.00000 −0.01601 0.00000 0.00000 −0.00895
Beta 20 x4x5 0.00082 0.00112 0.10402 0.03974 0.03661 0.33444 0.06728 0.06380 0.21738

Real Variable yi = Yi× y_Range/2 + y_Mean i = W, J, D

y_Mean 49.29504 9.91004 0.02896 42.24819 8.41802 0.03467 38.70456 7.62786 0.04325
y_Range/2 9.45013 2.17960 0.00726 8.92588 2.05787 0.01077 5.27049 1.23931 0.01053

3.5. Validation of the RS Model

In statistical analysis, the coefficient determination of R2 [30] is a measure used to assess how well
a model can explain and predict outcomes. It is also commonly known as “R-squared”, to be used as a
guideline for measuring the accuracy of the model. It ranges from 0 to 1 and will be closer to 1 when
the model is more precise. Joglekar and May [31] suggested that the value of R2 for the best-fitting
model should be at least 0.8. According to each DOE matrix, the obtained model is able to produce a
predicted response (called Y_Model). The analyzed response produced by the CAE solver is called Y
Exact. If these two values are equal, the red points in Figure 7 will lie on the diagonal line. The R2

values of W, J, and D models being, respectively, 0.9875, 0.9865, and 0.9229 mean that the surrogate
models evaluated in this study can be used to explain the W, J, and D very well.
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3.6. Multi-objective Evolutionary Optimization

The use of MOEA/D-DE algorithm for solving multi-objective optimization in robot arm design
allows us to find the Pareto front and the corresponding optimal parameter sets. The surrogate
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models in Table 2 were substituted into the MOEA, MOEA/D-DE operators with the adoption of the
following parameters:

(1) Generations = 300;
(2) Weight generation = grid→method to generate the weights;
(3) Decomposition method = Tchebycheff→method used to decompose the objectives;
(4) Neighbor = 20→ size of weights neighborhood;
(5) Crossover parameter = 0.9;
(6) Differential evolution parameter = 0.5;
(7) Distribution index = 20→ used for polynomial mutation;
(8) Real b = 0.9→ chance that the neighborhood is considered at each generation, rather than the

whole population (part of the diversity preservation mechanism);
(9) Limit = 2→ number of copies reinserted in the population (part of the diversity preservation

mechanism);
(10) Preserve diversity = True→ diversity preservation mechanisms.

We also set the preference criteria shown in Equation (5) as w1 = 0.4, w2 = 0.35, w3 = 0.25 and in
Equations (15) and (16) as ε1 = ε2 = 5%. A flowchart of the MOEA/D-DE algorithm for multi-objective
optimization is shown in Figure 8.
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4. Simulation Results

The optimization problem stated in Equations (1)–(4) for the optimal shape design of the 2nd
robot arm was solved using the proposed method. The results related to the optimal design are given
in the following to illustrate the effectiveness and feasibility of the proposed method.
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4.1. Pareto Front History

In solving a multi-objective optimization problem, a solution that has one or several objective
functions that are impossible to further optimize while other objective functions are not deteriorating
is called “Pareto optimal” [32]. In this case, the Pareto front history of MOEA is plotted in Figure 9,
and it is obvious that the solution started to converge at the 10th generation of MOEA.
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4.2. Weighted Sum History

The multi-objective optimization problem of Equation (5) was evaluated to obtain the weighted
sum result. The objectives and design variables in different models and generations according to the
preference criteria on the optimal candidate in each generation of MOEA are shown in Figures 10a
and 10b. Optimal values for W of 33.02 kg, J of 6.3328 kg.m2, and D of 0.0491 mm were obtained for
Hi = 198.81 mm, Hm = 549.99 mm, Vm = 100.07 mm, Rh = 60.00 mm, and Ta = 90.13 mm.
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4.3. The Improvement of Performance

The predicted optimal parameter sets for the models of the 2nd robot arm obtained in the SBEO
process were analyzed using ANSYS to obtain the responses of the selected objectives, which were
then compared with those of the baseline design. The results of different models are shown in Table 4
for comparison. According to the data, the first design (Model-1) greatly improved the deformation
objective, but showed no significant improvements for the other objectives. In the renewal design
Model-3, the objective W was decreased by 16.1%, J was decreased by 22.8%, and D was decreased
by 20.3%; optimal values of W = 33.08 kg, J = 6.4906 kg.m2, and D = 0.0513 mm were obtained for
Hi = 198.81 mm, Hm = 549.99 mm, Vm = 100.07 mm, Rh = 60.00 mm, and Ta = 90.13 mm. The results
reveal that our proposed method is able to solve this real engineering optimization problem, and its
effectiveness is thus validated.

Table 4. Comparison of objectives with the baseline design.

2nd Robot Arm
Objectives (Predicted by Model/ANSYS)

Weight W (kg) Moment of Inertia J (kg. m2) Deformation D (mm)

(0) Baseline Design –/40.26 –/8.404 –/0.0644
(1) First Design Model-1 40.75/41.28 7.8078/8.0081 0.0311/0.0333
(2) Renewal Design Model-2 32.69/33.89 6.6873/6.5079 0.0409/0.0501
(3) Renewal Design Model-3 33.02/33.80 6.3328/6.4906 0.0491/0.0513
Improvement %: ((3)/(0))−(1) −18.0%/−16.1% −24.7%/−22.8% −23.8%/−20.3%

4.4. The Improvement of Computational Efficiency

A computational efficiency comparison between the use of surrogate models and the use of ANSYS
is shown in Table 5. If ANSYS is used, the computational time for a single configuration is 30 s. We set
the computation of each configuration as a sequential process (computing one configuration at a time)
performed in a single computer (no cluster computing). It is feasible to compare the computational
cost of each model. The results of the comparison show that the computational cost of the proposed
method is significantly less than that of ANSYS.

Table 5. Computational efficiency comparison between the model and ANSYS.

Model Population
Size

Time (sec) per
Generation

Converge at
Generation

Total Time (sec)
to Convergence

All Process Time (sec)
(Total Time + ANSYS)

ANSYS 1035 31.050 3 93.150 93.150
Model-1 1035 0.249 25 6.225 6.225+30 × 25 = 756.225
Model-2 1035 0.325 22 7.150 7.15+30 × 22 = 667.15
Model-3 1035 0.299 15 4.485 4.485+30 × 15 = 454.485

4.5. The Relationship between Objectives and Design Variables

There are two ways to represent the relationship between design variables and objective functions:
main effect analysis based on the results of design of experiment and pairwise plots of the SBEO results.

4.5.1. Main Effect Analysis

A main effect is frequently used in the context of factorial designs and regression models to
distinguish main effects from interaction effects. A main effect occurs when the mean response changes
across the levels of a factor. According to the ranges of design variables in Table 1, the lower bound is
denoted as level (−1), the upper bound is denoted as level (+1), and the average of the two is denoted
as level (0) when running the DOE. The main effect plots for the objectives of weight (W), deformation
(D), and moment of inertia (J) are shown in Figure 11. Several results observed in the main effect plots
are stated below.
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On the objective W:

(1) All factors, except Rh, can cause the response to increase when they move from low level (−1) to
high level (+1). While Hi and Hm can only cause the response to increase slightly as the level
changes, Vm and Ta can cause the response to increase significantly, especially Ta.

(2) Factor Rh can cause the response to decrease when its level increases, but the slope of the response
only changes slightly.

(3) Consequently, all five factors appear to have a main effect on the response W. Among them, Ta is
the most important factor because of its high significance.

On the objective J:

(1) Factors Hi and Rh present no significant main effects because the response remains nearly the
same when they move from low level to high level.

(2) Factors Vm and Ta can cause the response to increase significantly when they move from low level
to high level, and the slope of the increased response induced by Ta is the sharpest.

(3) Factor Hm can cause the response to increase sharply when it moves from low level to intermediate
level, and after the saddle point, the response remains almost constant until high level.

(4) Consequently, factors Hm, Vm, and Ta appear to cause a main effect on the response J. Among
them, Ta is the most important factor because of its high significance.

On the objective D:

(1) When the factors move from low level to high level, only Rh causes response D to decrease, while
the others cause response D to increase.

(2) Factors Hi, Vm, and Ta cause the response D to decrease sharply when the factors move from low
level to high level, and the slopes of the responses remain almost the same.

(3) Consequently, all five factors appear to have main effects on the response. Among them, Ta is the
most sensitive and important factor according to the main effect plots.
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4.5.2. Pairwise Plot Analysis

A pairwise plot of the relations between the objectives and design variables was obtained and is
shown in Figure 12. At the first generation, we can see that our evolutionary algorithm takes random
samples for each variable from x1 to x5 within the defined lower and upper bounds. Using Kernel
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Density Estimation (KDE), we can visualize the distribution for each parameter with respect to other
variables and confirm that the sampling was indeed randomly distributed. Histogram plots also
confirm that the initial population was distributed throughout the parameter space (lower and upper
bounds of each variable). Interestingly, the scatter plots and correlation coefficients reveal that the
proposed mathematical model can be attained in the parameter space of variables. Only variable x5 is
linearly correlated with the objectives W, D, and J. Also, W, D, and J are linearly correlated with each
other. In detail, W has a negative correlation with D, and D has a negative correlation with J. However,
W and J have a positive correlation. So, we can conclude that for smaller values of W and J, we can
expect to have a larger value of D. Similarly, for a smaller value of D, we expect to have larger values
of W and J. From a mechanics point of view, this can be seen as (1) W being directly proportional to
J, (2) W being inversely proportional to D, and (3) J being inversely proportional to D. Thus, we can
conclude that our surrogate model captures the mathematical properties of the system nicely.
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5. Discussion

In this work, a surrogate-based evolutionary optimization method together with Pareto front was
presented to design the 2nd robot arm of an industrial robot for attaining high speed performance of
the robot. The robot arm was optimized considering the minimum weight, deformation, and moment
of inertia. The optimization problem was subjected to constraints on performance indicators such as
the W2SR, W2JR, and geometric conditions. Five design variables selected from the important shape
geometric parameters were placed under realistic engineering consideration in the optimal design.
In order to solve the multi-objective problem, the weighted sum method was used to determine the
best candidate from the generated population samples, where the weighting factors were chosen
according to the importance or preference of each objective. The characteristics of the optimized 2nd
robot arm were also compared with those of the baseline 2nd robot arm. The results obtained in the
comparison show that the optimized profile not only increased the performance indicators W, J, and D
by up to 16.1%, 22.8%, and 20.3%, respectively, but also saved over 90% on the computational cost.
These advantages indicate the effectiveness of the proposed SBEO method when compared with the
existing ANSYS-based methods and thus confirm the efficiency of the proposed method in solving
complex realistic engineering problems. Some conclusions can be drawn as follows:
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(1) The optimal shape design of a robot arm performed in this study showed that shape design optimization
is useful to improve the performance of industrial robots with real engineering considerations.

(2) The optimal design of the 2nd robot arm obtained via the multi-objective optimization approach
features good performance for conflicting objectives, and a Pareto front was obtained by employing
preference sets of weighted factors for the various design objectives.

(3) Compared with the conventional expensive ANSYS-based simulation technique, the proposed
SBEO is more practicable and effective for shape optimization of robot arms parameterized
with many design variables. In the SBEO, the population samples and Pareto fronts are able to
converge quickly to the optimized hot zone of design candidates according to the designer’s
preference criteria to obtain better performance.

(4) It was shown that objective W is proportional to J, and both W and J are inversely proportional
to D. The objectives are all affected by the five adopted design variables, of which thickness Ta

has the most significant effects, which depend on the selected criteria. When Ta, Rh, and Vm

are fixed, smaller Hi and Hm at the same time could cause larger deformation in the robot arm
design optimization.

For future research directions, it is worthwhile to seek further applications of the SBEO algorithm
to robot design, as well as other types of robot mechanism. In this study, we only considered the shape
design of the 2nd robot arm, but did not consider the design of the whole body and robot dynamic
behavior yet. Anyone who is interested in this area can extend our study to the abovementioned topics
based on our results. In addition, an experimental study to test and validate the performance of the
algorithm is also recommended.
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